当前位置:文档之家› 曲线拟合实验报告

曲线拟合实验报告

曲线拟合实验报告
曲线拟合实验报告

插值与拟合实验报告

学生实验报告

了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多项式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程; 通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验仪器、设备或软件:电脑,MATLAB软件 三、实验内容 1.编写插值方法的函数M文件; 2.用MATLAB中的函数作函数的拟合图形; 3.针对实际问题,试建立数学模型,并求解。 四、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件; 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 五、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)。 1.天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表: 由此推断何时金星与地球的距离(米)的对数值为9.93518? 解:输入命令

days=[18 20 22 24 26 28 30]; distancelogs=[9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499]; t1=interp1(distancelogs,days,9.93518) %线性插值 t2=interp1(distancelogs,days,9.93518,'nearest') %最近邻点插值 t3=interp1(distancelogs,days,9.93518,'spline') %三次样条插值 t4=interp1(distancelogs,days,9.93518,'cubic') %三次插值 计算结果: t1 = 24.9949 t2 = 24 t3 = 25.0000 t4 =

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

幅频特性和相频特性图

速度控制环优化 速度控制环的优化主要是速度调节器的优化。速度调节器主要优化比例增益与积分时间常数两个数据,先确定它的比例增益,再优化积分时间常数。如果把速度调节器的积分时间常数(MD1409)调整到500ms,积分环节实际上处于无效状态,这时PI速度调节器转化为P调节器。为了确定比例增益的初值,可从一个较小的值开始,逐渐增加比例增益,直到机床发生共振,可听到伺服电机发出啸叫声,将这时的比例增益乘以0.5,作为首次测量的初值。 MD1407—速度增益Kp MD1409—积分时间Tn 速度环手动优化的具体步骤: 步骤一、用适配器将驱动器和计算机相连接,启动计算机和系统(电缆连接必须断电) 步骤二、等机床准备好后使机床工作在JOG方式下。 步骤三、在计算机上运行“SIMODRIVE 611D START TOOL”软件,首先会弹出画面如图

【Axis-】出现如下画面 所示

步骤六、点击【Drive MD】,进入如下画面 步骤七、点击【Boot file/Nck res...】,再点击【Measuring parameters】,进入如下画面,Amplitude为输入信号幅值,峰值力矩的百分比;Bandwidth 为测量带宽;Averaging 为平均次数,次数越多,越精确,时间越长,通常20次;Settling time 为建立时间,注入测量信号和偏移,到记录测量数据 间的时间;Offset为斜坡偏移量(避免启停时出现浪涌电流)。

提示画面,机床参数MD1500应设置为0,如下图所示 步骤九、点击【OK】,出现提示画面如下图

步骤十、按机床NC Start按钮,开始优化,在计算机上点击【Display】,出现如下画面(如果在此时伺服电机发生特别大的噪声,这时应紧急按下急停 按扭)。 通过得到的曲线可以看出,改变MD1407和MD1409的值就可以使曲线发生变化。速度环参数的调节是驱动参数调节的重点,有时在电机的标准机床数据的情况下,电机可能会产生噪声。这种情况下,应先减小速度环的增益值。在改变增益时,观察调节器的幅频特性曲线的变化趋势,使曲线的幅值在0dB 位置达到最宽的频率范围,优化调整方法如下: ○1如果速度调节器的幅频特性曲线的幅值不超过0dB,可提高比例增益MD1407,频宽也增加,响应特性得到改善。当比例增益增大到一定数值后,幅 频特性曲线中的幅值会极度变化,频宽变窄,系统的动态特性降低。

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

伏安特性曲线实验报告

《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。 3。拆除电路,整理桌面,将器材整齐地放回原位。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。

六、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,R U应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。 七、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。 2。读数时没有读准确,在估读的时候出现误差。 3。描绘图像时没有描绘准确造成误差。

描绘小灯泡的伏安特性曲线 《测量小灯泡伏安特性曲线》实验课题任务是:电学知识告诉我们当电压一定时电流I与电阻R成反比,但小灯炮的电阻会随温度的改变而变化,小灯泡(6。3V、0。15A)在一定电流范围内其电压 与电流的关系为UKIn,K和n是与灯泡有关的系数。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《测量小灯泡伏安特性曲线》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方 法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出测量小灯泡伏安曲线的电路和实验步骤,要具有可操作性。 ⑶验证公式UKIn; ⑷求系数K和n;(建议用最小二乘法处理数据)

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

实验十二 幅频特性和相频特性

实验十二 幅频特性和相频特性 一、实验目的:研究RC串、并联电路的频率特性。 二、实验原理及电路图 1、实验原理 电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。即: ()2 1U H j U ω= 1)低通电路 R C 1 U 2 U 10.707 () H j ω0 ωω 图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。当输入为1U ,输出为2U 时,构 成的是低通滤波电路。因为: 1 1 2 111U U U j C j RC R j C ωωω=?=++ 所以: ()()()211 1U H j H j U j RC ωω?ωω===∠+

()() 2 11H j RC ωω= + ()H j ω是幅频特性,低通电路的幅频特性如图 4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的 角频率称为截止频率,记为0ω。 2)高通电路 C R 1 U 2 U ω ω0 0.707 1() H j ω 图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性 12 1 11U j RC U R U j RC R j C ωωω=?= ?+?? + ??? 所以: ()()()211U j RC H j H j U jRC ωωω?ω===∠+ 其中()H j ω传输特性的幅频特性。电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0 ωω<<时,即低频时 ()1 H j RC ωω=<< 当0ωω>>时,即高频时, ()1 H j ω=。 3)研究RC 串、并联电路的频率特性:

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

插值与拟合实验报告

一、给定函数y=sinx的函数表如下表,用拉格朗日插值求sin0.57891的近似 值 M文件: function yh=lagrange2(x0,y0,xh) n = length(x0); m = length(xh); yh=zeros(1,m); for k = 1:m for i = 1:n xp = x0([1:i-1 i+1:n]); yp = prod((xh(k)-xp)./(x0(i)-xp)); yh(k) = yh(k) + yp*y0(i); end end 执行:>> x0=[0.4,0.5,0.6,0.7] x0 = 0.4000 0.5000 0.6000 0.7000 >> y0=[0.38942,0.47943,0.56464,0.64422] y0 = 0.3894 0.4794 0.5646 0.6442 >> lagrange2(x0,y0,0.57891) 执行结果: ans = 0.5471

二、 1. 给定sin110.190809,sin120.207912,sin130.224951,o o o ===构造牛顿 插值函数计算'sin1130o 。 M 文件: function fp = newpoly(x,y,p) n = length(x); a(1) = y(1); for k = 1 : n - 1 d(k, 1) = (y(k+1) - y(k))/(x(k+1) - x(k)); end for j = 2 : n - 1 for k = 1 : n - j d(k, j) = (d(k+1, j - 1) - d(k, j - 1))/(x(k+j) - x(k)); end end d for j = 2 : n a(j) = d(1, j-1); end Df(1) = 1; c(1) = a(1); for j = 2 : n Df(j)=(p - x(j-1)) .* Df(j-1); c(j) = a(j) .* Df(j);

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

数学实验-实验2 插值与拟合

广州大学学生实验报告 开课学院及实验室: 2014年 月 日 学院 数学与信息科学学院 年级、专业、班 姓名 学号 实验课程名称 数学实验 成绩 实验项目名称 实验2 插值与拟合 指导老师 一、实验目的 1、掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。 2、掌握用MATLAB 作线性最小二乘拟合的方法。 3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。 二、实验设备 电脑、MATLAB 三、实验要求 1..选择一些函数,在n 个节点上(n )不要太大,如5~11)用拉格朗日,分段线性,三次样条三种插值方法,,计算m 各插值点的函数值(m 要适中,如50~100).通过数值和图形的输出,将三种插值结果与精确值进行比较.适当增加n ,再作比较,由此作初步分析.下列函数供选择参考: a. y=sin x ,0≦x ≦2π; 2.用 1 2 y x =在x=0,1,4,9,16产生5个节点15,...,P P .用不同的节点构造插值公式来计算x=5处的插值(如用 15,...,P P ;14,...,P P ;24,...,P P 等)与精确值比较进行分析。 5.对于实验1中的录像机计数器,自己实测一组数据(或利用给出的数据),确定模型2 t an bn =+中的系数a,b. 6.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为 0()()t v t V V V e -τ =--,其中 0V 是电容器的初始 电压,τ是充电常数。试由下面一组t ,V 数据确定0V 和τ. t/s 0.5 1 2 3 4 5 7 9 V/V 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 8. 弹簧在力F 的作用下伸长x ,一定范围内服从胡克定律:F 与x 成正比,即F=kx,k 为弹性系数.现在得到下面一组x ,F 数据,并在(x,F )坐标下作图(图13).可以看出,当F大到一定数值(如x=9以后)后,就不服从这个定律了。试由数据拟合直线F=kx,并给出不服从胡克定律时的近似公式(曲线)。 1)要求直线与曲线在x=9处相连接。 2)要求直线与曲线在x=9处光滑连接. 四、实验程序 预备: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=s+p*y0(k); end y(i)=s; end 五、实验操作过程 当n=5时 clear; n=5; %在n 个节点上进行插值 m=75; %产生m 个插值点,计算函数在插值点处的精确值,将来进行对比 x=0:4/(m-1):2*pi; y=sin(x); z=0*x; x0=0:4/(n-1):2*pi; y0=sin(x0); y1=lagr1(x0,y0,x); % y1为拉格朗日插值 y2=interp1(x0,y0,x); % y2为分段线性插值 y3=spline(x0,y0,x); % y3为三次样条插值 [x' y' y1' y2' y3'] plot(x,z,'k',x,y,'r:',x,y1,'g-.',x,y2,'b',x,y3,'y--') gtext('Lagr.'), gtext('Pieces. linear'), gtext('Spline'), gtext('y=sin(x)') hold off; %比较插值所得结果与函数在插值点处的精确值 s = ' x y y1 y2 y3' [x' y' y1' y2' y3'] 结果 ans = 0 0 0 0 0 0.0541 0.0540 0.0495 0.0455 0.0611 0.1081 0.1079 0.0999 0.0910 0.1207 0.1622 0.1615 0.1510 0.1365 0.1787 0.2162 0.2145 0.2025 0.1819 0.2350 0.2703 0.2670 0.2541 0.2274 0.2896 0.3243 0.3187 0.3054 0.2729 0.3425 0.3784 0.3694 0.3563 0.3184 0.3936 0.4324 0.4191 0.4066 0.3639 0.4429 0.4865 0.4675 0.4559 0.4094 0.4904 0.5405 0.5146 0.5040 0.4548 0.5359 0.5946 0.5602 0.5508 0.5003 0.5796 0.6486 0.6041 0.5961 0.5458 0.6212 0.7027 0.6463 0.6396 0.5913 0.6609 0.7568 0.6866 0.6812 0.6368 0.6985 0.8108 0.7248 0.7208 0.6823 0.7341 0.8649 0.7610 0.7583 0.7278 0.7675

函数幅频特性曲线

1:已知x(t)=1,试用MATLAB 分析其幅频特性曲线。 解:因为x(t)=1是连续非周期信号,其对应的频谱是非周期连续的,对于连续的信号计算机不能直接加以处理,因而,需要将其先离散化,再利用离散傅里叶变换(DFT )对其进行分析实现其近似计算。对连续时间信号x(t)可以分解成x(t)=u(t)+u(-t-1),通过采取不同的采样间隔来分析其频谱。 (a)对x(t)离散化的采样间隔取R=0.005,对F(W)取N=7000,图像如图a ; (b)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=30,图像如图b ; (c)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=7000,图像如图c 。 针对(a)情况的程序如下:R=0.005;t=-5:R:5; f=Heaviside(t)+Heaviside(-t); W1=2*pi*2; N=7000;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:7001)]; F=[fliplr(F),F(2:7001)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('x(t)'); title('x(t)函数的图像'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('x(t)函数的傅里叶变换F(w)'); 图a R=0.005, N=7000

图b R=0.01,N=30 图c R=0.01,N=7000

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常

数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。 (a)线性电阻(b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源1台 2.直流电压表1块 3.直流电流表1块 4.万用表1块 5.白炽灯泡1只 6.二极管1只 7.稳压二极管1只 8.电阻元件2只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯

用多项式模型进行数据拟合实验报告(附代码)

实验题目: 用多项式模型进行数据拟合实验 1 实验目的 本实验使用多项式模型对数据进行拟合,目的在于: (1)掌握数据拟合的基本原理,学会使用数学的方法来判定数据拟合的情况; (2)掌握最小二乘法的基本原理及计算方法; (3)熟悉使用matlab 进行算法的实现。 2 实验步骤 2.1 算法原理 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量 的实验数据,要对其进行公式化处理,用计算方法构造函数来近似表达数据的函数关系。由于函数构造方法的不同,有许多的逼近方法,工程中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。 最小二乘拟合利用已知的数据得出一条直线或曲线,使之在坐标系上与已知数据之间的距离的平方和最小。模型主要有:1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型等,根据应用情况,选用不同的拟合模型。其中多项式型拟合模型应用比较广泛。 给定一组测量数据()i i y x ,,其中m i ,,3,2,1,0Λ=,共m+1个数据点,取多项式P (x ),使得 min )]([020 2=-=∑∑==m i i i m i i y x p r ,则称函数P (x )为拟合函数或最小二乘解,此时,令 ∑==n k k k n x a x p 0 )(,使得min ])([02 002=??? ? ??-=-=∑∑∑===m i n k i k i k m i i i n y x a y x p I ,其中 n a a a a ,,,,210Λ为待求的未知数,n 为多项式的最高次幂,由此该问题化为求),,,(210n a a a a I I Λ=的极值问题。 由多元函数求极值的必要条件:0)(200 =-=??∑∑==m i j i n k i k i k i x y x a a I ,其中n j ,,2,1,0Λ= 得到: ∑∑∑===+=n k m i i j i k m i k j i y x a x )(,其中n j ,,2,1,0Λ=,这是一个关于n a a a a ,,,,210Λ的线 性方程组,用矩阵表示如下所示:

插值与多项式逼近的数组计算方法实验讲解

插值与多项式逼近的数组计算方法实验 郑发进 2012042020022 【摘要】计算机软件中经常要用到库函数,如) cos,x e,它们 (x (x sin,) 是用多项式逼近来计算的。虽然目前最先进的逼近方法是有理函数(即多项式的商),但多项式逼近理论更适于作为数值分析的入门课程。在已知数据具有高精度的情况下,通常用组合多项式来构造过给定数据点的多项式。构造组合多项式的方法有许多种,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的方分和系数表。 关键字泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近 一、实验目的 1.通过具体实验,掌握泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近的编程技巧。 2.比较各插值方法的优劣并掌握。 二、实验原理 1.泰勒级数 在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。 如果在点x=x 具有任意阶导数,则幂级数 称为在点x 处的泰勒级数。 =0,得到的级数 在泰勒公式中,取x 称为麦克劳林级数。函数的麦克劳林级数是x的幂级数,那么这种展开

是唯一的,且必然与的麦克劳林级数一致。 2.拉格朗日插值法 如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。 在平面上有(x 1,y 1)(x 2,y 2)...(x n ,y n )共n 个点,现作一条函数f (x )使其图像经过这n 个点。 作n 个多项式p i (x),i=1,2,3...,n,使得 最后可得 3.牛顿插值法 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 牛顿插值通过求各阶差商,递推得到的一个公式: 10121()()()()()()N N N N P x P x a x x x x x x x x --=+---- 牛顿插值与拉格朗日插值具有唯一性。 4.帕德逼近 它不仅与逼近论中其他许多方法有着密切的关系,而且在实际问题特别是许多物理问题中有着广泛的应用。设是在原点某邻域内收敛的、具有复系数的麦克劳林级数。欲确定一个有理函数,式中,使得前次方的系数为0,即使得 此处约定qk =0(k>n )。虽然所求得的Pm(z)和Qn(z)不惟一,但是比式却总是惟一的。有理函数称为F(z)的(m,n)级帕德逼近,记为(m/n)。由(m/n)所形成的阵列称为帕德表。

幅频特性和相频特性

HUNAN UNIVERSITY 电路实验综合训练 报告 学生姓名蔡德宏 学生学号 2 专业班级计科1401班 指导老师汪原 起止时间2015年12月16日——2015年12月19日 一、实验题目 实验十二幅频特性与相频特性 二、实验摘要(关键信息) 实验十二 1、测量RC串联电路组成低通滤波器的幅频特性与相频特性(元件参数:R=1K ,C=0、1uF,输入信号:Vpp=3V、f=100Hz~15KHz正弦波。测量10组不同频率下的Vpp,作幅频特性曲线与相频特性曲线)。 2、测量RC串联电路组成高通滤波器的幅频特性与相频特性(电路参数与要求同上)。 3、测量RC串并联(文氏电桥)电路频率特性曲线与相频特性曲线。 实验十三 1、测量R、C、L阻抗频率特性(电路中用100Ω作保护电阻,分别测量R、C、L在不同频率下的Vpp,输入信号Vpp=3V、f=100Hz~100KHz的正弦波,元件参数:R=1K、C=0、1uF、L=20mH),取10组数据,作幅频特性曲线。 2、搭接R、L、C串联电路,通过观测Ui(t)与UR(t)波形,找出谐振频率。将电阻换成电位器,测量不同Q值的谐振频率。 三、实验环境(仪器用品) 函数信号发生器(DG1022U),示波器(DSO-X 2012A),电位器(BOHENG3296-w104),3只电阻(保护100Ω,实验1KΩ),电容器(0、1μF),电感(20mH),面包板,Multisim 10、0(画电路图),导线若干。

四、 实验原理与电路 1、当在RC 与RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电压U 与电阻U 两端电压也随之发生规律性改变。 1)RC 串联电路的稳态特性 有以上公式可知,随频率的增加,I,增加,减小。当ω很小时2πψ→,电 源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,0→ψ,电压主要将在电阻上,电阻作为响应称为高通滤波器。利用幅频特性可构成不同的滤波电路,把不同频率分开。 2)文氏电桥: 如图电路,若R1=R2,C1=C2,则振荡频率为RC π21f 0=,正反馈的电压与输出电压同相位(此为电路振荡的相位平衡条件),实验电路图如下: 五、 实验步骤与数据记录 仪器测量值:电容C1=102、5nF C2=101、7nF 电阻R1=1、007Ωk R2=1、016Ωk 1)高通滤波器:

相关主题
文本预览
相关文档 最新文档