当前位置:文档之家› 绝对值函数系列习题(二次函数)

绝对值函数系列习题(二次函数)

绝对值函数系列习题(二次函数)
绝对值函数系列习题(二次函数)

含有绝对值符号的函数的性质

1、已知不等式|

|2

2x x a +≤对x 取一切负数恒成立,则a 的取值范围是_______.

2、若关于x 的不等式||22

a x x --<至少有一个负数解,则实数a 的取值范围是_______.

3、函数2

|1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______. 4、设常数R ∈a ,以方程20112||=?+x

a x 的根的可能个数为元素的集合=A _______.

5、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为_______.

6、对任意的120x x <<,若函数1

()f x a x x b x =-+折线(两侧的射线均平行于x 轴), 试写出a 、b 应满足的条件 .

7、已知函数()2log f x x =,正实数,m n 满足m n <,

且()()f m f n =,若()f x 在区间2,m n ????上的最大值为则m =________,n =_________.

8、设,,a b R ∈且1b ≠.若函数1y a x b =-+的图象与直线y x =恒有公共点,则,a b 应满足的条件是_______.

9、关于x 的方程092

2=-++a x a x (R a ∈)有唯一的实数根,则=a _______. 10、若函数1log 2

)(|

3|+-=-x x f a x 无零点,则a 的取值范围为_______.

11、定义在R 上的函数()f x 的图像过点(6,2)M -和(2,6)N -,且对任意正实数k ,有

()()f x k f x +<成立,则当不等式|()2|4f x t -+<的解集为(4,4)-时,则实数t 的值

为_______.

12、已知函数21(0)()log (0)

x a x f x x x ?++≤=?>?有三个不同零点,则实数a 的取值范围为_______.

13、设关于x 的不等式4|4|2

+≤+-x m x x 的解集为A ,且A A ?∈2,0,则实数m 的取

值范围是_______.

14、直线1y x =+与曲线2||194

y x x -=的公共点的个数是_______. 15、我们把形如()0,0>>-=

b a a

x b

y 的函数因其图像类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y 轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当1=a ,1=b 时,所有的“囧圆”中,面积的最小值为____________

16、函数2

1|21|(0)

()2(0)

x x x x f x a x -?+-≤?=?+>??有两个不同的零点,实数a 的取值范围为_______.

17、已知)(x f 是定义在]4,4[-上的奇函数,3

1

)2()(+

-=x f x g .当[2,0)(0,2]x ∈-时,

0)0(,121

)(|

|=-=

g x g x ,则方程)1(log )(2

1+=x x g 的解的个数为____________.

18、“2a =”是“函数()f x x a =-在[)2,+∞上是增函数”的_______.

()A 充分非必要条件. ()B 必要非充分条件. ()C 充要条件. ()D 即非充分也非必要条件.

19、设函数()y f x =的R 内有定义,对于给的正数k ,定义函数()

()()()k f x f x k f x k

f x k

≤?=?

>?取函数21

()log ||,2

f x x k ==当时,函数()k f x 的单调递增区间为_______.

20、若函数4

||y y x a x

=

=-和的图像有三个不同的公共点,

则实数a 的取值范围是_______. 21、定义运算:??

?≤>=*y

x y y

x x y x ,若11+=*+m m m ,则实数m 的取值范围是_______.

22、已知函数0)()()1(1)1(|1|1

)(2=++??

?

??=≠-=c x bf x f x x x x x f 的方程,若关于 有且仅有

3个实数根=++2

32221321x x x x x x ,则、、_______.

23、已知以4T =为周期的函数()f x 在(13]-,上的解析式为2

(1||),(1,1]

()1(2),(1,3]m x x f x x x -∈-?=?--∈?

,其中0m >,若方程3()f x x =恰有5个实数解,则m 的取值范围为_______.

24、在平面直角坐标系xOy 中,O 为坐标原点.定义11(,)P x y 、22(,)Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-.已知(1,0)B ,点M 为直线20x y -+=上的动点,则(,)d B M 的最小值为_______.

25、已知函数)()(R x q px x x x f ∈++=,给出下列四个命题:①)(x f 为奇函数的充要条件是0=q ;②)(x f 的图象关于点),0(q 对称;③当0=p 时,方程)(x f =0的解集一定非空;④方程)(x f =0的解的个数一定不超过两个. 其中所有正确命题的序号是_______.

26、函数()sin f x x x m n =++为奇函数的充要条件是_______. A 、220m n += B 、0mn = C 、0m n += D 、0m n -=

27、函数,)(c bx x x x f ++=给出四个命题:

(1)0=c 时,)(x f y =是奇函数;(2))(x f y =的图象关于点),0(c 中心对称;

(3)方程0)(=x f 至多有两个实根;(4)0,0>=c b 方程0)(=x f 只有一个实数根.上述命题中所有正确的命题的序号是_______.

28、设函数)(x f y =由方程1||||=+y y x x 确定,下列结论正确的是_______.(请将你认为

正确的序号都填上)

(1))(x f 是R 上的单调递减函数;

(2)对于任意R x ∈,0)(>+x x f 恒成立; (3)对于任意R a ∈,关于x 的方程a x f =)(都有解; (4))(x f 存在反函数)(1

x f

-,且对于任意R x ∈,总有)()(1

x f

x f -=成立.

29、已知:()x f y =是最小正周期为2的函数,当[]1,1-∈x 时,()2

x x f =,则函数()x f y =

()R x ∈图像与x

y 5log =图像的交点的个数是_______个.

30、在平面直角坐标系中,设点),(y x P ,定义||||][y x OP +=,其中O 为坐标原点.

对于以下结论:①符合1][=OP 的点P 的轨迹围成的图形的面积为2;

②设P 为直线0225=-+y x 上任意一点,则][OP 的最小值为1;

③设P 为直线),(R b k b kx y ∈+=上的任意一点,则“使][OP 最小的点P 有无数个”的必要不充分条件是“1±=k ”;

其中正确的结论有________(填上你认为正确的所有结论的序号)

31、若方程lg 50x x +-=在区间()(),1k k k Z +∈上有零点,则所有满足条件的k 的值的和为______________.

32、设[]x 表示不超过实数x 的最大整数,如[]15.1=,[]25.1-=-.若()x

x

a

a x f +=1(0>a 且1≠a ),则()()??

???

?--+??????

-=2

121)(x f x f x g 的值域为_______.

33、符号][x 表示不超过x 的最大整数,如[2.3]=2,][}{,2]3.1[x x x +=-=-定义函数,

那么下列命题中所有正确命题的序号为_______.

①函数}{x 的定义域是R ;②函数}{x 的值域为R ; ③方程2

3

}{=

x 有唯一解;④函数}{x 是周期函数;⑤函数}{x 是增函数. 34、已知函数1|1|)(--=x x x f .

(1)求满足x x f =)(的x 值; (2)写出函数)(x f 的单调递增区间; (3)解不等式0)(

35、[]x 表示不超过实数x 的最大整数.设实数x 不是整数,且[][]x x x

x 9999+=+,

则x 的值为_______.

36、对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数”.在实数轴

R (箭头向右)上[x ]是在点x 左侧的第一个整数点,当x 是整数时[x ]就是x .这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么

]1024[log ]4[log ]3[log ]2[log ]1[log 22222+++++ =_______.

37、给出定义:若11

22

m x m -

<≤+(其中m 为整数)

,同m 叫做高实数x 最近的整数,记作{x},即{}.x m =给出下列关于函数()|{}|f x x x =-的四个命题: ①函数()y f x =的定义域是R ,值域是1

[0,]2

②函数()y f x =的图像关于直线()2

k

x k Z =

∈对称; ③函数()y f x =是周期函数,最小正周期是1;

④函数11()[,]22

y f x =在上是增函数;

则其中真命题的序号是 .

38、已知函数()c b x x f +-=2

)|(|,函数m x x g +=)(,

(1)当4,2-==m b 时,)()(x g x f ≥恒成立,求实数c 的取值范围;

(2)当2,3-=-=m c 时,方程)()(x g x f =有四个不同的解,求实数b 的取值范围.

39、设全集U R =,关于x 的不等式220x a ++->(a R ∈)的解集为A . (1)分别求出当1a =和3a =时的集合A ;

(2)设集合)cos()066B x x ππππ??

=-+-=????

,若()

U C A B 中有且只有三

个元素,求实数a 的取值范围.

40、已知函数()(),f x x a x a R =?-∈.

(1)当4=a 时,画出函数()f x 的大致图像,并写出其单调递增区间; (2)若函数)(x f 在]2,0[∈x 上是单调递减函数,求实数a 的取值范围; (3)若不等式()6x a x ?-≤对[]0,2x ∈恒成立,求实数a 的取值范围.

41、已知函数a a x x x f --=||)(,R x ∈. (1)当1=a 时,求满足x x f =)(的x 值; (2)当0>a 时,写出函数)(x f 的单调递增区间;

(3)当0>a 时,解关于x 的不等式0)(

42、若实数、、

满足

,则称

接近

.

(1)若

比3接近0,求的取值范围;

(2)对任意两个不相等的正数、,证明:

接近

43、已知函数R x e x f e

x f a x a x ∈==+-+-,)(,)(1||2|

12|1.

⑴ 若2=a ,求)(x f =)(1x f +)(2x f 在∈x [2,3]上的最小值;

⑵ 若)()(21x f x f -=)()(12x f x f -对于任意的实数R x ∈恒成立,求a 的取值范围; ⑶ 当61≤≤a 时,求函数=)(x g 2

|

)()(|2)()(2121x f x f x f x f --

+在∈x [1,6]上的 最小值.

44、已知函数

(1)若,求的值;

(2)若对于

恒成立,求实数

的取值范围.

45、对于定义在区间D 上的函数()f x ,若存在闭区间[,]a b D ?和常数c ,使得对任意的

1[,]x a b ∈,都有1()f x c =,且对任意的2x D ∈,当2[,]x a b ?时,2()f x c >恒成立,

则称函数()f x 为区间D 上的“平底型”函数.

(1)判断函数1()|1||2|f x x x =-+-和2()|2|f x x x =+-是否为R 上的“平底型”函数?并说明理由;

(2)设()f x 是(1)中的“平底型”函数,k 为非零常数.若不等式

||||||()t k t k k f x -++≥?对一切t ∈R 恒成立,求实数x 的取值范围;

(3)若函数()g x mx =[2,)-+∞上的“平底型”函数,求实数m

和n 的值.

46、已知函数2|1|

()4

x m f x x +-=

-,0m >且满足2)2(-=f .

(1)求实数m 的值;

(2)判断函数)(x f y =在区间]1,(--∞m 上的单调性,并用单调性的定义证明; (3)若关于x 的方程()f x kx =有三个不同的实数解,求实数k 的取值范围.

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

二次函数典型例题——最大值问题

二次函数典型例题——最大面积 1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且 OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F. (1)若抛物线过点 A 、B、C, 求此抛物线的解析式; (2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积 是多少?求出此时点M 的坐标. 解:(1)∵OB=1 ,OC=3 ∴C(0,-3),B(1,0) ∵△OBC 绕原点顺时针旋转90°得到△ OAE ∴A(-3,0) 所以抛物线过点A(-3 ,0),C(0,-3),B(1,0) 设抛物线的解析式 为 y 2 ax bx c(a 0) ,可得 a+b+c 0a1 c -3解得b2 9a-3b c 0c-3 ∴过点A,B,C 的抛物线的解析式为y x2 2x-3 (2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD ∴ E(0,-1),D(-1,0) 1 可求出直线AE 的解析式为y 1x 1 3直线DC 的解析式为y 3x 3 ∵点F为AE、DC 交点 ∴F(-3,-3) 44

3 S 四边形 ODFE =S △AOE -S △ADF = 4 3)连接 OM ,设 M 点的坐标为 (m ,n ) 2 2、在平面直角坐标系 xOy 中,抛物线 y mx 2 (m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD. (1)求证: ACO BCD ; (2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E. ①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标. ∵点 M 在抛物线上,∴ n 2 m 2m ∴ S AMC S AMO S OMC S AOC = 12OA m = 32(m 2 11 OC n OA OC 2 2 3m) 3(m 因为 0 m 3 ,所以当 m 所以当点 M 3 的坐标为 ( , 2 3 9 3 (m n) (m n 3) 2 2 2 3 2 27 2) 8 3 时, 2 15 - ) 时, 4 n 15 ,△AMA ' 的面积有最大值 4 △ AMA '的面积有最大值

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数 专题一:二次函数的图象与性质 考点1.二次函数图象的对称轴和顶点坐标 二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a -). 例 1 已知,在同一直角坐标系中,反比例函数5 y x =与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值; (2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系 抛物线y=ax 2 +bx+c 中,当a>0时,开口向上,在对称轴x=-2b a 的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 例2 已知2 y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 考点3.二次函数的平移 当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2 -2 图1

专题练习一 1.对于抛物线y=13-x 2+ 103x 163 -,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为(-1,0),(3,0) 3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从图2所示的二次函数2 y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式 例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙 的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2 )与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围). 考点2.根据抛物线上点的坐标确定二次函数表达式 1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0); 2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0); 3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 图2 A B C D 图1 菜园 墙

实际问题与二次函数典型l例题

1. 某商品的售价为每件60 元,进价为每件40元,每星期可卖出300件,该商场一星期卖这种商品的利润为元。 2、我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件. 该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查: 如调整价格,每降价1元,每星期可多卖出20件. 请问同学们,该如何定价,才能使一星期获得的利润最大? 3、某种商品每件的进价为30元,在某段时间内若以每件x元出售(按部门规定,单价不超过每件70元),可以卖出(100- x)件,应如何定价才能使利润最大? 4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。 (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式; (2)求该批发商平均每天的销售利润ω(元)与销售价x(元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 5、某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查,在进价不变的情况下,若每千克涨价1元,销量将减少10千克 (1)该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 6、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). (1)由已知图象上的三点坐标,求累积利润s(万元)与销售时Array间t(月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?

初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数21(1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 . 6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212 y x =的图象,它们共同特点是 ( ) 22 3x y -=

二次函数典型例题50题

选择 1.二次函数y=(x-3)(x+2)的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=-12 D.x=1 2 2. 抛物线y=2x 2-5x+3与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个 3.二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上 D.x 轴上 4. 如图2,抛物线 ,OA=OC ,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=c C .bc+1=a D .b a +1=c 5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近( ). A.4 B.16 3 C.2π D.8 6.如图7,记抛物线 2 1y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P ,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点 2 y ax bx c =+ +21 2 2y x =- +

1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122PP Q 的面积分别为1S ,2S ,这样就有 21312n S n -=,22342n S n -= ,…;记121 n W S S S -=+++… ,当n 越来越大时,你猜想W 最 接近的常数是( ) A. 23 B. 12 C. 1 3 D.14 7.定义[]为函数 的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(,); ② 当m > 0时,函数图象截x 轴所得的线段长度大于; ③ 当m < 0时,函数在x >时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( ) A. ①②③④ B. ①②④ C. ①③④ D. ②④ 8. (2010宿迁改编)如图11,在矩形ABCD 中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段 MP=A , 设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是( ) ,,a b c 2 y ax bx c =++3138 23 41 C B A D

初三《二次函数》经典习题汇编(易错题、难题)

《 二次函数 》经典习题汇编 模块一:二次函数的相关概念 1.(2014山东东营,9)若函数21(2)12 y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( ) A .0 B .0或2 C .2或-2 D .0,2或-2 2.(2015江苏宿迁,16)当x m =或x n =(m n ≠)时,代数式223x x -+的值相等,则x m n =+时,代数 式223x x -+的值为 。 3.(2013江苏南通,18)已知22x m n =++和2x m n =+时,多项式2 46x x ++的值相等,且20m n -+≠,则当3(1)x m n =++时,多项式246x x ++的值等于________。 模块二:二次函数的顶点问题 1.(2015湖南益阳,8改编)若抛物线2()(1)y x m m =+++的顶点在第一象限,则m 的取值范围为________。 2.(2013吉林,6)如图,在平面直角坐标系中,抛物线所表示的函数解析式为22()y x h k =--+,则下列结论正确的是( ) A .0h >,0k > B .0h <,0k > C .0h <,0k < D .0h >,0k < 模块三:二次函数的对称轴问题 1.(2014福建三明,10)已知二次函数2 2y x bx c =-++,当1x >时,y 的值随x 值的增大而减小,则实数b 的取值范围是( ) A .1b ≥- B .1b ≤- C .1b ≥ D .1b ≤ 2.(2013贵州贵阳,15)已知二次函数222y x mx =++,当2x >时,y 随x 的增大而增大,则实数m 的取值范围是________。 3.(2015江苏常州,7)已知二次函数2(1)1y x m x =+-+,当1x >时,y 随x 的增大而增大,而m 的取值范围是( ) A .1m =- B .3m = C .1m ≤- D .1m ≥- 模块四:二次函数的图象共存问题 1.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )

相关主题
文本预览
相关文档 最新文档