当前位置:文档之家› 大脑工作原理及消耗的能量

大脑工作原理及消耗的能量

大脑工作原理及消耗的能量
大脑工作原理及消耗的能量

大脑工作原理及消耗的能量

大脑以其仅约3磅重的重量,包含了通过不计其数的神经键连接起来的上百亿神经元及辅助脑细胞。大脑由细胞组成的。大脑细胞有两种,一种叫神经元,互相之间以及与人体其他部分之间能够进行信息交流;另一种叫胶质细胞,为大脑的工作提供必须的支持。

神经元内的信号通过电荷的运动进行传递。正负电荷(如钾离子和氯离子)分布不均匀,每个神经元的细胞膜内侧聚集着大量的负电荷,其密度大大高于细胞膜的外侧。神经元内的正负离子不断运动,以保持这一电荷的分布状态,这一运动所消耗的能量占去了大脑总消耗能量的大部分。为使电子信号从一个神经元传递到另一个神经元,神经元打开了通道,从而使离子能够穿透细胞膜,形成电流,将电子信号送出细胞膜。大脑中有一种叫做树突的树状结构,可收集来自各种渠道的信号,神经元就是通过这种树突接收信号的。然后,神经元便可以通过神经轴突(一种形状如电线的结构)向另外一个神经元发送电子信号了。

神经键是大脑中不可或缺的用于交流的元件。你的思维类型、基本能力、个人性格都取决于这些神经键的强度、数量和位置。绝大多数的神经键都在大脑内,仅有少量的神经键位于大脑和脊髓之外,通过神经轴突向人体其他器官(包括肌肉)传递信号。

每天用掉2根香蕉的能量

人类的大脑功率只有12瓦特,仅相当于一个冰箱指示灯,而它却能完成众多冰箱指示灯所不能完成的工作,可见大脑神经元和神经键的效率是多么高。你的大脑工作一天耗费的能量相当于两根比较大的香蕉所含的能量。令人奇怪的是,尽管相对于机械系统,大脑的工作效率更高,然而从生物学角度讲,它却是个耗能大户。大脑的重量仅占人体重量的3%,却要耗费掉人体约1/6(17%)的能量,然而不幸的是,这并不意味着你可以通过多进食来保持自己旺盛的学习精力。实际上,大脑所消耗掉的大部分能量都用在了“设备”维护上,即通过对脑神经元细胞膜(脑神经元细胞膜能激发脑神经元之间的交流)与其他脑神经元所处电场进行的维护使人们保持思维能力。而绞尽脑汁去思考本身并不会造成太多的附加能量消耗。

大脑要完成诸多任务,神经元扮演了十分重要的角色。每个神经元都有不同的分工,会对不同的特定事件做出反馈,比如辨别某种特定声音,辨认某个人的脸,完成某个动作以及其他许多从外部看不出来的反应。在任何情况下,大脑的所有神经元中都只有一小部分保持活跃。当然,根据大脑的不同思维,活跃的神经元也有所不同,神经元之间交流的信息也不同。

同时,科学家通过在各种不同条件之下跟踪神经元行踪、刺激神经元或者跟踪神经元与大脑其他区域的联系情况,来弄清楚神经元的奥秘。比如说,大脑皮层中的神经元能够产生基本的运动指令,然后这些运动指令从大脑皮层神经元传递到脊髓中的运动神经元。脊髓中的运动神经元再将信号传递到肌肉,引起肌肉的收缩。科学家仅对脊髓神经元进行电子模拟,

便可同样引起肌肉收缩。因此,上述结果显示出,脊髓运动细胞负责执行上一级(大脑)发出的运动指令。但是,对于如何区分不同指令所针对的不同运动类型,还存在许多争议。

为了更好地了解大脑,我们有必要看一下大脑的各部分结构和功能。脑干位于大脑的最底端,与脊髓相连。这部分区域负责控制生命的基本功能,比如头部和眼部的反射动作、呼吸、心率、睡眠、消化等。脑干对人体至关重要,只是人们很难意识到它的存在。脑干向上是丘脑,丘脑也负责一些与生命息息相关的功能,但它的工作似乎更加多样,包括释放应激激素和性激素,调节性行为,感觉饥饿、口渴,控制体温及日常睡眠周期等。

大脑皮层是人脑中最大的部分,占据了整个大脑重量的3/4,其形状看上去像一大块揉皱了的布,盖住了大脑的顶部和四周。早在1.3亿年前哺乳动物起源时,大脑皮层便产生了。之后,随着不断进化,大脑皮层在人和动物大脑中所占的比重越来越大。科学家将大脑皮层分成四个部分,每一部分称为一个“叶”。位于大脑后部的叫做枕叶,负责视觉观察;位于两耳上方的叫做颞叶,负责听觉和语言理解,同时,它还与杏仁核和海马区密切联系,对于学习、记忆和情感反应等起着重要作用;位于大脑两侧的是顶叶,接收通过皮肤传递的信息,同时它还负责收集所有的感官信息,并判断出注意力的方向;额叶,顾名思义,是位于大脑前面的部分,它负责发出运动指令,控制着语言能力,并且根据不同的目的和环境选择适当的行为。

人类和动物的情感,特别是恐惧和焦虑,由杏仁核来控制。这部分杏仁状的区域位于每只耳朵的上方,使动物在面对危险情况时能够做出逃跑还是出击的决定。在它旁边是海马区,负责储存事实和信息,是形成长期记忆所必需的区域。小脑位于大脑的后面,负责收集感官信息并协助身体的运动。

通过眼睛、耳朵或皮肤进入人体内的感觉信息以波峰的形式传递到位于大脑中心位置的丘脑,丘脑对这些信息进行过滤,然后继续以波峰的形式传递到大脑皮层。

雷达生命探测仪

生命探测仪 之雷达生命探测仪原理及其应用 生命探测仪是借着感应人体所发出超低频电波产生之电场(由心脏产生)来 找到"活人"的位置。配备特殊电波过滤器可将其它动物,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测仪只会感应到人类所发出的频率产生之电场。仪器配备两种不同侦测杆,长距离侦测杆侦测距离可达500公尺,短距离20公尺。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器在碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 一、生命探测仪的种类: 目前所知的生命探测仪按原理结构可分为:雷达波探测器、视频探测器、音频探测器等。 1.音频探测器: ①.声波音频探测器 原理:通过获取在空气中传播的微弱声波并放大信号来探测目标。 ②.震动波音频探测器 原理:通过震动探头拾取并放大地面传来的震动波来探测目标 两者的共同特点就是:价格较低,比较简单易用。 局限性:现场需要有一定的孔洞和裂隙才能伸入探测设备;或只适用于浅表层、大空间的探测;在下雨或有消防用水的情况下会受到一定的环境干扰。 2.视频探测器 原理:利用可见光或非可见光,通过CCD传感器摄像转送到显示屏成像。 有视频形象化,直观简单、易用、价廉 一般在使用中需要线缆传输音频信号,或缝隙孔洞。 3.雷达波生命探测仪 原理:由雷达天线定向集中地发射电磁波,该电磁波能穿透混凝土墙壁、碎石瓦砾等,与人体接触后反射并产生变化。由于这种变化受人的身体活动、呼吸甚至心跳活动的影响,反射后变化了的电磁波被接收器接收,经过过滤背景干扰,某些特有的波谱经计算机软件分析处理,在显示屏显示。 特点:具有易携带、移动快、无需与物体接触的特点,无需由孔洞、裂隙等进入,可在被各种物质隔离覆盖的情况下探测到被困者。 二、雷达生命探测仪具体原理: 无线探测发射器首先发射雷达波,雷达波可穿透普通的建筑墙体和碎石等材料,到达最远6米的被测目标。目标物的移动或呼吸心跳等使雷达波产生一定的改变,并把变化后的雷达波通过天线发送回掌上电脑上。经过电脑内专业软件的数据处理,得出相应的波形图及信号显示,从而判断被测范围内是否有幸存人员。 在操作该探测雷达时,要确保掌上电脑与无线探测发射器之间的距离在 1.5-15米范围内,并保证在距探测器天线6.1米的范围内没有其他可疑的移动。该设备通常能够在3分钟之内在有效空间范围内完成搜寻,并进一步定位被困人员。

人体大脑是怎么思维导图的

人体大脑是怎么思维导图的 负责人体大脑的视觉思考和空间推理的区域是什么?大脑的顶叶。下面我们一起探讨一下人头大脑思维的秘密!人的大脑分为左脑和右脑,左脑主要负责逻辑思维,右脑主要负责形象思维。下面小编为你整理大脑是怎么思维导图,希望能帮到你。 人体大脑思维导图图片 什么是思维导图?思维导图是一种革命性的思维工具,是一种画出来的想法。简单却又极其有效!它是一幅幅帮助你了解并掌握大脑工作原理的使用说明书。它不仅能够增强使用者的记忆能力和立体思维能力(思维的层次性与联想性),而且还能增强使用者的总体规划能力。下图是一张思维导图的图例: 为什么思维导图功效如此强大?道理其实很简单。 首先,它基于对人脑的模拟,它的整个画面正像一个人大脑的结构图(分布着许多“沟”与“回”); 其次,这种模拟突出了思维内容的重心和层次; 第三,这种模拟强化了联想功能,正像大脑细胞之间无限丰富的连接; 第四,人脑对图像的加工记忆能力大约是文字的1000倍。 让你更有效地把信息放进你的大脑,或是把信息从你的大脑中取出来,一幅思维导图是最简单的方法——这就是作为一种思维工具的思维导图所要做的工作。 它是一种创造性的和有效的记笔记的方法,能够用文字将你的想法“画出来”。 所有的思维导图都有一些共同之处:它们都使用颜色;它们都有从中心发散出来的自然结构;它们都使用线条,符号,词汇和图像,遵循一套简单、基本、自然、易被大脑接受的规则。 使用思维导图,可以把一长串枯燥的信息变成彩色的、容易记忆的、有高度组织性的图画,它与我们大脑处理事物的自然方式相吻合。 思维训练相关文章: 1.思维训练 2.逻辑思维训练500题 3.逻辑思维训练题目及答案 4.宝宝逻辑思维训练

大脑的工作原理与结构

大脑的工作原理与结构 ,这也需要归功于右脑的记忆机能和自动处理机能。成人难以学好外语就是因为右脑没有处于优势地位,而左脑长期居于主导地位。耳朵和体内振动音是能力开发最重要的工具我们的大脑的构造是:声音通过听觉区到达大脑的深层部分,神经回路打开。耳朵的能力和振动音一直为们所忽视,但事实是它们是能力开发最重要的工具。人们相信声音疗法能够恢复听力、治愈自闭症和癫痫。这种疗法其实正是强调了听的适重要性。最近有很多研究都在进行,比如听声音治疗疾病和弱听,用声音疗法提高记忆力等等。朗读时声音的振动能够转化为大脑的运动。生物发出的声音一般都是向外发送的,但是朗读和背诵时,它所产生的振动音能够与大脑深层部分发生共鸣,从而在大脑深处引起变化。间脑(丘脑和下丘脑)处于大脑的深层部分,这里集中了所有的神经,它还控制着所有内分泌腺。当我们朗读时,间脑就集中能量变得很宽大,产生新的突触并打开新的回路。这时也就打开了最深层的间脑记忆回路。引发“无意识的力量”音乐、朗读和背诵无意识存在于大脑的深处。一般的时候只有大脑的表层意识来工作,处于深层大脑的无意识受到了压抑,所以无意识的力量不能够自由地发挥出来。但是,无意识中隐藏着巨大的力量,过目不忘或是能够创造出充满感性的优秀作品都是无意识的功劳。引发无意识的力量有很多方法,听觉刺激是其中比较

容易的一种。古典音乐刺激又是听觉刺激里的一种方法。虽然音乐分为很多种,但是古典音乐更适合进行听觉刺激。不光是音乐,朗读和背诵也都能够引发无意识。大量反复的朗读能够让你在不知不觉中进入无我状态,注意力完全集中,意识达到统一,无意识的回路打开。这就是大脑的秘密。下面来介绍一些跟大脑的使用方法有关的大脑生理学知识抑制理论:当大脑的回路集中于某一事物上时,其他刺激便不能传达到大脑皮层里。因为感觉神经回路中的突触(神经之间的连接点)阻止了信息的传递。从大脑皮层到脑干的毛状体之间的神经回路负责完成这种传递抑制。大脑里有一种神经回路,具有传达意识的辨别性感觉。当我们一直朗读或默读时,剩下的只是一些只传递声音的回路,其他的视觉、触觉、嗅觉、时间或空间等所有的感觉都被掩盖了,这就是抑制的工作。打开无意识深处的神经回路是大脑的一个秘密工作,这时通过大脑的浅层测头叶,传达到海马(大脑旧皮层)中与记忆有关的部分中去,听觉刺激就是这样打开大脑回路的。当你背诵文章时,你的大脑中会发生什么事情呢?让我来告诉你吧。不考虑意思、单纯大量背诵是重要的一件事。当你思考所背诵内容的意义时你就开始使用你的左脑了。如果你只是背,这时你的精神非常集中,听觉区开始兴奋,而语言区等其他区域的兴奋被抑制住了。当精神集中于一点时,以前到闹中各自兴奋的不同区域现在就都集中到了这个点上,这时听觉区出现最大的脑电波,在它的周围又有类型相似的波出

生物专题复习:生命中的能量

“生命中的能量”专题复习一、“生命中的能量”整合知识要素分析 二、构建知识体系

三、重、难点知识解析 可从分子水平、细胞水平、个体水平和系统水平展开,其基本方法是以解析光合作用、呼吸作用、能量代谢、生态系统内能量流动等过程图解为主,深入地分析生命系统中能量的输入、传递、利用和输出的过程,全面把握能量转换的方式,树立能量守恒的观点。 1、分子水平的能源物质:生物体内的各种有机物都可作为能源物质,但在能量代谢过程中所起的作用又有所不同。⑴、重点分析:直接能源物质ATP的结构和功能;ATP 与ADP相互转化的生理意义;动、植物体内ATP生成的基本途径;ATP与磷酸肌酸的异同。 ⑵、结合实例辨别:能源物质、主要能源物质、直接能源物质、最终能源、储能物质、高能化合物。⑶、根据功能把握3类有机物在动物体内供能的先后顺序:糖类—脂肪—蛋白质。 2、细胞水平的能量变化:光合作用和呼吸作用过程中蕴含着细胞水平的能量变化,二者构成了能量代谢的细胞学基础。以绿色植物叶肉细胞中的能量变化为例,利用光合作用与呼吸作用整合图解分析如下: ⑴明确两个过程中物质变化与能量变化的具体过程。分别就光反应与暗反应、有氧呼吸与无氧呼吸、光合作用与呼吸作用进行比较,深刻理解有关的命题性知识,强化光合作用与呼吸作用过程中的能量变化。⑵深入领会光合作用和呼吸作用在细胞与生命活动,乃至生态系统维持等方面的重要地位。 3、个体水平的能量代谢:重点分析生物个体能量的来源、在体内的储存,以及释放和利用,领会能量代谢与物质代谢相伴随。⑴、辨别动、植物体能量的来源及其获得过程的区别与联系。⑵、明确生物体内能量释放、转移和利用的具体过程,领会能量代谢与物质代谢相伴随。例如:有机物的氧化分解过程,必然伴随着能量的释放。所释放的能量,一部分以热能形式散失,另一部分用于形成ATP。形成ATP的过程,也是能量转移的

大脑中记忆的原理

大脑中记忆的原理 记忆的生理本质: 人类大脑内在数十亿个神经细胞,它们相互之间通过神经突触相互影响,形成极其复杂的相互联系。记忆就是脑神经细胞之间的相互呼叫作用,其中有些相互呼叫作用所维持时间是短暂的,有些是持久的,而还有一些介于两者之间。 记忆的形成原理: 当一个脑神经细胞受到刺激发生兴奋时,它的突触就会发生增生或感应阈下降,经常受到刺激而反复兴奋的脑神经细胞,它的突触会比其它较少受到刺激和兴奋的脑细胞具有更强的信号发放和信号接受能力。当两个相互间有突触邻接的神经细胞同时受到刺激而同时发生兴奋时,两个神经细胞的突触就会同时发生增生,以至它们之间邻接的突触对的相互作用得到增强,当这种同步刺激反复多次后,两个细胞的邻接突触对的相互作用达到一定的强度达到或超过一定的阈值,则它们之间就会发生兴奋的传播现象,就是当其中任何一个细胞受到刺激发生兴奋时,都会引起另一个细胞发生兴奋而,从而形成细胞之间的相互呼应联系,这就是即记忆联系。 说明:短期记忆脑细胞在受到反复刺激时,并不发生突触增生,而是发生突触感应阈下降,这种下降时短暂的,所以不能维持太长时间;而惰性记忆细胞则以突触增生为记忆基础,因而维持记忆的时间较长。 脑神经元的交互作用: 神经细胞之间存在四种基本相互作用形式: 单纯激发:一个细胞兴奋,激发相接的另一细胞兴奋。 单纯抑制:一个细胞兴奋,提高相接的另一细胞的感受阈。 正反馈:一个细胞兴奋,激发相接的另一细胞兴奋,后者反过来直接或间接地降低前者的兴奋阈,或回输信号给前者的感受突触。 负反馈:一个细胞兴奋,激发相接的另一细胞兴奋,后者反过来直接或间接地提高前者的兴奋阈,使前者兴奋度下降。多由三个以上细胞构成负反馈回路 由于细胞的交互作用,记忆会受到情绪、奖励、惩罚等的影响。 脑细胞的记忆分工: 人脑内存在多种不同活性的神经细胞,分别负责短期、中期、长期记忆。

生命探测仪

四川汶川地震救灾中使用的声波生命探测仪是利用声波传递____生命信息__的一种救援方式声波生命探测仪寻找生命靠的是识别被困者发出的声音。人类有两只耳朵,这种仪器却有3至6个耳朵。它的耳朵叫做“拾振器”, 也叫振动传感器。它能根据各个耳朵听到声音先后的微小差异来判断幸存者的具体位置。如果幸存者已经不能说话,只要用手指轻 轻敲击,发出微小的声响,也能够被它听到。即便被埋压人困在一块相当严实的大面积水泥楼板下,只要心脏还有微弱的颤动, 探测仪也能感觉出来,于是救援队员可以确定废墟下是否有人活着。 生命探测仪的种类 根据不同的原理分为光学生命探测仪、热红外生命探测仪和声波生命探测仪。 生命探测仪是借着感应人体所发出超低频电波产生之电场(由心脏产生)来找到"活人"的位置。配备特殊电波过滤器可将其它动物 ,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测仪只会感应到人类所发出的频率产生之电场。仪器配备 两种不同侦测杆,长距离侦测杆侦测距离可达500公尺,短距离20公尺。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器在 碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 本仪器目标锁定功能在侦测到人体发出超低频产生之电场后,侦测杆会自动锁定此电场,人体移动时,侦测杆也会跟着移动。 另配备镭射光点,提供操作者寻找侦测杆方向。 生命探测仪是借着感应人体所发出超低频电波产生之电场(由心脏产生)来找到“活人”的位置。配备特殊电波过滤器可将其它动 物,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测仪只会感应到人类所发出的频率产生之电场。仪器配 备两种不同侦测杆,长距离侦测杆侦测距离可达500公尺,短距离20公尺。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器 在碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 目前所知的生命探测仪按原理结构可分为:雷达波探测器、视频探测器、音频探测器等,分别对比如下: 一、音频探测器: 1.声波音频探测器 原理:通过获取在空气中传播的微弱声波并放大信号来探测目标 2.震动波音频探测器

大脑思维运作的原理

大脑思维运作的原理! Post By: 2009-02-15 22:39:25 你为何能处理一些你以前从未遇到的事情?在数学课堂上,你为何能解岀你以前从未做过的算术题?这种思维的神奇魔力实际上本身是一个潜在的计算过程,这个计算过程帮助我们处理大千世界每个人遇到的各种不同的难题。那么思维是如何工作,我们又如何能更好地提高自己的思维能力呢? 这个问题让我想到计算机,计算机现在能处理非常复杂和多变的问题。思维比计算机更强大。比如,你能很快地同一个你以前毫不相干的人交谈起来,你能读懂以前你从来没有读过的书,或者说,进入到一个陌生的购物广场,你依然能快速地了解广场的店铺分布,然后逛完自己感兴趣的店。 大脑的学习过程有时候并不依赖你的行为,就是说,在你行动之前,大脑已经对如何做这件事有了大致的决定。有时候,你能对自己大脑的决策过程有所察觉,但是有时候,大脑做岀决定完全是潜意识的,你察觉不到,所以,大脑的决策过程是一种人类的天然认知能力的结果,并不依赖行为。 我想你应该有过类似经历,就是如果你要尝试解决一个问题,当你对这个事情达到一定程度的理解之后,这个问题的答案自然而然就知道了。当你知晓解决办法之后,你对这个事情看法的角度和方式都会有所提升,那么接下去如何行动应该是一目了然。你也许会说,或许你在大脑里面对如何做已经有了主意,但是现实中,要实现这些想法还是有困难,比如天体物理学很多理论就无法得到实验的验证,因为实验无从做起。我要说的,那也是因为我们有一些小问题依然缺乏深入的理解,我们以为我们解决了所有问题,实际上,我们只是在宏观上对这个大问题有了定论,但是对大问题派生和隐含的小问题,我们依然要继续深入了解。比如,你开始意识到,对你当前这段婚姻的最好解决办法就是离婚,另找一个人生伴侣。你对这个解决办法深信不疑,但是你依然有很多现实的工作要做,比如你应该如何告诉妻子你的想法,谁应该从房间里搬走,孩子抚养权问题,等等。 一个练习” 让我们通过一个简单的例子来理解我们的大脑是如何工组的。这个练习对每个人来说都非常简单。 假设,我告诉你说我搬家了,然后我有一个问题,就是新房里头书房的灯太暗了,请你给我建议,应该怎么办?

脑的基本结构

脑的基本结构、组成——脑包括端脑、间脑、中脑、脑桥和延髓,可分为大脑、小脑和脑干三部分。(小延站在桥的中间端) 大脑皮层的结构是什么? 皮层神经元都是呈层状排列的,而且绝大部分神经元胞体与脑的表面平行。 分子层: 最靠近表面的神经细胞层, 由一层无神经元的组织将皮层与软脑膜分隔开。 它们至少都有一层细胞,伸出大量的称为顶树突的树突,这些顶树突会伸入到第一层,在那里形成众多的分叉。细胞骨架:微管;微丝;神经丝 1.微管:组成→微管蛋白和微管相关蛋白,tau(与老年痴呆症相关)异二聚体为单位,有极性。功能:细胞器的定位和物质运输 2.微丝:成分→Actin肌动蛋白,组装需要ATP修饰蛋白,微丝是由球形-肌动蛋白形成的聚合体,生长锥运动 3.神经丝:星形胶质细胞标记物;调节细胞和轴突的大小和直径 什么是轴浆运输,它的分子马达? 轴浆运输指化学物质和某些细胞器在神经元胞体和神经突起之间的运输,是双向性的。 1)快速轴浆运输 顺向运输: 囊泡、线粒体等膜结构细胞器;逆向运输:神经营养因子病毒如狂犬病毒、单纯疱疹病毒 2)慢速轴浆运输 顺向运输:胞浆中可溶性成分和细胞骨架成分 分子马达:驱动蛋白动力蛋白 应用:追踪脑内突触连接 什么是离子通道,它的类型? 是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道。 离子通道的开放和关闭,称为门控(gating)。根据门控机制的不同,将离子通道分为受体门控离子通道和电压门控离子通道。 动作电位的兴奋性周期性变化 绝对不应期:兴奋性为零,阈刺激无限大,钠通道失活。相对不应期:兴奋性从无到有,阈上刺激可再次兴奋,钠通道部分复活。 超常期:兴奋性高于正常,阈下刺激即可引起兴奋,膜电位接近阈电位水平,钠通道基本复活。 低常期:兴奋性低于正常,钠泵活动增强,膜电位低于静息电位水平。 生理意义:由于绝对不应期的存在,动作电位不会融合。。神经元信息传导与动作电位:作电位双向传导,通过极化与去极化。神经元之间是单向传导。 神经细胞在静息状态下,是外正内负的静息电位(外钠内钾)。当受到刺激,细胞膜上少量钠通道激活,钠离子少量内流,膜内外电位差减小,产生局部电位。 当膜内电位到达阈电位时,钠离子通道大量开放,膜电位去极化,动作电位产生。随着钠离子的进入,外正内负逐渐变成外负内正。 从变成正电位开始,钠离子通道逐渐关闭至内流停止,同时钾离子通道开放,钾离子外流,膜内负值减小,膜电位逐渐恢复到静息电位,由于在正常情况下细胞膜是外钠内钾,此时却是外钾内钠,所以这时钠-钾泵活动,将钠离子泵出,钾离子泵回,恢复静息状态。此时完成一个动作电位的产生。传递是依靠局部电流传递的。 神经系统的发育过程:源于外胚层;神经板→神经沟→神经管(整个神经系统的由来);神经褶→神经嵴(所有外周神经元的细胞体和神经元由来) 胚胎发育第13天外胚层的细胞增生形成原条;原条前末端细胞形成原结; 原结和脊索诱导神经板形成,神经板中线凹陷发育为神经沟; 神经沟进一步凹陷加深,沟两侧边缘融合成神经管;(此过程称神经胚形成,在第四周末完成神经系统的早期发育); 神经管的背部细胞向外迁移形成神经嵴,神经嵴最后发育为外周神经系统;神经管则发育为CNS; 神经管的头端膨大发育为脑;脊髓与胚胎的体节发生相适应成为节段性结构(31); 三胚层的构造和最终的发育 内胚层:发育成呼吸系统和消化管; 中胚层:最终发育成结缔组织、血细胞、心脏、泌尿系统以及大部分内脏器官; 外胚层最终发育成神经系统和皮肤。 神经胚的形成?神经板发育成神经管的过程称为神经胚形成 神经管是什么?为脊椎动物及原索动物的神经胚期所见到的一种最明显的变化,神经板闭合作为中枢神经系统最初原基的神经管形成过程的总称。 神经细胞增殖的舞蹈表演 室层中一个细胞的突起向上延伸至软脑膜; 该细胞的细胞核从脑室侧迁移至软膜侧;同时细胞DNA 被复制; 含复制所得的双倍遗传物质的细胞核,重新回到脑室侧;细胞突起从软膜侧缩回; 细胞分裂成两个子细胞。 神经细胞的分化过程 较早分化的较大神经元先迁移并形成最内层,依次顺序向外; 而较晚分化的较小神经元则通过已形成的层次迁移并形成其外侧新的层次; 不论皮质的什么区域,其最内层总是最早分化,而最外层则最后分化。 备注:放射胶质细胞是一切神经干细胞的来源 神经元迁移方式是怎样的?分为以下两种方式: 放射性迁移(细胞引导端先移动,再带动其他部分) 切线性迁移(整个细胞一起移动) 备注:神经细胞迁移有缺陷(起始过程缺陷,迁移过程缺陷,分成缺陷,终止信号缺陷) 生长锥的概念:位于轴突的尖端,呈扁平掌形结构,是神经轴突生长的执行单元。向外部突出丝状伪足,在内部的微管、微丝构成的动力骨架支撑下进行生长。膜表面富含不同的感觉器和黏接分子,感受环境中适宜的生长方向,从而决定轴突生长导向。 成年脑神经元再生(热点问题) 概念:指成年脑内持续产生有功能的新生神经元的现象。神经发生区(即脑内能够产生神经元的区域)所要满足的条件: 1)神经前体细胞 2)域的微环境能够适应神经元再生什么是马赫带 定义:马赫发现的一种明度对比现象。它是一种主观的 边缘对比效应。当观察两块亮度不同的区域时,边界处 亮度对比加强,使轮廓表现得特别明显。 原理:通过水平细胞实现的; 作用:提高边缘对比度,增强分辨能力。 1.通路(What通路) –形状和面容识别:V1→V2 →TE(颞下回前部) –颜色:V1 →V2 →V4 →V8 → TEO (颞下回后部) 2.通路(Where或How通路)运动和深度:V1 →V2 → V5(MT) →顶叶后部 脑干的灰质结构主要有:与脑神经(Ⅲ-ⅩⅡ)相关的神经核; 脑干的白质纤维束:有上行传导束和下行传导束;另外, 脑干网状结构是界与灰质与白质的神经组织) 脑神经12对: 对称性分布于头,颈,躯干,四肢;脊神经31 对:颈神经C1-8对,胸神经T1-12对,腰神经L1-5对,骶神经 S1-5对,尾神经1对; 脊神经由与脊髓相连的前根、后根合并而成,从椎间孔 穿出椎管;前根为前角运动神经元发出的传出性突起组 成;后根为传入性神经,与脊髓的后角相关连; 自主神经系统:为内脏神经的感觉和运动神经部分,主要 分布于内脏,心血管,腺体;内脏运动神经系统的活动因较 不受随意控制而得名; 神经系统活动的基本过程是反射;不受意识控制的神经 系统活动就是反射;实现反射活动的神经通路称反射弧; 进行信号转换处理的中枢部位称神经中枢; 反射弧的基本组成:感受器、传入神经、神经中枢、传 出神经、效应器;反射弧最简单的结构是由2个神经元 组成的单突触反射(如膝跳反射), 胞体内的嗜染色质在碱性染料着色后呈现颗粒状或块状 或虎斑纹样----尼氏体----本质为粗面内质网,核糖核蛋白 体为其主要成分,轴丘部位无尼氏体分布,是组织学确 定轴突的依据之一; 树突和轴突;轴突:从胞体或树突主干的基部发出,只一条; 起始段细;表面光滑,粗细均匀;有髓或无髓;不含核糖体及 粗面内质网(尼氏体); 树突:从胞体发出一至多条;起始 段的树突主干最粗,其胞质成分与核周质者相同;分支逐 渐变细,一般不均匀或表面有小棘;一般无髓; 传导信号和处理信息的结构都是以神经元为单位相互连 接成的神经网络;神经元在结构上只是相互接触而不相 通; 神经元膜相互接触并可以传递信号的特化部位称突触, 有化学性突触和电突触两类; 有髓神经纤维是周围神经系统中雪旺细胞(神经胶质细 胞的一种)以伪足样结构包绕轴突呈螺旋包绕8-12层, 相 邻雪旺细胞间的轴突裸露区称为郎飞结;传导动作电位 的方式是”跳跃式”传导 细胞的兴奋特性:几乎所有的细胞的膜两侧存在一定的 电位差(静息电位);有部分细胞在受到刺激时,能产生短 暂的,快速的跨膜电位变化,这种变化还可以沿细胞表面 主动向远端扩布; 在受到刺激后能产生可扩布电位的细 胞是可兴奋细胞; 可兴奋细胞未受到刺激时存在的跨膜 电位称静息电位; 对细胞膜内外两侧溶液中带电离子化学成份分析表明,外 液的主要成分是氯离子,钠离子;内液中主要为钾离子以 及与钾离子维持电中性的阴离子. 细胞膜在静息状态下 (未受到刺激),只对钾离子有中等的通透性,而对其他离子 的通透性很小;浓度差产生的扩散力驱动钾离子向胞外 扩散; 随着钾离子向胞外扩散,膜两侧逐渐形成外正内负 的电位差,电位差产生的库仑力(静电力)阻止钾离子的向 外扩散; 当驱动钾离子向外扩散的扩散力和阻止钾离子 向外扩散的静电力达到平衡时,钾离子的净移动为零,这 一离子扩散平衡时的跨膜电位称为—平衡电位(此时的 状态称极化状态);由于此平衡电位是钾离子扩散达到平 衡造成的,故称为钾平衡电位; 动作电位的特性:在生理条件下,动作电位触发于轴丘并 沿轴突向末梢传导;动作电位有阈值现象; 动作电位遵循”全或无”原则,其大小与刺激强度无关, 与传导的距离无关;刺激后产生兴奋有一个潜伏期,潜伏 期与刺激强度有关; 动作电位产生后,产生动作电位的部位的兴奋性经历规律 性的变化:绝对不应期,相对不应期,超常期;低常期; 动作电位所具有的特性的意义:限制传导频率;不会发生 重叠总和;不会在细胞表面来回往复振荡; 动作电位时相与兴奋性的关系(1)绝对不应期---钠离子通 道处于失活状态;(2)相对不应期---钠离子通道部分复活, 部分失活状态;(3)超常期---钠离子通道全部复活,膜电位 未恢复静息水平;(4)低常期---钠-钾离子泵活跃作用,导致 膜出现后超极化; 神经元的信号活动取决于跨膜电位的迅速变化;只有离 子通道才能实现;因此,它是信号转导的基本元件; 神经信息从一个细胞传到另一个细胞的过程---传递;神经 元间信息传递的方式有两类:化学传递与电传递; 神经元间实现信息传递的相互联系的特化结构:突触; 化学性传递又分为经典突触传递和非突触性传递; 经典突触的结构:由突触前成分(轴突末梢),突触间隙(细 胞的间隙),突触后成分(胞体,树突或肌细胞膜)组成; 递质的量子释放: 递质的释放以囊泡为单位,以胞裂外排 形式将一个囊泡的递质(为最基本单位量)全部释放出去, 递质释放的总量取决于参与释放的囊泡总数;递质释放 的总量总是囊泡包含的递质量的整数(量子)倍; 释放的 囊泡总数与动作电位的大小相关;动作电位的大小与静 息电位相关; 经典化学突触传递的效应:(1)兴奋性化学突触:突触 前成分释放兴奋性递质,使突触后膜去极化(兴奋性突触 后电位EPSP,可总和);达到阈值则产生动作电位;从而使 神经信号跨过突触;(2)抑制性化学突触:突触前成分 释放抑制性递质,使突触后膜超极化(抑制性突触后电位 IPSP);膜电位要到达阈电位水平更难, 突触传递的抑制作用(1)突触后抑制: 突触前成分释放 抑制性递质,使突触后膜超极化,由于突触后膜阈值升高, 兴奋性下降;这种抑制作用发生在突触后膜,故名----突触 后抑制; (2)突触前抑制: 突触后膜的兴奋或抑制程度 与递质和受体结合的量相关;递质的释放量与突触前成 分的动作电位的大小有关,动作电位的大小与静息电位的 大小有关;降低突触前膜的静息电位(局部兴奋,去极化), 最终导致突触后神经元受到抑制,这种抑制作用发生在突 触前成分,故名---突触前抑制; 电突触在组织学中为细胞的缝隙连接;通道中的微孔道 直径为2纳米,离子及小分子可通过,使两侧胞质连通起来 (机能合胞体结构);通道构象变化使通道的通透性发 生改变; 缝隙连接是细胞间电活动由一个细胞直接传导 到另一个细胞的低电阻通道,因此,它实现传导速度快,高 保真性及双向性;其意义是使两邻的可兴奋细胞活动的 同步化 电突触传递的特点:无时间延搁;不易受环境因素的影响; 传递定型化的兴奋性信号;双向传递; 经典化学突触传递机制是电信号转化为化学信号,再转 化为电信号或其它化学信号;有时间延搁;易受环境因素 的调制(短时间或长时间地改变传递效率,对学习,记忆非 常重要);可传递兴奋性信号,也可传递抑制性信号;单向传 递; 轴丘是发放动作电位的关键部位,因为轴丘有最高密度 的电压依赖性钠通道,且阈值很低; 神经元依两个特性编码信息:(1)放电频率---编码强度以 及时间-强度变化的内容;(2)投射部位---编码信息的空 间位置,性质特征等内容; 神经整合作用:(1)电紧张电位:突触电位的跨膜被动 扩布随着与突出电位产生部位的距离和时间而衰减---电 紧张电位;在神经细胞膜上产生的绝大多数突触电位均 低于阈电位,只能以电紧张的形式被动扩布;(2)空间和 时间总和:一个神经元上可以形成成千上万个突触,有兴 奋性的,也有抑制性的;任一时间内,一部分突触激活,或产 生EPSP,或产生IPSP,这种分级突触电位的特殊性是能够 总和和叠加.如果产生足够数目的EPSP,总和后轴丘膜电 位达到阈电位便可触发动作电位; 时间总和:发生在不同时间内的突触后电位的总和现象 称为时间总和; 如果一个传入神经元连续而快速发放一 系列动作电位,在突触后细胞上最早产生的突触电位在后 续电位到达前还没有消失,因此,后续的突触电位在时间 上总和; 空间总和:发生在神经元表面不同位点的突触后电位的 总和称为空间总和; 人体通过感觉了解内部和外部的世界;所有的感觉源于 感觉系统的活动;各类刺激兴奋不同的感受器,产生感觉 信号;在感觉通路中经过复杂的加工处理传到中枢,形成 感知; 感受器是一种换能装置,把接受到的各种形式的刺激能量 转换为电信号,再以神经冲动的形式经神经纤维传入到中 枢神经系统------转导; 感受器就是一级传入神经元的末 梢终端,接受刺激直接产生去极化(感受器电位);刺激加大, 可以产生动作电位; 皮肤感受器的分布特点:在皮肤表面呈点状分布; 不同的 感受器在身体的不同部位分布的密度不同; 感受器有适应现象:超时连续刺激时感受器的反应性减 弱; 根据感受器产生适应的时间长短,可分为:慢适应性感 受器(SA)和快适应性感受器(RA); 躯体感觉传导通路的规律:(1)从感受器到形成感觉一 般经过三级神经元接替(突触联系),第一级胞体位于 外周(脑神经节和脊神经节),第二级位于脊髓灰质或 脑干神经核团),第三级位于丘脑外侧核;(2)第二级 神经元发出的突起在上行的过程中向对侧投射;(3)投 射到大脑皮层的中央后回及旁中央小叶; 人体的体表感觉区位于中央后回和旁中央小叶,感觉投 射有以下规律: (1)投射区域具有精细的定位,下肢代表 区在中央后回顶部(膝以下代表区在旁中央小叶后半),上 肢代表区在中间部,头面代表区在底部,总的安排是倒立 的,但头面部内部的安排是正立的;(2)躯体感觉传入向 皮质投射具有交叉的特点,即一侧的体表感觉传入是向对 侧皮质的相应区域投射,但头面部感觉的投射是双侧性的; (3)投射区域的大小与躯体各部分的面积不成比例,而 与不同体表部位的感觉敏感程度,感受器数量,以及传导 这些感受器冲动的传入纤维的数量有关; 平衡感觉是指头在空间的位置和运动的感觉;它的感受 器位于内耳的迷路部分(前庭和半规管); 晕车病:由直线运动感觉的错觉(平衡感受器敏感性过 高)而引起,常伴有一系列的植物性神经系统症状; 对光敏感的感受器有两种:视杆细胞(晚光觉系统),视锥 细胞(昼光觉系统).它们含有感光物质,光刺激可以引起 化学变化和电位变化,从而产生神经冲动; (1)视杆细胞 数量为视锥细胞的20倍,除视乳头和视凹外,分布整个视 网膜;对光的敏感性为视锥细胞的1000倍,主要适应暗视 觉;(2)视锥细胞在视网膜的视凹处最密集,但在视凹5 度外密度明显减少;它对光的敏感性很低,一般不会达到 饱和;因此,视锥细胞适合于明视觉; 视敏度:指分辨物体细微结构的能力;在视网膜的正后方 为黄斑,黄斑中央有一个很小的窝为中央凹(宽约1度),为 视力最清晰区(对应视野的中心,视敏度最高);其感光细胞 为视锥细胞(分布密度大,感光阈值高,向中枢传导时汇聚 作用小); 视觉反射(1)瞳孔对光反射:瞳孔的大小随光的强度变 化而发生变化;(2)光的会聚反射:眼对不同距离的调节 使光线聚焦在视凹; 色觉与视锥细胞有关;有3种类型的视锥细胞,它们分别 含有光谱敏感性不同的视锥色素(视觉的三元色学说); 色盲几乎所有的色盲都是遗传的,其主要原因是视锥细胞 的丧失和异常造成的; 明适应与暗适应(视觉二元理论)在暗视下,由于视锥细胞 的光敏度低,微弱的光不能使之兴奋,此时,光由视杆细胞 感受(最大峰值为500nM),强光导致视杆细胞的感光色 素大量分解(漂白),视杆细胞产生快速放电,人眼感到一片 耀眼的光亮;稍等片刻后,才能恢复视觉;在明视下,光波长 敏感性由视锥细胞决定(最大峰值约为550nM); 人眼从 明亮进入暗处,明处下被漂白的视杆细胞色素还没有恢复, 而视锥细胞的感光色素不能对弱光产生敏感效应,故开始 一段时间看不清楚任何物体;首先由红敏视锥细胞工作, 再经过一段时间后,视杆细胞感光色素逐步恢复,视觉敏 感度逐渐提高,恢复暗处的视力,敏感性提高100万倍; 反射是神经系统最简单的运动形式; 反射是机体对特殊 的内外刺激产生的特定反应.,介导反射的特殊神经环路 称为反射弧; 单突触反射----反射弧中没有中间神经元;多突触反射---- 反射弧中有一个及以上的中间神经元的接替; 反射的可塑性:即可根据体验来修改:习惯化---反复应用 恒定的无害性刺激可以使反射变弱;突触的抑制引起;去 习惯化---刺激的任何改变使反射回到基点;敏感化----反复 应用伤害性刺激,使反射增强; 屈肌反射与对侧伸肌反射:皮肤受到伤害性刺激,受到刺 激一侧的肢体出现屈曲的反应,关节的屈肌收缩而伸肌弛 缓;屈肌反射具有保护性意义,屈肌反射的强度与刺激强 度有关; 刺激强度更大,同侧肢体发生屈曲反射时,出现对 侧肢体伸直的反射活动; 节间反射:刺激某一部位(某一脊髓节段支配)的皮肤,引 起其他脊髓节段支配的肢体的协调活动;如脊蛙的搔爬 反射; 姿态反射:姿态反射的目的是防止身体受外力的影响,使 身体向重心转移,还有助于肢体运动时维持身体重心.肌 肉收缩时涉及到抗重力肌(腿部和背部深层伸肌,上肢屈 肌)和协助重力肌.姿态反射的中枢在脑干, 前庭(迷路)反射:前庭(迷路)反射主要稳定头在空间的运 动方向; 颈反射:转动头部可兴奋颈部肌肉内的肌梭和颈椎关节 的传入神经,使颈部肌肉反射收缩(颈丘反射)和肢体的肌 肉收缩(颈脊反射) 矫正反射:动物被置于异常位置时,它能迅速地矫正自己 的姿位以保持正常的体位;它包括前庭矫正反射和颈矫 正反射;此外还有视矫正反射; 随意运动:是意识上为了达到某种目的而指向一定目标 的运动; 大脑皮质运动区(随意运动)对运动调节的特点: (1)对躯 体的运动调节呈现交叉支配的特点(但头面部及部分颈 部肌肉的运动是双侧性的) (2)具有精细的定位特点,功能 代表区的排列大致呈现倒立的人体投影(但头面部内部 代表区的安排是正立的) (3)大脑皮层运动功能代表区的 大小与运动的复杂和精细程度呈正相关关系; 小脑的功能:小脑协调由大脑皮质驱动的运动,也可自身 驱动运动和学习新的运动技巧;小脑的调控是以反馈或 者前馈的方式进行的; 基底神经节运动的调节:基底神经节---大脑皮层下神经核 团的总称;包括纹状体(尾核,壳核),苍白球,黑质,丘脑下核 等;基底神经节中与运动功能有关的主要是纹状体,而纹 状体的主要传入来自大脑皮质; 睡眠的功能理论:恢复理论----恢复体能;适应理论----逃 避敌害 觉醒与睡眠不是受环境昼夜交替调节的一种被动反应, 而是各自受机体内部不同振荡机制(生物钟)调控的结 果; 非REM睡眠的特征:从此状态被唤醒后,不能回忆有过 的思维活动;在REM睡眠期间,被唤醒者可能会报告清 晰、详细、生动的梦境,并常有离奇的情节; 整个睡眠过程中,非REM睡眠和REM睡眠周期性地交替, 平均大约没90分钟重复一个周期;健康成年人睡眠时间 的75%为非REM睡眠; 胆碱能神经元的活动诱发REM睡 眠; 人类是否需要做梦,我们不知道;但机体需要REM睡眠;选 择干扰REM睡眠处理后,受试者试图进入REM睡眠的次 数大大增加; 现在认为睡眠是一个主动的神经过程,而且要求许多脑 区参与: REM睡眠的控制来自于脑干深部,特别是脑桥的弥散调 制神经递质系统:蓝斑去甲肾上腺素递质系统和中缝核 群5-羟色胺递质系统的放电频率随REM的启始几乎下降 为零;而胆碱能神经元的放电频率急剧上升;有证据显 示,胆碱能神经元的活动诱发REM睡眠; REM睡眠行为疾病:经常在做梦期间有行为活动(梦游); 其神经基础是正常情况下介导REM无张力的脑干系统发 生故障; 将电极放在头皮上可以导出电位变化—脑电,它被认为是 大脑皮层神经细胞动作电位的总和;通常以脑电的特征 划分睡眠的时相; 学习是获得新信息和新知识的神经过程;记忆是对所获 取的信息的保存和读出的神经过程; 非联合型学习:习惯化;敏感化 联合型学习:经典条件反射;操作式条件反射 陈述性记忆:事实,事件以及它们之间关系的记忆,能够用 语言来描述;非陈述性记忆--许多类型的记忆是在无意识 参与的情况下建立的,内容无法用语言来描述; 陈述性记忆和非陈述性记忆的明显差异:(1)通常通过 有意识的回忆获取陈述性记忆;可以用语言描述被记忆 的内容;非陈述性记忆不能。但它可以很熟练地运用技 巧;(2)陈述性记忆容易形成也容易遗忘;非陈述性记 忆需要多次的重复练习,一旦形成则不容易遗忘; 遗忘症:脑震荡、慢性酒精中毒、大脑炎、脑肿瘤以及中 风可以损坏记忆;逆行性遗忘:对症状发生前一段时间的 经历不能回忆,忘掉了已知的事物,即不能从长期储存的 记忆中回忆; 记忆障碍“慢性酒精中毒-----顺行性遗忘症,不能将短时性 记忆转化为长时性记忆;脑震荡,脑溢血,电击,麻醉-----逆 行性遗忘症,不能从长时性记忆中提取信息或丧失记忆内 容; 大脑皮层由感觉皮层、运动皮层和联合皮层组成:感觉 皮层(视皮层、听皮层、躯体感觉区、味觉皮层、嗅觉 皮层);运动皮层(初级运动区、运动前区、运动辅助 区);联合皮层(顶叶联合皮层、颞叶联合皮层、前额 叶); 联合皮层不参与纯感觉和运动功能,而是接受来自感觉 皮层的信息并进行整合,再传到运动皮质,从而控制行 为;起感觉输入和运动输出的“联合作用”;随着动物 的进化,联合皮层由不发达到发达,最后进化到人类高 度发达的联合皮层; 研究大脑两半球功能对称性与不对称性的常用方法 *在单侧半球部分受损或全部受损(如中风或为缓解癫痫 而进行手术切除)的情况下观察病人的行为变化; *单侧颈动脉注射异戊巴比妥钠,选择性地使同侧半球短 暂失活,观察受试者的行为变化; *裂脑实验(手术切断胼胝体),应用严格设计的心理生 理学方法检测两半球的功能; *应用现代脑功能成像技术,观察正常人在进行某种认知 操作时的大脑两半球的活动; 大脑两半球功能一侧化的生物学意义:婴儿在出生前,与 语言相关的大脑皮层区就已经存在左右不对称,即婴儿在 学习语言之前,左半球的结构优势就已经存在;在婴儿或 儿童时期,左半球受到伤害后,经过一定时间,语言功能会

音音视频生命探测仪视频生命探测仪

1 集视频搜寻与通话功能于一身:通过安装在超轻型探杆上的彩色摄像头及与探杆相连的超宽型亮屏,VisioSearch 音视频生命探测仪帮助救援人员对受困人员进行360°搜寻并准确定位;安装有彩色摄像头的话筒也直接连接显示屏,方便与受困人员进行通话、为救援工作提供视、听双重保障。 除用于各种复杂环境下的救援之外,VisioSearch 音视频生命探测仪也被广泛应用于以下场合: - 工业、建筑业维修操作 - 海关查验 - 警方调查

2 产品配置产品配置及技术参数及技术参数及技术参数:: 1、带显示屏及键座的控制面板带显示屏及键座的控制面板:: ● 操作简单、设置直观,使得产品可迅速投入使用; ● 菜单:使用图形标记按键、通俗易懂; ● 照明灯亮度、图像旋转及摄像头位置均可显示在屏幕上、并可调节; ● TFT 7英寸彩色液晶屏:屏幕比16:9、亮度800CD。 2、外径47mm 彩色摄像头彩色摄像头:: ● 通过调节照明(LED 照明、亮度可达18.5CD)等级、在黑暗处也可看清6米以内事物; ● 防刮前置型广角镜头:左右可转各80°、加上镜头本身90°视角,整体视野≥260°。 3、高灵敏扬高灵敏扬声器声器声器及话筒及话筒及话筒:: ● 与摄像头外壳一体成型,方便与受困人员通话;即使微弱声音也可捕获; ● 一键通(按键通话)技术使受困人员的声音能够第一时间传达。 4、超轻型高弹力碳纤维可伸缩探杆超轻型高弹力碳纤维可伸缩探杆、、可360360°°旋转旋转、、携带方便携带方便:: ● 探杆分三部分、展开后总长2.4米、闭合后只有1米长;重量只有1.4公斤; ● 探杆上带有滑套式手柄、符合人类工程学原理,并可方便的移除; ● 连接探杆与控制面板的线缆长4.5米(最长可延伸到100米); ● 付费选项:4米长高弹力碳纤维可伸缩探杆。 5、立体声头戴式耳立体声头戴式耳机机(带麦克风带麦克风):):): ● 自动限制音量、有效保护使用者耳朵; ● 设有备用耳机插孔、可同时连通两套耳麦; ● 付费选项:隔音耳麦、有效防止外界干扰,使救援人员注意力更加集中。 6、可充电电池可充电电池盒盒: ● 标准工作时间:4.5小时; ● 充电时间:4小时; ● 最低充电温度:-5℃; ● 屏幕上实时显示电池充电状态、并配有彩色充电警示灯

大脑(记忆)运作原理

为什么要采纳这样的学习方法呢? 一般人学习之所以低效,是因为不了解自己的大脑怎么运作。一旦你开始了解自己的大脑是怎么运作的,很快的,你就会发现学习是有套路的,而且你可以利用这套方法,大幅拉升自己的学习初速度。 在这里我先告诉各位五个结论: ?大脑并不擅长思考,而且大脑的思考是很缓慢的 ?多数的思考,并不是真的思考,而是调用过去记忆所组成的结果?人是利用已知的事务理解新的事物,但「理解」其实是「记忆」?没有重复的练习,不可能精通任何脑力活 ?题海战术以及填鸭教育,有时是必须的 1. 大脑并不善于思考 在这社会上我们最常嘲讽的一个现象:「大多数人是不用脑子思考的」。其实这真是事实! 你仔细想想,其实大脑真是用来思考的吗?如果你叫大脑随便做一则演算,其实大脑的演算,往往是比我们现在所发明的计算机来说,效率是极其低的。做个7 * 8的数学还行,但要是改个177*288的快速演算。就瞬间就当机了。 蜡烛、火柴、图钉 在这里,我举一个「大脑其实不善于思考」的例子。 一个空屋子里有一支蜡烛,一些火柴,和一盒图钉。目标是让点燃的蜡烛离地五英尺高,你已经尝试把蜡烛底部沾上蜡液,但还是沾不到墙上,怎样才不用手扶,让点燃的蜡烛离地五英尺高? 这一个题目,正常一般人在看到题目后,很少能在20 分钟内给出解决答案。 但是如果你把这个题目「具象化」,也就是真的生出这些设备,放在眼前。 你就会发现这道题目的答案其实并不难。你只要把图钉倒出来,把盒子用图钉钉在墙壁上,再把蜡烛黏在盒子里,就完成了这个任务。

大脑的「思考」特性 这个例子解释了「思考」的几个特性。 ?首先,大脑的思考是很缓慢的。 ?接着,思考是很费力的。大脑很难凭空想像出这个场景并运算出解答。甚至可能「完全答不出来」。 ?但是如果把大脑接上视觉系统与触觉系统。因为视觉系统与触觉系统进行了可靠的回传,大脑实质上是调用了其他地区可用的资源做了运算。就能迅速得出答案。 那么,既然思考那么费力。我们平时是怎么样不费工夫的做出日常生活中的各样决策? 习惯 答案是:习惯。 「习惯」就是「我们做过某件事的记忆回路」,大脑调用「过去的记忆」,让身体自动做出判断。 所以,在这里,我们要引出今天要介绍的第二条认知学事实: 大部分人做的决策,其实真不是基于大脑所做的思考,他们是「记忆」组成的结果 2. 多数的思考,并不是真的思考,而是调用过去记忆所组成的结果 大脑的运作原理是这样的: 接收到环境刺激=> 然后把决策放到工作记忆上=> 熟练之后烧到长期记忆中(事实性知识、过程性知识)。 ?工作记忆就是我们当前正在意识、思考的「工作区域」。 ?(以计算机比喻,就是电脑的内存。容量小,资料存在时间短,重开机就不见了。) ?长期记忆就是我们长久以来储存的事实性知识、经验。

高中化学:《生命中的基础有机化学物质》测试卷(含答案)

高中化学:《生命中的基础有机化学物质》测试卷(含答案) 一、单选题(共15小题) 1.化学与生产、生活息息相关,下列说法不正确的是() A.误食重金属盐可立即喝鲜牛奶或鸡蛋清解毒 B.高温结构陶瓷及压电陶瓷都属于新型无机非金属材料 C.服用Al(OH)3胶囊可用来治疗胃酸过多,无任何副作用 D.高铁酸钾(K2FeO4)是新型高效多功能水处理剂,既能消毒杀菌又能净水 2.化学无处不在,运用化学知识判断下列与化学有关的说法正确的是() A.地沟油的主要成分是高级脂肪酸甘油酯,可用于制肥皂和加工食用油 B. SO2能漂白纸浆等,故可广泛用于食品的漂白 C.高空臭氧层吸收太阳紫外线,保护地球生物;低空过量臭氧是污染气体,对人体有害 D.为防止富脂食品氧化变质,常在包装袋中放入生石灰 3.下列说法正确的是() A.实验室制氢气,为了加快反应速率,可向稀H2SO4中滴加少量Cu(NO3)2溶液 B.氨基酸是人体必需的营养物质,其晶体主要以内盐形式存在,调节溶液的pH可改变它的溶解度 C.在苯酚和乙醇性质比较实验中,将等物质的量的乙醇和苯酚置于试管中,再投入金属钠,从而可以比较出羟基氢的活泼性 D.抽滤完毕,直接用玻璃棒刮下布氏漏斗中滤纸上的固体 4.下面鉴别葡萄糖与果糖的方法正确的是() A.银镜反应 B.新制的氢氧化铜 C.氢氧化钙溶液 D.羧酸溶液 5.下列有机物既能在常温下溶于水,又能发生银镜反应的是() A.甲醇 B.甲酸乙酯 C.葡萄糖 D.苯酚

6.下列说法正确的是() A.天然油脂的分子中含有酯基,属于酯类 B.煤经处理变为气体燃料的过程属于物理变化 C. Al2O3可以与水反应得到其对应水化物Al(OH)3 D.可以用加热使蛋白质变性的方法分离提纯蛋白质 7.下列关于葡萄糖的性质的叙述中,错误的是() A.葡萄糖具有醇羟基结构,能跟酸起酯化反应 B.葡萄糖的还原性能使溴水褪色 C.葡萄糖的还原性能被硝酸氧化 D.葡萄糖能水解生成乙醇 8.下列说法正确的是() A.多肽、油脂、纤维素、淀粉、蔗糖和葡萄糖在一定条件都能发生水解反应 B.蛋白质是结构复杂的高分子化合物,蛋白质分子中都含有C,H,O,N四种元素 C.棉、麻、蚕丝、羊毛及合成纤维完全燃烧都只生成CO2和H2O D.根据分散质粒子的直径大小,分散系可分为溶液、浊液和胶体,浊液的分散质粒子大小介于溶液与胶体之间 9.下列有关有机物性质的说法正确的是() A.蛋白质可以与酸、碱或重金属盐反应 B.芳香烃都不能使酸性KMnO4溶液褪色 C. CH3CH2OH与氢溴酸不能反应 D.石油的分馏可获得乙烯、丙烯等不饱和烃 10.有机物X、Y、M(M为乙酸)的转化关系为:淀粉→X→Y乙酸乙酯,下列说法错误的是() A. X可用新制的氢氧化铜检验 B.由Y和M制取乙酸乙酯时可用饱和NaOH溶液来提纯 C.由Y生成乙酸乙酯的反应属于取代反应 D.可用碘的四氯化碳溶液检验淀粉是否水解完全 11.下列说法正确的是() A.实验室从海带提取单质碘的方法是:取样→灼烧→溶解→过滤→萃取 B.用乙醇和浓硫酸制备乙烯时,可用水浴加热控制反应的温度

相关主题
文本预览
相关文档 最新文档