当前位置:文档之家› 热泵热水器制冷剂工质性能研究_刘小军

热泵热水器制冷剂工质性能研究_刘小军

热泵热水器制冷剂工质性能研究_刘小军
热泵热水器制冷剂工质性能研究_刘小军

充注制冷剂方法

充注制冷剂方法(空气源热泵热水器/中央空调) 对于全封闭式压缩机,充注氟利昂往往采用低压收入法。 ⑴. 充注前需将制冷剂从大钢瓶倒入小钢瓶中,其方法是:先将修理用的小钢瓶放入有冰块的容器中冷却降温,然后用一根橡胶软管将大、小钢瓶连接起来,但大钢瓶的阀门暂不开启。将大钢瓶阀门和小钢瓶的接头松开,用氟利昂气体将软管中的空气排出,然后关闭大钢瓶的阀门,旋紧小钢瓶的软管接头。开启大、小钢瓶的阀门,充注制冷剂,待充到80%时,关闭大小钢瓶的阀门,去掉软管。 ⑵. 由钢瓶往制冷系统中充注制冷剂时可将钢瓶与修理阀相连接,也可用复合式压力表的中间接头充入。打开小钢瓶并倒置,将接管内的空气排出后,拧紧接头,充入制冷剂,表压不超过0.15Mpa时关闭直通阀门。起动压缩机将制冷剂吸入,同时观察蒸发器的结霜情况,待蒸发器上已结满霜或结露时,即可停止充注。 制冷剂的充入量有以下几种方法: ⑴测重量(常在产品生产时用)。 在充注氟利昂时,事先准备一个小台秤,将制冷剂钢瓶放入一个容器中,再在容器中注入40℃以下的温水(适用于空调器的低压充注制冷剂蒸汽)。充注前记下钢瓶、温水及容器的重量,在充注过程中注意观察指针。当钢瓶内制冷剂的减少量等于所需要的充注量时可停止充注。也可直接称量钢瓶不用加温水。 ⑵测压力。(常在调试时用法) 制冷剂饱和蒸气的温度与压力呈一一对应关系,若已知制冷剂的蒸发

温度即可查出相对应的蒸发压力。此压力的表压值由高、低压压力表显示出来。因此,根据安装在系统上压力表的压力值即可判断制冷剂的充注量是否宜适。如空调器的蒸发温度为7.2℃,冷凝温度为54.5℃使用R22。查R22的饱和温度与饱和压力对应表,以确定其蒸发压力值和冷凝压力值。查表可知:R22在7.2℃时相应绝对压力值为0.53Mpa(5.3kg/cm2)和54.5℃时的相应绝对压力值为2.11Mpa(21.1kg/cm2),将此压力换算为表压值即可。用高、低压压力表或复合式压力表测试充氟中的制冷系统,若高、低压力表表压值符合上述范围即表明制冷剂的充注量合适;若高、低压压力均低则表明充入量不够;若高、低压压力均高,则表明充入量过多。压力测定法较为简便,在维修时经常作用,但是缺点是比较粗,准确度不高。 ⑶测温度。(常在维修时用法) 用半导体测温仪,测量蒸发器的进出口、集液器的出口等各点的温度,以判断制冷剂充注量如何。在蒸发器的进口(毛细管前150mm 处)与出口两点之间的温差约7—8℃,集液器出口的温度应高于蒸发器的出口处1-3℃。如果蒸发器进出口的温差大,表明制冷量充注不足,若吸气管结霜段过长或邻近压缩机处有结霜现象,则表明制冷剂充注过多。 ⑷测工作电流。(常在维修时用法) 用钳型电流表测工作电流,制冷时,环境温度35℃,所测得的工作电流与铭牌上电流相对应。温度越高,电流相应增大,温度越低电流相应减少。在风机正常、两器散热好的情况下按空调器工况测电流

空气源与水源热泵对比分析

空气源热泵与水源热泵比较 一、概述: 在我国主要利用三种热泵技术,分别是水源热泵,地源热泵,以及空气源热泵。 热泵即可制冷,又可制热。制冷时,其工作原理跟一般的冷气机没有区别;制热时,利用制冷循环系统的热端,将冷凝器排出的热量送入室内采暖或加热生活用水。这时,热泵的运行过程看起来就像是把低温端的热量,源源不断地抽送到高温端一样,所以形象地称之为热泵。如果热泵的冷端(蒸发器)直接置于室外的空气之中,称之为空气源热泵;如果其冷端(蒸发器)通过管道埋植于水中,则称之为水源热泵。 二、水源热泵 2.1优点: 2.1.1水源热泵技术属可再生能源利用技术 2.1.2水源热泵属经济有效的节能技术 2.1.3水源热泵环境效益显著 2.1.4水源热泵一机多用,应用范围广 2.1.5水源热泵空调系统维护费用低 2.1.6水源热泵高效节能。水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7(空气源热泵理论值为2--6),实际运行4~6。 2.2水源热泵的应用限制 2.2.1利用会受到制约;

2.2.2可利用的水源条件限制,对开式系统,地源要求必须满足一定的温度、水量和清洁度; 2.2.3水层的地理结构的限制,对于从地下抽水回灌的使用,必须考虑到使用地的地质的结构,保证用后尾水的回灌可以实现; 2.2.4投资的经济性,由于受到不同地区、不同用户及国家能源政策、燃料价格的影响,虽然总体来说,水源热泵的运行效率较高、费用较低,但与传统的空调制冷取暖方式相比,在不同地区不同需求的条件下,水源热泵的投资经济性会有所不同; 2.3水源热泵目前的市场状况: 水源热泵目前主要应用在北方冬季寒冷的地区,而在广阔的南方很少见到身影。 主要原因:南方主要以空气源热泵为主,冬天对空调制热的依赖不如北方明显,主要用来洗澡,所以空气源热泵基本能满足需要,并且工程相对简单,造价成本要低。所以这类产品有较大的局限性,所以必须要走产品的差异化道路,来做好产品的推广! 三、污水源热泵: 3.1简介:污水源热泵是水源热泵的一种。众所周知,水源热泵的优点是水的热容量大,设备传热性能好,所以换热设备较紧凑;水温的变化较室外空气温度的变化要小,因而污水源热泵的运行工况比空气源热泵的运行工况要稳定。处理后的污水是一种优良的引入注目的低温余热源,是水/水热泵或水/空气热泵的理想低温热源。 3.2污水源热泵的形式

空调制冷剂充注机操作规程通用版

操作规程编号:YTO-FS-PD284 空调制冷剂充注机操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

精品规程范本 编号:YTO-FS-PD284 2 / 2 空调制冷剂充注机操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1. 使用充注机前,操作人员应做好安全防护工作。 2. 严格按照充注机的使用说明进行操作。 3. 定期检查充注机的泄漏情况,如有故障及时进行修复。 4. 不准强行操作,以防损伤仪器。 5. 充注机必须定期进行保养,更换真空泵油。 6. 进行制冷剂处理时,必须加强环保意识,以防造成环境污染。 7. 保持充注机清洁、完好。 8. 该套设备技术性较高,使用和操作人员均需经培训过才能对机器进行操作。 该位置可输入公司/组织对应的名字地址 The Name Of The Organization Can Be Entered In This Location

多种制冷剂热泵循环性能的对比分析

随着我国社会的高速发展和人民生活水平的提高,经济发展与环境保护的矛盾也日益突出。为减少采暖燃煤使用量、改善空气环境、提高能源使用效率,我国北方开始推广“煤改电”、“煤改气”等一系列政策。北京怀柔区实施“煤改电”政策后,在电价方面将取消阶梯电价,并且在采暖期最低可享受0.1元/度的优惠电价;在采暖设备方面,对空气源热泵按照实际供热面积每平米200元补贴。基于节能环保的环境要求和供热采暖的生活需求,采暖用空气源热泵代替传统锅炉已成为一种发展较快的趋势。 1 研究现状 1.1热泵发展近况 近年来国内外众多高校、研究机构和企业都一直致力于解决热泵在全年长期运行中的问题,尤其是在低温工况下运行的问题。早在2003年,清华同方就宣称将某热泵产品进行技术革新,使得该产品的工作环境从(-8~7)℃扩大到(-15~45)℃。2006年,南京工业大学的学者王伟设计并搭建了一台可单双级切换的压缩空气源热泵热水器,制冷剂选用R134a,得到双级压缩热泵热水器在-20℃的环境下运行COP能保持在1.5左右,相对于电热水器有较明显的优势。广东长菱空调气冷机公司陈俊骥设计搭建一套采用中间喷射的涡旋热泵热水器并进行了实验,实验表明:该系统能在-20℃~43℃的环境温度下正常运行,制取热水的水温达到65℃;在-15℃的环境温度以下,该设备COP依然能保持在2.0以上。国外对低温空气源热泵热水器的研究主要集中在日本、美国和一些西欧国家。美国学者Wang X等在2009年以R410A 为工质建立一个11kW的实验台,比较了经济器和闪发器对制冷制热的影响,得出结论:外界环境为46.1℃时,闪发蒸汽喷射相对于单级系统制冷量和制冷系数分别提高14%和4%;外界环境为-17.8℃时,制热量和制热系数分别提高30%和20%。 1.2热泵循环研究进展 基于热泵技术的发展要求,许多国内外学者对不同的热泵循环进行了理论对比分析,也根据不同的循环理论进行实验研究。热泵循环的主要形式分为:单级压缩制热循环、双级压缩制热循环、复叠式制热循环三种。其中双级压缩制热循环中包括液体喷射技术、闪发蒸汽喷射技术等一些新型技术的应用。2015年,日本学者Chieko Kondou等 本文以热力学性能为评价指标,对R22、R134a、R410a、R717和R744等十六种常用制冷剂进行对比,分析其在单级、双级和复叠式热泵循环下的性能。综合分析各工质的环保、安全性、制热效率、自然度等因素,得出CO2单级热泵循环系统为最优的热泵循环系统,并从热力学角度,分析了CO2热泵系统循环性能的影响因素。 多种制冷剂热泵循环性能的对比分析 上海理工大学/吕静 张旭 赵琦昊 北京凯昆广胜新能源电器有限公司/张继凯 赵德鹏 2018年11月 44

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度进行计算。

1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果 不同的制冷剂充注量对空调器性能的影响是不一样的。笔者对KFR-32

抽真空、充注制冷剂具体操作步骤

一、歧管表使用方法 1、管道压力测试装置(岐管表) (1)管道压力测试装置的结构 当低压阀开启时,“A”与“B”之间的管路接通。同样,当高压阀开启时,“A”与“C”之间的管路接通。当两个阀都开启时,“A”、“B”和“C”之间的所有管路都接通。 不管对应阀的状态,低压表总是接通“B”,而高压表总是接通“C”。 (2)管道压力测试装置的操作方法 a.将“B”连接到低压侧的接头阀,将“C”连接到高压侧接头阀。 b.在排空时,将“A”连接到真空泵或者在再填充制冷剂,连接制冷剂容器。 c.除在排空或再填充制冷剂时外,所有的阀应保持关阀。 1. 2 二、真空泵的操作方法 1、将中央填充软管连接到真空泵。 2、开启管道压力测试装置的低压阀和高压阀和真空泵上的阀,使真空泵运转。

三、制冷剂充注方法 在使用空调中,最应注意的问题是确保组件中没有水分,当一个组件暴露在大气中时,空气及其所含的水分进入空调中,即使在空调中仅有少量的水分,在低温部位水蒸气可能结冰,造成诸如制冷循环堵塞或压缩机阀腐蚀等问题。因此,在更换零件或者空调系统重新安装到汽车中后重新充注制冷剂到空调系统中时,必须将尽可能多的水分从该系统中除去。除去水分的唯一可用的方法是空调抽真空,使其内部的水分沸腾,这样水分可以蒸汽形式除去。 1、充注制冷剂的工作步骤 建议:在保压力密封性后,无发现异常情况后,再抽真空15-20分钟!此为抽二次真空,对空调系统真空度要求大有好处。 2、制冷剂的充注方法 (1)连接管道压力测试装置 a.关闭管道压力测试装置的高压阀(HI)和低压阀(LO) b.连接填充软管到高压和低压接头阀。 (2)抽真空 a.将管道压力测试装置中央的填充软管连接到真空泵上。 b. 开启管道压力测试装置的高压阀(HI)和低压阀(LO)

充注氟利昂操作规程标准范本

操作规程编号:LX-FS-A42716 充注氟利昂操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

充注氟利昂操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 充注氟利昂有两种方法:一种是在制冷系统的高压端加入,适用于较大的新安装的制冷系统;另一种是在制冷压缩机的低压端加入,适用于小型制冷装置及一般补充氟利昂不足。 由制冷压缩机低压端进行补充氟利昂的操作: 1 将氟利昂钢瓶放于磅秤上,并拧上“钢瓶接头”; 2 把低压阀按“反时针”方向倒足,关闭多用通道口,拆下堵头; 3 堵头处装上“三通接头”。一端接压力真空表;另一端用连接管经干燥过滤器再接到氟利昂“钢

太阳能-空气能双源一体热泵制冷剂充注量研究

·102· 制冷与空调 2014年 文章编号:1671-6612(2014)01-102-05 太阳能-空气能双源一体热泵制冷剂充注量研究 靳晓钒 秦 红 刘重裕 (广东工业大学材料与能源学院 广州 510006) 【摘 要】 太阳能-空气能双源一体式热泵热水器由于在结构设计和运行工况上与普通热泵存在较大的差异, 因此在研究过程中系统制冷剂充注量就不能借用已有的经验公式。针对自行研究设计的双源一体 热泵R134a 制冷剂充注量问题,采用Tandon 空泡系数计算模型,借助于Maple 应用数学软件,推 导出系统在最佳设计工况下的制冷剂充注量。实验结果显示,该方法得到的数据与实际最佳制冷 剂充注量基本吻合。并总结推导出适用于本类型双源一体热泵的制冷剂充注量估算公式。 【关键词】 双源一体热泵;制冷剂充注量;空泡系数模型;估算公式 中图分类号 TK515 文献标识码 A Research on Refrigerant Filling Quantity for Integrative Solar/Air Double Source Heat Pump System Jin Xiaofan Qin Hong Liu Chongyu ( Material and energy institute of Guangdong University of Technology, Guangzhou, 510006 ) 【Abstract 】 Because of the large difference in structural design and operating conditions compared with the traditional heat pump system, in the process of research the existing empirical formula of refrigerant filling quantity is not fit for the new integrative solar/air double source heat pump system. In this paper Tandon’s void fraction model and Maple applied mathematics software are used in the validation of refrigerant R134a filling quantity for the new heat pump system, and refrigerant filling quantity in the optimal conditions is gained. Experimental results show that the value deduced from this method is consistent with the actual optimum refrigerant filling quantity. More over, refrigerant filling quantity estimation formula for the integrative solar/air double source heat pump system is also given in this paper. 【Keywords 】 double source heat pump system; refrigerant filling quantity; void fraction model; estimation formula 基金项目:太阳能-空气能双源一体式热泵热水器集成关键技术及产业化;2011广东省产学研结合项目(2011B090400501) 作者简介:靳晓钒(1983.8-),男,硕士研究生,工程师,E-mail :jxf4201@https://www.doczj.com/doc/3c11746928.html, 通讯作者:秦 红(1957-),女,博士,副教授,科研方向为空调制冷节能技术及太阳能光伏光热利用技术, E-mail :qh8402@https://www.doczj.com/doc/3c11746928.html, 收稿日期:2013-03-05 0 引言 将太阳能集热器和空气能热泵热水机蒸发器 整合为一体的机组简称为太阳能/空气能双源一体 式热泵热水机。与一般的空气能热泵热水机组相 比,太阳能/空气能双源一体机组存在两个方面的 显著差异。一是在集热蒸发器设计上,为了保证可 以接收到足够面积的太阳辐射能量,双源一体机组 的迎风面面积相比会增大很多。高效集热器正面结 构类似于平板式太阳能集热器,剖面类似于翅片管 式空气能换热器,并通过新型翅片折角形成烟囱作用,强化自然对流条件下的空气对流换热。本课题组设计的集热器具体结构如下图1所示[1]。 图1 太阳能/空气能双源一体式机组高效集热器 Fig.1 high efficiency heat collector of integrative solar/air 第28卷第1期 2014年2月 制冷与空调 Refrigeration and Air Conditioning V ol.28 No.1 Feb. 2014.102~106

新型制冷剂性能优缺点

二氧化碳具有高密度和低粘度,其流动损失小、传热效果良好,并且通过对传热作用的强化,可以弥补其循环不高的缺点。同时二氧化碳环境表现优良、费用低易获取、稳定性好、有利于减小装置体积。最重要的是,其安全无毒,不可燃,这一点比R290具有明显的优势。 当然,采用二氧化碳为制冷剂也有缺点,二氧化碳高的临界压力和低的临界温度也给它做制冷剂带来了许多难题。无论亚临界循环还是跨临界循环,二氧化碳制冷系统的运行压力都将高于传统的制冷空调系统,这必然会给系统及部件的设计带来许多新的要求。同时现阶段还存在二氧化碳制冷系统的效率相对较低的问题。 目前二氧化碳的研究和应用主要集中于三个方面:一方面是汽车空调领域,由于制冷剂排放量大,对环境的危害也大,必须尽早采用对环境无危害的制冷剂;第二方面是热泵热水器,二氧化碳在超临界条件下放热存在一个相当大的温度滑移,有利于将热水加热到一个更高的温度;第三方面是考虑到二氧化碳良好的低温流动性能和换热特性,采用它作为复叠制冷循环低温级制冷剂。 在复叠式制冷系统中,二氧化碳循环在亚临界条件下运行。此时二氧化碳用作低压级制冷剂,高压级用NH3作制冷剂。与其它低压制冷剂相比,即使处在低温,二氧化碳的粘度也非常小,传热性能良好,因为利用潜热,其制冷能力相当大。目前,欧洲在超市中已建立了几个这种用二氧化碳作低温制冷剂的复叠式制冷系统,运行情况表明技术上是可行的,这种系统还适用于低温冷冻干燥过程。美国伊利诺伊大学(UIUC)空调和制冷中心的C.W.Bullard 等对二氧化碳工质在家用空调、超市冷柜等方面的应用进行了广泛的理论与实验研究。而超市的制冷剂替代也是当务之急。据了解,超市消耗的能源中多达60%是用于制冷的。使用二氧化碳的制冷系统将大幅度减少这一数字。目前关于R22制冷剂的替代国际上主要有两种技术方案:一种是以北欧国家和韩国为代表,其主张采用天然工质作为替代物,如纯工质R290、R1270、R744、R600a、R600、R717等,以及HCs类的混合物;另一种是以美国和日本为代表的采用HFCs作为替代物,如美国联合信号公司的非共沸混合物R410A、杜邦公司和I.C.I公司的混合物R407C,以及R32和R152a等,这些制冷剂的ODP均为0,能够达到保护臭氧层的目的,但是会产生温室效应。 目前看来,二氧化碳在国内市场的前景,还有点像"雾里看花",就像王立群所言,他们都了解它的好,但真正用的少。国内空调行业暂时看不到二氧化碳发展的影子,其在国内冷冻冷藏市场也才刚刚迈步,但在热泵热水器领域,国内即将出台二氧化碳热泵热水器的核心配件标准--GB/T26181-2010。参与标准制定的上海日立电器有限公司热泵推进办公室部长乐红胜认为,虽然在国内采用二氧化碳制冷剂的热泵热水器还没问世,核心部件压缩机也处于研发阶段,"但这一超前标准的制定,将会对产品的市场推广起到良好的作用。" 二、CO2制冷剂的性质 (一)CO2制冷剂具有的主要优势 1.CO2是天然物质,ODP=0,GWP=1。使用CO2作为制冷工质,对大气臭氧层没有破坏作用,可以减少全球温室效应,来源广泛,勿需回收,可以大大降低制冷剂替代成本,节约能源,从根本上解决化合物对环境的污染问题,具有良好的经济性。 2.CO2安全无毒、不可燃,并具有良好的热稳定性,即使在高温下也不会分解出有害的气体。万一泄漏对人体、食品、生态都无损害。 3.CO2具有与制冷循环和设备相适应的热物性。分子量小,制冷能力大,0℃的单位制冷量比常规制冷剂高5~8倍,因而对于相同冷负荷的制冷系统,压缩机的尺寸可以明显减小,重量减轻,整个系统非常紧凑;润滑条件容易满足,对制冷系统常见材料无腐蚀,可以

制冷剂加注方法

制冷剂的充入量有以下几种方法: ⑴测重量。 在充注氟利昂时,事先准备一个小台秤,将制冷剂钢瓶放入一个容器中,再在容器中注入40℃以下的温水(适用于空调器的低压充注制冷剂蒸汽)。福州格力空调售后维修充注前记下钢瓶、温水及容器的重量,在充注过程中注意观察指针。当钢瓶内制冷剂的减少量等于所需要的充注量时可停止充注。也可直接称量钢瓶不用加温水。 ⑵测压力。 制冷剂饱和蒸气的温度与压力呈一一对应关系,若已知制冷剂的蒸发温度即可查出相对应的蒸发压力。此压力的表压值由高、低压压力表显示出来。因此,根据安装在系统上压力表的压力值即可判断制冷剂的充注量是否宜适。如空调器的蒸发温度为7.2℃,冷凝温度为54.5℃使用R22。查R22的饱和温度与饱和压力对应表,以确定其蒸发压力值和冷凝压力值。查表可知:R22在7.2℃时相应绝对压力值为0.53Mpa(5.3kg/cm2)和54.5℃时的相应绝对压力值为2.11Mpa(21.1kg/cm2),将此压力换算为表压值即可。用高、低压压力表或复合式压力表测试充氟中的制冷系统,若高、低压力表表压值符合上述范围即表明制冷剂的充注量合适;若高、低压压力均低则表明充入量不够;若高、低压压力均高,则表明充入量过多。压力测定法较为简便,在维修时经常作用,但是缺点是比较粗,准确度不高。 ⑶测温度。 用半导体测温仪,测量蒸发器的进出口、集液器的出口等各点的温度,以判断制冷剂充注量如何。在蒸发器的进口(毛细管前150mm处)与出口两点之间的温差约7—8℃,集液器出口的温度应高于蒸发器的出口处1-3℃。格力渠道策略成功的核心,福州格力空调维修中心和您一起探讨如果蒸发器进出口的温差大,表明制冷量充注不足,若吸气管结霜段过长或邻近压缩机处有结霜现象,则表明制冷剂充注过多。 ⑷测工作电流。 用钳型电流表测工作电流,制冷时,环境温度35℃,所测得的工作电流与铭牌上电流相对应。温度越高,电流相应增大,温度越低电流相应减少。在风机正常、两器散热号的情况下按空调器工况测电流值作比较。

分析-制冷剂R32特性及其用于空气源热泵热水器的理论循环分析

第10卷 第3期制冷与空调 2010年6月 REFRIGERA TION AND A IR -CONDITION IN G 79284 收稿日期:2010204206 通信作者:饶荣水,Email :rongshuirao @https://www.doczj.com/doc/3c11746928.html, 制冷剂R32特性及其用于空气源热泵 热水器的理论循环分析 饶荣水 (广东美的暖通设备有限公司) 摘 要 介绍R 32,R 22和R 407C 以及R 410A 四种制冷剂的流动特性和热力学特性,并对采用这4种制冷剂的空气源热泵热水器进行理论循环分析。从计算结果可以看出,与采用其他3种制冷剂的系统对比,采用R 32制冷剂的系统具有较低的压缩比,较高的理论CO P 以及容积制热量;在当前阶段,R 32是用于空气源热泵热水器的一种较好的制冷剂。 关键词 空气源热泵热水器;理论循环分析;热力学特性;流动特性;性能指标;制冷剂;R 32 Properties of R32and its theoretical cycle analysis of air source heat pump w ater heater Rao Rongshui (Guangdong Midea HVAC Equip ment Co.,Lt d.) ABSTRACT Int roduces t he t hermodynamic and flow p roperties of R 32,R 22,R 407C and R 410A ,and analyzes t he t heoretical cycle performance t hat employs t hese four kinds of refrigerant s for t he air source heat p ump water https://www.doczj.com/doc/3c11746928.html,pared wit h t he ot her t hree kinds of ref rigerant ,t he R 32system has t he characteristics of lower compressor ratio ,higher t heoretical CO P and volume heating capacity.It shows t hat R 32is a good refriger 2ant for air source heat p ump water heater system. KE Y WOR DS air source heat p ump water heater ;t heoretical cycle analysis ;t hermody 2namic p roperties ;flow p roperties ;performance index ;ref rigerant ;R 32 随着生活水平的提高,人们对生活舒适度的要求也越来越高,热水器已经成为生活中一项必需的基本设施。生活热水的用量也成为衡量舒适性的一个重要指标。有关数据表明,欧美国家冷、热水使用比例是1:9,而中国冷、热水使用比例仅为9:1。目前的生活热水装置主要有燃气热水器、电热水器、太阳能热水器、热泵热水器。空气源热泵热水器具有安全、节能等诸多优点,符合我国当前减少碳排量的要求,被业内称为“第4代热水器”。 当前,应对大气臭氧层损耗、环境破坏和全球气候变暖是全球制冷空调行业共同面对的挑战[1]。由于以氯氟烃(CFCs )为代表的热泵循环工质对臭氧层有极强的破坏作用,1987年9月联合国环境 计划署通过的《蒙特利尔议定书》明确提出了限制生产和使用CFCs 。我国政府在1989年和1991年分别签署了《保护臭氧层维也纳公约》和《蒙特利尔议定书》及其伦敦修正案。为实现这些目标,在我国的热泵热水器行业采用替代制冷剂的工作就显得非常迫切[225]。我国热泵热水器采用的制冷剂主要为R 22,部分采用R 134a ;日本主要采用R 410A 和CO 2;欧洲主要采用R 410A ,R 407C 和R 134a ;澳大利亚主要采用R 407C 和R 134a 。由于R 410A 等现在广泛用于热泵热水器的制冷剂的GW P 值很高,业内一些学者提出用R 32作为一种替代制冷剂。笔者将介绍R 32制冷剂的一些基本物性,并对采用R 32制冷剂的热泵热水器进行理

汽车空调制冷剂的充注方法

汽车空调制冷剂的充注 方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

汽车空调制冷剂的充注方法 一.系统抽真空 1.连接充注软管和歧管压力表,拧紧螺母。关闭岐管压力表手动阀,拧下制冷管路的维 修阀的阀盖。连接快速脱开适配器并锁紧。 2.将高压表接入高压管的维修阀,低压表接入自蒸发器至压缩机低压管的维修阀。中间 充注软管安装于真空泵接口。 3.启动真空泵,打开歧管压力表的高压阀和低压阀。 4.抽真空时间约为10~15分钟左右. 5.关闭高压阀和低压阀。 6.放置5分钟,观察压力表,指针继续上升,说明真空下降,系统有泄露。检查泄露情 况,并修补漏洞。 7.继续抽真空20~25分钟,重复6步骤,如压力表保持不动,说明无泄漏,可进行下 一步的工作。 8.关闭高压阀和低压阀,停止抽真空。拆下中间充注管,准备冲入制冷剂。 二.充入制冷剂 1.罐装制冷剂使用前的准备工作,操作如下: ①在制冷剂罐上安装启开阀之前,逆时针旋转蝶形手柄,直到阀针完全缩回为止。 ②逆时针旋转板状螺母,使其升到最高位置。 ③将歧管压力表的中间充注软管安装该阀的接头上,顺时针旋转板状螺母并拧紧。 ④顺时针旋转蝶形手柄,使其前端的阀针在制冷剂罐凸台上刺出小孔。 ⑤逆时针旋转蝶形手柄,制冷剂便沿注入软管流到歧管压力表内。 ⑥顺时针旋转蝶形手柄到最低位置,重新封闭制冷剂罐,但不可拆动启开阀,否则罐 内的制冷剂会泄露。

2.充注制冷剂的步骤。 ①连接好歧管压力表和制冷剂罐。 ②逆时针旋松启开阀手柄,使制冷剂进入中间充注软管,这时不能打开两侧的手动阀 门。 ③拧松歧管压力表中间软管的螺母,会看到白色制冷剂气体外溢并听到嘶嘶声,排出 中间软管的空气后,再旋紧中间软管螺母。 ④旋开高压手动阀门,将制冷剂罐倒立,立即以液态注入制冷系统。切忌打开空调装 置,以防倒灌。 ⑤关闭高压手动阀门,打开低压手动阀门,让制冷剂以气态进入制冷系统。从低压手 动阀门注入的制冷剂必须是气态,如液态,会出现压缩机的液击现象而损毁压缩机。 ⑥启动发动机,打开空调装置,适当加大油门,使制冷剂更快的流入。 ⑦当一罐制冷剂充注完后,关闭低压手动阀门。重复1~3步骤,打开低压充注阀 门。

冷媒充注工艺规范

冷媒充注工艺规范 1范围 本标准规定了制冷剂充注技术、工艺规范要求。 本标准适用于家用空调器产品制冷系统的制冷剂充注。 2引用标准 下列标准所包含的条文, 通过在本标准中引用而构成为本标准的条文。 GB/T 7778-2001 制冷剂编号方法和安全性分类 3冷媒的种类 空调常用的冷媒有三种:R22、R407C、R410A 3.1 R22俗称氟里昂,是由三氯甲烷(CHCl3)无水氟化氢(AHF)在五氯化锑催化下反应生成的二氟 一氯甲烷,分子式为CHClF2。 R22在常温下为无色的气体,加压可液化为无色透明的液体。 3.2 R407C为三元混合工质,化学名称为二氟甲烷/五氟乙烷/四氟乙烷(R32/R125/R134a- 23/25/52wt%), 分子式为CH2F2 /CHF2 CF3 /CH2F CF。 R407C在常温下为无色的气体,无浑浊,无异臭,加压可液化为无色透明的液体。 3.3 R410A是由R32(C H2F2)和R125(CF3-CF2H)按照1:1重量比混合而成的沸点为-51.6℃的近共 沸混合物。 R410A在常温下为无色的气体,加压可液化为无色透明的液体,无浑浊。 4冷媒充注要求、参数 4.1充注机设备要求 4.1.1 充注机充注管路清洁无杂质、水分,管路无泄漏及结霜等情况; 4.1.2 充注机性能指标应符合下表要求:

5冷媒充注 5.1增压系统 5.1.1 压缩空气压力应在5kgf/cm2~8kgf/cm2; 5.1.2 增压泵增压系统出口压力应在20~30 kgf/cm2,充注R410A时,正常压力范围应为: 20~40Kgf/cm2; 5.1.3 第一次充注前,要手动放出制冷剂约500g以排除管路里空气; 5.2 充注机校验 5.2.1根据生产机型,选择冷媒的种类,并调好充注机的充注量; 5.2.2进行充注量校验调整;充注校对前应对称氟瓶抽真空,确保氟瓶真空度小于20Pa,且瓶表面应无水汽、杂物等;将调好的充注量充注到氟瓶,用电子称称量,待显示屏稳定后进行读数,检验称量完成后作好记录。 5.2.2需要对充注机进行校验的情况:①每天生产线开线前的校对;②出现设备故障时必须进行校对;③转机时必须充注机进行校对;④不转产每2小时校对一次。 5.3充注 5.3.1抽真空完毕,且快速接头无杂物、油污及冷凝水;若系统内真空度不良,冷媒充注机会报警,这时不能强行充注,需对此台机重新抽真空,方可充注。 5.3.2系统保压时间≥2S,压力回弹值≤100p a; 5.3.3用手握住工艺管上的快速接头,将充注枪插到快速接头上,确定连接完好后,按下启动按钮进行充注; 5.3.4充注时注意显示屏,观察显示的真空度,充注完毕后,冷媒机蜂鸣器提示,拨出枪头。 6充注工艺要求 6.1禁止从低压阀进行充注冷媒; 6.2充注过程中,若发现有制冷系统有泄漏,立即停止充注,将泄漏位置标识出来; 6.3在生产过程中,因系统泄漏或其它原因造成的返修机,应使用专用的真空泵抽真空,抽真空的时间应确保≥20分钟、真空度小于40P a,然后再进行充冷媒工序,禁止对系统内有残余冷媒返修机进行充注。 6.4 R22和新冷媒不能共用冷媒流通管路; 6.5充注R407C、R410A等新冷媒时,充注量没达到或部分泄漏,严禁进行加充,须使用专用真空泵重新抽真空后再进行充注。 6.6当充注机更换冷媒种类时,必须对其进行清洗,清洗完成后,转换冷媒进行调试,在设备功能菜单中选择相应冷媒类型,校对前按要求进行排空; 6.7充注精度应符合下表要求

R134aR600a 混合制冷剂在大型风冷热泵应用的性能研究

文章编号:CAR142 R134a/R600a混合制冷剂在大型风冷热泵应用的性能研究 倪灏 (江森自控楼宇设备科技(无锡)有限公司, 无锡 214028) 摘 要 在热泵运行时,当R134a作为主要的R22替代制冷剂应用于大型螺杆式风冷机组时,会存在能效较低,容易结霜等缺陷。本研究尝试在R134a的大型风冷螺杆热泵机组混合少量R600a来改善性能,通过对混合制冷剂物性计算,理论循环性能计算和机组实验,结果表明添加R600a后的混合制冷剂显著改善了热泵机组的运行性能,并有效提高机组运行可靠性。 关键词 螺杆式热泵异丁烷(R600a) 近共沸制冷剂 STUDIES ON MIXING R600a TO IMPROVE PERFORMANCE OF THE LARGE TONNAGE R134a AIR COOLED SCREW CHILLER HEAT PUMP Ni Hao (Johnson Controls Building Efficiency Technology (Wuxi) Co., Ltd., Wuxi 214028,China) Abstract Currently R134a is one of the best substitutes for R22 for the large tonnage water-cooled chiller, however, it is found to apply for heat pumps due to the bad performance and serious coil frost. This research purpose is to improve the performance of the large tonnage screw chiller heat pump by mixing small amount of R600a with R134a. After property calculation, circle simulation and testing, concluded that mixing R600a may significantly improve performance and reliability for the R134a screw heat pump. Keywords Large tonnage air-cooled screw heat pump Isobutane (R600a) Near-azeotropic refrigerant 采用R134a替代R22应用于大型螺杆式风冷热泵机组显著的缺点是在热泵工况下压比大,能效低,盘管上容易结霜。90 年代初, HCs(碳氢类化合物)在添加了一定的阻燃剂后[1]作为制冷剂被引入到制冷行业中。例如,异丁烷(R600a)等,具有很好的热物理特性,ODP 值为零,GWP值也较低,同时R600a与大多数润滑油都具有较高的溶解性[2]。当前,德国90 %的冷藏箱和冷冻箱采用HCs 作为制冷剂,而在全欧洲新生产的家用电冰箱中有25 %的制冷剂为HCs制冷剂[2]。R600a和R134a的混合制冷剂在冰箱上应用国内外已经有了一些研究成果[3]。但是在空调产品上的应用,尤其是大型机组如螺杆式风冷热泵机组上还未见类似的研究。 本文将研究在R134a中添加HCs制冷剂R600a 所形成的混合制冷剂在热泵机组应用的可行性。因为R134a和R600a混合比在约80%和20%时可形成 热物理性能良好的近共沸制冷剂,并能显著地改善机组采用R134a制冷剂时在热泵工况下的性能。1 混合制冷剂物性计算 大型风冷热泵机组较一般空调的制冷工况更恶劣,常用的蒸发饱和温度一般为-10℃到0℃,冷凝饱和温度50℃-60℃。以下为通过REFPROP7.0对这两点饱和温度为0℃和50℃进行的组分物性特征分析,结果如下: 1.在压力为0.355MPa时,即饱和温度0℃时,当X1=0.8时,露点温度也最低,且温度的滑移值为0.01K。露点线和泡点线几乎重合。如图1所示。 2.在压力为1.46MPa时,即饱和温度50℃时,X1=0.85时,露点温度最低,此时温度的滑移值为0.05K,但是在X1=0.80时,温度的滑移值为0.15K,虽然不是最低点,也是非常小的。如图2所示。 从混合物物性的特性可以看出,在0℃到50℃风冷热泵机组常用的工作范围内,当R134a和R600a混合的质量百分比约80%和20%左右时,完全可以认为是近共沸制冷剂。同时,当R134a组分

R22、R410a冷媒充注

R22、R410a冷媒充注冷媒的特性 冷媒R-22R-407C R-410A 分子式CHCLF2CH2F2/CHF2CF3/CF3CH2F CH2F2/CHF2CF3 分子量86.586.272.6 沸点(℃)-40.8-43.7-52.7 临界温度(℃)9687.372.5 497448164949.6 临界压力 (kPa) 512.82515.78500.0 临界密度 (kg/m3) 120811711107 液体密度 (kg/m3) 38.2837.6853.84 气体密度 (kg/m3) 1.212 1.483 1.637 液体比热 (kj/kg·K) 0.76040.9328 1.027 气体比热 (kj/kg·K) 潜热(kj/kg)233.7249.73256.68 0.087250.092140.1025 液体导热系数 (W/m·K ) 气体导热系数 0.011220.012800.01266 (W/m·K ) 液体粘度(μ 180816961314 poise) 气体粘度(μ 126.5123.5128.8 poise)

ODP0.0500 GWP0.370.380.46 表中R410A蒸发潜热和蒸汽密度较大,压缩机单位排气体积的能力大,为避免系统设计点的偏离导致的效率低下,需要缩小压缩机的排气体积,更改压缩机汽缸。 在P-h图上,R410A冷媒的运转冷凝压力约为R22的1.5倍,设计时需要考虑相关构成部品的耐压性。(均为标准工况下)。 注意事项 空调停电12小时以上: 启动空调时,必须先使曲轴箱加热器得电预热,预热时间以系统充注冷媒量每公斤冷媒不少于1小时,目的是将曲轴箱内冷冻油中混有的液体冷媒蒸发,避免压缩机吸入液体冷媒,引起液压缩。 充注操作工具及连接 压力表(组合表阀) 数字温度表 钳形电流表 重量计 冷媒R-22 操作工具连接 压力表的连接与排空

相关主题
文本预览
相关文档 最新文档