当前位置:文档之家› 无线充电器技术原理简介

无线充电器技术原理简介

无线充电器技术原理简介
无线充电器技术原理简介

无线充电器技术原理简介

--------------------------------------------------------------------------------

无线充电技术利用了电磁波感应原理,及相关的交流感应技术,在发送和接收端用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电,这样的充电方式过去曾经出现在手表和剃须刀上,但是当时无法针对大容量锂离子电池进行有效充电。无线充电器技术原理构图如图2所示

最初由英国一家公司发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,这个“鼠标垫”里装有密集的小型线圈阵列,可产生磁场,将能量传输给装有专用接收线圈的电子设备,进行充电。接收线圈由磁性合金绕以电线制成,大小和形状都与口香糖相似,可以很方便地贴在电子设备上。将手机等放在垫上就能充电,并能同时给多个设备充电。

无线充电技术此前已经出现,但这项新发明更为方便实用。手机等设备只要贴上接收线圈,放置在“鼠标垫”上的任一位置都可充电,不像以前的一些技术那样需要精确定位。几个设备同时放在垫子上,可以同时进行充电。充电器产生的磁场很弱,能够给设备充电但不会影响附近的信用卡、录像带等利用磁性记录数据的物品。

电磁感应无线输电技术(无线充电技术)

电磁感应无线输电技术已经在诸如电动牙刷等小功率产品上获得了应用,但更大功率的传输目前还不现实。Intel日前则在会场上演示了无线公供电驱动一枚60W电灯泡。该项研究是由Intel西雅图实验室的Joshua R. Smith领导的,部分技术基于麻省理工学院物理学家Marin Soljacic的研究。可以在一米距离内无线给60W灯泡提供电力,效率高达75%。Intel 首席技术官Justin Rattner表示,未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA等电器放在桌上就能够立即供电。

无线充电技术利用了电磁波感应原理,及相关的交流感应技术,在发送和接收端用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电,这样的充电方式过去曾经出现在手表和剃须刀上,但是当时无法针对大容量锂离子电池进行有效充电。无线充电器技术原理构图如图2所示

无线充电器的发展现状及前景展望

如果电磁学之父迈克尔·法拉第可以乘坐时光机来到21世纪,毫无疑问他将对iPhone肃然起敬。但当他连续五个小时使用触摸屏浏览网页、打电话、玩游戏,在利用卫星定位仪确认自己所在方位后,他也会陷入难题:为什么,所有这些先进技术和交流方式,这样一个尖端产品还是需要塞到充电器里去充电?如果移动设备可以利用空气中的信号打电话浏览网页,那电为什么不可以?很多消费者和手机制造商经常这样问自己——不过无论是新的还是早就建立的技术公司都还没找到答案。

对于那些一直关注电子行业的观察家来说,无线充电器的承诺听起来十分得熟悉。2004年的时候,一家英国的技术公司Splashpower对电子消费公司的无线充电器表示了“非常强烈”的兴趣。基于法拉第19世纪发现的电磁感应原理,这个公司的“Splashpad”包含了一个当电流通过时可以制造磁场的线圈。当带有同样线圈的移动设备靠近那个无线充电器,之前的过程就是倒转,磁场就会为第二个线圈提供电流,这样就可以做到无线为设备的电池进行充电。不幸的是,虽然法拉第的电磁感应原理在测试的时候站得住脚,Splashpower还没有——直到去年宣布破产的时候都没有推出过一个产品。

图1 无线电充电器技术原理框图

由于操作建议而且规模容易控制,电磁感应仍然是现在研究无线充电器公司的技术选择。不过,正如Splashpower发现的那样,理论是不能直接转化为赚钱的工具的。对于公司来说其中一个主要的难题就是要说服制造商们将他们的组建做的与他们的设备一致。不过后来他们做了一些有意义的改进。

第一个是2008年成立的无线电协会,这个协会致力于为无线充电感应建立一个统一的标准,然后才能研制适配器。(这个模型有点像是蓝牙,一种小范围的无线技术,现在很多手机都有。)这个新协会的成员包括大的电子消费公司,例如飞利浦和三洋,也有芯片制造商,德克萨斯仪器公司。

协会主席也是飞利浦标准化指挥官的Menno Treffers说全球标准是对无线充电器适配器唯一最重要的要求。飞利浦是少有的几家拥有无线充电设备业务的公司——比较著名的有,电子牙刷还有一些叫“亲密的双卡信息”。不过Treffers先生承认更多的合作需要保证各种不同的设备,比如手机,笔记本电脑和数码相机,都可以共同使用同样的充电器。

以前充电

无线设备供应商之间的强烈竞争也加速了无线充电器的研究。在今年的电子产品展览的明星,这个展览每年都会在拉斯维加斯举行,Pre,Palm生产的先进的小巧的智能手机(如上图)。这个手机拥有标准技术的特征——触摸屏,无线上网,全球卫星定位系统,蓝牙和内置摄像头——Pre还有一个可供选择的充电设备,叫做触摸石,就是利用电磁感应原理无线为设备充电。当设备放在垫块上,两个仪器就会通过内置感应器识别对方。垫块里面的磁铁就会将手机与垫块吸附在一起然后进行充电。

Palm并不是唯一一家在拉斯维加斯推出无线充电器的公司。Fulton创新公司,无线电协会的拎一个成员并且是Splashpower资产的买家,利用这次展览揭开了一系列的产品,这些产品包括在开车的时候可以利用车内的安装的带有感应线圈的控制设备无线为移动设备充电。(宝马公司说将会在韩国推出的7系车内就会有一个专门为三星手机设置的无线充电器)而Bosch公司的经过改良的工具箱则展示了无线电充电器设备的潜力。

其他一些正在进行的家庭设备包括将充电器植到厨房的灶台里,这样就可以无线使用搅拌器和其他设备。Fulton创新公司的Bret Lewis说他们公司的技术也可以用在工业设备上,或者为电动汽车充电。人们关注手机,笔记本电脑和其他耗电产品虽然只是暂时的,但他将2009年视为“ 无线年”。虽然这个看起来可能有点过于野心勃勃,不过现在发展的三分之一表明将感应充电转化为商机可能并不遥远了。

2008年11月的时候,德克萨斯仪器公司宣布与Fulton创新公司结合“来加速发展有效的无线电解决方案”。为世界上很多领先的手机公司制造商提供手机组件德克萨斯仪器公司,正在为支持Fulton创新公司发展的技术研究带有完整线路的产品,,目的在于减少无线充电器所需要的组件的花费和大小,并且让设备使用者用起来更简单,并尽快适应他们的产品。

“从一个半导体和电力管理观点来看,我们正在做的无线充电器是一种自然的延伸。”Masoud Beheshti说,他是德克萨斯仪器公司的电池充电主任。他预言,像蓝牙,无线充电器在逐渐被广泛应用之前,将最先出现在高端设备上。

无线充电设备是基于电磁感应的思想主导着市场,一些在短距离和长距离内交换电力的可供选择的技术也在发展。总部在科罗拉多州的WildCharge已经开始销售一些无线充电设备。这种设备是用比较便宜的不过很简易的方法,就是将移动设备与一个特制的链接通过四个具有传感性的金属钉来制造电流。(如图)。

WildCharge和该技术的持照人发展了一些可以替代流行电子设备的后备品,这些设备包括摩托罗拉的RAZR手机和Nintendo Wii电子游戏管理者和索尼游戏机3。即使这些设备过时了,这两个家伙都能建立与发射台建立直接的电子联系。这个公司还发明了主意红黑莓智能手机特别“皮肤”,这样他们也可以不需要充电器就给手机充电。虽然他们可能没有运用感应的“wow”因素组合,这个连接避免了设备和垫块之间“握手”的需要,只需要在充电开始之前利用特别的方式将设备和垫块连接在一起。

另一个系列的想法是长距离无线传输电力,这个方法可以让我们连充电器都丢掉。这个技术就是利用从收发台发出的收音机电波和广播的能量,还有天线发出的能量,来制造电。利用被动电的方法是从水晶收音机上发现的,这个方法在很难换电池或者充电的地方的短距离实验成功了。问题是长距离的通过强烈的电波来为手机和笔记本电脑充电可能对人体健康有害,而且理论上很难实现。

然而一个总部设在宾夕法尼亚州匹兹堡的Powercast的公司,发明了一个可以在一边运行的情况下一边做事情并且维持在安全的电力水平的无线电产品。在不超过1.5米的范围内,这个技术可以用在低电压的灯光系统上;而在超过3米的范围内,电波可以为细流充电提供电为电池重新充电;而在超过差不多7.5米的时候,就可以为无线传感网络充电了。公司称这个产品可以提供的电量“在米以上毫瓦”,“在厘米以上瓦”。

虽然PowerBeam做了另外一个尝试,这个实验在硅谷开启。该技术利用激光从一个地方发射到另外一个地方,不过这个办法有太多需要面对的困难。PowerBeam说低的激光电力密度和一些列的保护措施保证了人们可以在规则允许的情况下不受辐射。

有这么多的公司在为无线电而努力,还要有多久才能有答案?根据Forrester的顾问Charles Golvin,需要考虑的其中一个重要的部分就是让制造商们放弃划算的产线经济。他说,很多手机制造商们利用他们专用充电器来留住顾客,于是人们更可能去买那些在他们家里或者在办公室,车里已经有的充电器。这个可能会导致他们不愿意去使用常用的无线充电器标准。不过Colvin先生认为强烈的建议可能会使无线业务需要更长的普及时间。

山顶和海槽

市场调查公司Gartner的Stephan Ohr认为对无线充电器的展望具有现实意义,不过广泛传播的路途可能不像行业所预期的那么容易。为了流行起来新技术一般都会经过一个“期望过大”的阶段,不过以没有获得关注告终。在通过了“沮丧的海槽”,在期望回到比较合理的水平之后,才会被大众所接受。而谈到无线电充电器的时候,Ohr先生认为大概需要3到5年的时间。

不过现在比较重要的是什么时候,而不是是否,无线电充电器会成为主流。而如果真的到了沮丧的海槽为他们自己寻找出路的时候,或许他们可以从法拉第那里得到鼓励。他注意到“没有任何事情因为太奇妙而不能成真,如果他已经遵守了自然的法则。”甚至利用无线电充电的iPhone。

无线充电技术市场前景分析

Strategy Analytics 手机元器件技术服务发布最新研究报告“结合使用快速充电技术,无线充电市场规模潜力将翻四倍”。报告指出,两种新手机技术“无线充电”和“超级电容器”的兴起,将有可能在改进手机充电体验上提供非常大的市场规模潜力。如果结合使用这两种技术,且定价适宜的话,到2014年,22%的售出手机将会采用无线快速充电解决方案。分析认为,Palm Pre 的无线充电解决方案价格太高,在没有结合使用超级电容器的情况下,为用户带来的收益很小。结合使用超级电容器和无线充电技术,便能形成优质解决方案,以解决很多手机用户都在经历的越来越严重的电池能源缺口问题。

Strategy Analytics 手机元器件技术服务总监,本报告作者 Stuart Robinson 评论道:“Strategy Analytics预测,无线充电解决方案的价格到2014年将下降至15美元左右;如果结合使用超级电容器用以快速充电,将会大大提升无线充电的用户价值。”

Strategy Analytics 战略技术副总裁 Stephen Entwistle 补充道:“超级电容器已经出现多年,只是现在才被引进到手机中,主要用于照相机闪光应用中,其短时间内提供高功率的能力非常理想。Strategy Analytics 认为,这项技术日臻成熟,正好成为无线充电器的补充技术。”

功率计与驻波表

天线系统的驻波比的大小对发射效率有很大影响,驻波比过大就会有很大的功率被反射,在馈线中有往返传输,造成额外损耗,或者异常电压或者异常电流,是发射机不能正常工作甚至损坏。

衡量反射大小的量称为反射系数,常用γ或ρ表示,为了讨论简单,我们假设负载阻抗为纯电阻。反射系数定义为:反射电压波比入射电压波。参考图1,ρ还可定义为下式:

ρ=(RL-RO)/(RL+RO)

其中,RO为传输特性阻抗,RL为负载阻抗。

当RO=RL,则ρ=0,称为匹配状态。

如果RL为开路或短路,则ρ分别等于+1或-1,称为全反射。

用反射系数可以完善地描述传输系统的匹配状态,但测量其驻波比(SWR)更为简单和直观。

我们知道,在匹配状态下,高频电磁能量全部流入负载,不存在反射。这时传输线上的各个位置上的电压振幅不变,不存在驻波,称为行波状态。因而在失配时,由于有反射波与入射波在传输线上互相叠加,使线上各点的振幅呈现有规律的起伏,称驻波状态,如图2所示。

驻波比定义为:SWR=U最大/U最小,SWR与的关系为:

SWR=(1+︱ρ︱)/(1-︱ρ︱)

当无反射时,SWR=1, 当全反射时,SWR=∞。

当RO=50?时,则RL=100?或RL=50?都会使SWR=2,此时,ρ=1/3,相当于有1/3的入射电压被反射回来。

测量驻波比的方法有测量线法、反射计法、网络分析仪法及高频阻抗电桥法等,但这些仪器往往不适于在线连续测量天(天线)馈(馈线)系统。专用于测量天馈系统的仪器是驻波表及功率计。下面就介绍这种仪器的原理、制作、校准及其使用方法。

驻波表是基于交流电桥的原理,与常规电桥不同之处是:驻波表是按被测传输系统的特性阻抗值(例如50?)而设计的;它可以读出入射功率和反射功率,可以串接在发射机与天馈线之间而不必取下来。其基本原理如图3所示。

交流互感器T为电桥的一个臂,C1和C2组成的分压器为电桥的另一个臂。跨与C2上的电压与传输线上的电压相同。如果所加负载等于电桥的设计电阻值,则C2及R上的电压相等,相位相同,于是高频电压表指示为零(即SWR=1)。这时,电桥满足了平衡条件。

由于分布参数影响设计的准确程度,常选C1或C2为可调电容。

当所接负载偏离电桥的设计阻抗时,电桥平衡条件会因Z的改变而被破坏,电表就产生读数。这个读数和反射电压的绝对值有对应关系。

为了读取入射电压只需将互感器的次级反接。如果电压表是按功率刻度,则此表即可测量入射和反射功率了。净功率为两种功率之差。测量SWR时首先置于入射功率测量状态,调整表头的灵敏度使指针指向满度,然后置于测反向功率状态,则可在表上直读SWR值。SWR=(入+反)/(入-反)

实际的SWR表有许多方式,常见的有三种:一种是利用磁环绕制成互感器的方式,即集总参数方式;第二种是用印刷电路板的微带线方式;还有一种是同轴线方式,后两种称为

分布参数方式。

磁环互感器式驻波表的实际制作:

图4是典型电路,虚线上部为取样部分,所有引线要求尽可能短,并且最好放在屏蔽盒中。虚线下面为指示电路部分,这部分对有不同方式的SWR表没有大的区别,其结构可以任意,甚至可以放在另外一个机壳中。这种表可以工作在1.5~150MHz范围,功率量程可以设置为10W、100W、1000W等。

制作要点:

互感器是一只内径约为Φ8的高频磁环,套在一小段同轴电缆之上,电缆的芯线直接焊在同周电缆插座上,同轴线的外导体只起屏蔽和去耦作用,而不应流通高频电流,必须仅某一端接地。

磁环上均匀的用Φ0.6漆包线绕20匝左右。二极管必须采用锗高频管或正向压降极小的热载流子二极管,如采用硅管将对低功率状态下小的SWR反应不灵敏。为了能够测量SSB 时的峰值功率,电路中采用了6.8μF的滤波电容,此电容可在5~10μF间选用,但要求两支电容容量相同。本表可以采用一直流表头用单刀双抛开关切换,也可以选用双表针表头。这种表头有两个表心,一个指示正向功率一个指示反向功率,两只表头的交点可直接读出值SWR,十分方便。

此实际电路与前述的原理电路完全一致的,只不过利用二极管和表头组成的检波电路充当高频电压表,又利用高频扼流线圈RFC检波得到的直流电压引到表头一端,一方面将电

表电路与高频部分隔离,避免了电表引线等分布参数对电桥的影响,另一方面为二极管电流提供正常的直流通路。同时,巧妙地设计了正反向测量共用一个互感器次级。

C4上的直流电压,是R上的高频电压与C4上高频电压之和的检波结果,它反应了入射电压的大小,从而可以在表头上读出入射功率。

基于互感方式的SWR表有很多电路。

图5为一种互感器次级采用中心抽头(双线并绕)的电路,与图4区别之处在于二极管检测的高频电压是C2上的电压与次级电压串联相加的结果。由于二极管仅有一端处于高频电位,因此节约了两只高频扼流圈。

图6是利用了一只高频电压互感器替代了电容分压器,其平衡条件为:N1/N2=R/Z。可见,欲制作50?的SWR表,可采用两只相同绕法的互感器,并使R=50?即刻。本电路十分简单,并且不需调整,常在商品收发讯机上采用。图7是它的变形。

图8为图7的实际结构图,可供实际制作参考。此外尚有3支互感器的电路(如:日本的W520)如图9。

互感器方式由于受引线及磁环互感器特性的限制,因此在VHF频段以上几乎无例外的采用匹配良好的微带线定向耦合器式电桥。这种SWR表十分简单,它的取样电路是在一小段微带传输线的两侧各放置一条平行的短印刷线段,如图10所示。

此种电路的中心线与两侧平行线间存在有分布参数的互感与电容,其原理不能用集总参数电路的分析方法来描述。

VD1用来检测正向电压,VD2用来检测反射电压。电桥对指定阻抗的平衡是靠端接匹配假负载时调整R2值使反向表头指示为零的方法。然后将电桥反过来用同样方法调整R1。R1与R2的数值在50~170?之间,取决于两条耦合线与中心导体的耦合程度。

在HF频段,由于频率低故对于微带线是否严格匹配要求不高,故可以用单面电路板印刷电路,不过当耦合段尺寸不够大时,低频端的灵敏度将很差。而对于VHF、UHF则必须采用双面电路板认真设计,使微带线系通本身的特性阻抗等额定阻抗50?,否则驻波表本身就又很大驻波比,而不能使用。

下面简要介绍一下这种定向耦合器的原理。

在一导电平面上排列两条平行导体,如图11所示。主导体上的电流I将在检测导体上感应一个电流Im。Im的大小与检测导体的外电路有关。两导体之间由于存在电容耦合,还要形成第二部分电流Ic。其结果是在主导体中向右的正向波将在检测导体中产生向左传播的波。由于此感应出来的波与正向的波的方向相反,故此种耦合称为反向耦合。因此在检测线的左方用二极管可检测到输入电压。目前大部分VHF、UHF驻波表都采用此种电路,其频率可达到GHz量级。

由于微带线在传输大功率高电压时不宜采用印刷电路的薄铜箔,故有些商品驻波表的中心导体采用架于电路板之上的粗圆导体或铜片,也可以用特殊设计的铜线或铜片,而两侧的检测线仍为印刷线。

还有一种SWR表是采用一小段同轴电缆线,在外导体铜网中穿入两条导线作为检测线,其原理和上述方式完全相同。导体的长度与频率有关。过短的线会使低频段灵敏度降低,从VHF段到HF的中段,通常在数厘米到十数厘米之间。这种法既简单又方便很适合业余制作,但准确度不易控制,商品中未被采用。

下面介绍有关使用和调整的问题。

驻波表在制作好之后首先要验证对于匹配负载是否平衡。简单的是用端接匹配负载来检验来检验指针是否为零(SWR=1)的方法只能说是初步试验,因为在小的驻波比的情况下,反射电压很小,检波电路由于二极管起始压降很小而造成死区,十分不敏感,也就是说,仅采用标准负载的方法调整,其结果是粗略的。最有效的方法是用一个25?和一个100?的负载(两者的SWR皆为2)来试验SWR表,要反复调整SWR表中的所有有关元件数值,例如调分压电容或电阻,直到两者读数相同为止,这时SWR表才做到对称与50?。

然后开始给表刻度,为此要制作数只不同驻波比的负载。对于业余爱好者来讲可只刻上SWR为2及3两个刻度就可以了(有些商品表在大于3事业不再给出刻度并染成红色,用以说明大于3的天馈系统是不正常的系统)。为此,可用大瓦数的碳棒、金属膜或碳膜电阻来端接。其数值如下表:

注意:用电阻丝绕制的背釉电阻、水泥电阻,因其电感太大,不能使用。自制假负载时,应尽可能减短引线长度,并用数值并联的方法,以减少杂感同时加大功率承载能力。即使如此,用电阻自制的假负载在VHF波段也是很不准确的。可以用一只准确的驻波表来校准自制的表,但不要采用两只表串接在一起的方法,而应分别测量,这样可以减去因串接而引入

的误差。

校功率刻度时也不要用两表串接的方法。

在使用驻波表和功率计时应注意:

测量天馈系统的驻波时,应在较大输出功率下进行,因为在较小功率下其结果将偏小。

由于这种表的功率刻度是在额定负载下定度的,因此测输出功率时必须在同样负载下才正确。

这种表的功率测量往往有较大的频响误差,频率升高时,读数偏大。

利用驻波表可以进行自制天线的调整工作。通过在不同频率下测量天线系统的SWR,找到天馈系统的最小驻波比频率,从而找到调整天线尺寸的依据。

有了驻波表之后可以很容易的为自己的天线系统配上天线调配器。

如果你的天馈系统是75?的,应该自制一台75?的驻波表。否则,当用50?的驻波表测量时,得到的SWR=1.5才是正确的。

10种常见无线技术详细介绍

之一:WAP技术和开发要点

移动设备(诸如智能电话和PDA)正在被充分应用到企业应用架构之中。这种想法最初是逐渐潜入人心的,但是发展趋势却显而易见:企业用户正在将移动设备运用到日常工作当中。这就是结构设计者在勾画应用于整个企业的程序结构时需要考虑将Java运用到电话中(甚至给手机配备基本的上网功能)的原因。

基于Wireless Application Protocol (WAP)技术的具有浏览网页功能的手机在北美和欧洲一带逐渐流行起来。WAP是由无线应用协定论坛(the WAP Forum)发展并流传开来的,该论坛是由一群无线和通讯产业的公司组成,发布了能够在无线设备上所使用Web内容和应用的“产业标准” 规范。于近期被认可的WAP版本是2.0版,但要到2003年我们才可能看到支持该版本的手机批量问世。目前,WAP1.1和WAP1.2.1版本是最为流行的。

WAP开发要点:

在企业Web应用程序中将诸如电话和PDA等基于WAP的设备作为最终用户。

虽然通过使用HTTP和HTML等著名的协议会使WAP2.0开发更容易些,但近期内我们仍需要以WAP1.x为途径进行开发。

编写服务器端代码使其可以生成HTML和WML,同时也要考虑屏幕大小和数据流量。

虽然有可用的代码转换器及HTML和WML间的转换器,但很少能够将设计漂亮的HTML页面转换成同样漂亮WML页面。你需要有特殊设计的中间件或使用系统自带的XML/XSL解决方法。

WAP Forum 在设计1.x版本的时候是经过深思熟虑的,但它和我们熟知和喜爱的3W 协议(比如HTTP, SSL 和HTML)并不兼容。WAP1.x堆栈被定义为五层,自底向上依次是:WDP (Wireless Datagram Protocol), WTLS (Wireless Transport Layer Security), WTP (Wireless Transaction Protocol), WSP (Wireless Session Protocol),和 WAE (Wireless Application Environment,包括Wireless Markup Language 或 WML,以及 WMLScript )。每一层都和3W堆栈层面大致吻合:WDP->IP, WTP->TCP, WTLS->SSL/TLS,WSP->HTTP,以及WML->HTML.

2002年,WAP Forum引入3W协议并将其加入WAP堆栈当中。如今WAP2.0开发者能够象使用WAP 1.x协议一样运用TCP/IP, HTTP和SSL,以WAP2.0电话为目标进行开

发。虽然现在难以确定这种双向方法是否可行,这种做法无疑使WAP与World Wide Web Consortium 和IETF(Internet Engineering Task Force)的建议和标准更好的同步。WAP协议和3W协议的合并将很可能使无线Web应用更容易投入使用,但是如何设计一种可以良好运用于大或小的 form factors的程序显示还是具有一定的挑战性的。Web设计师不得不用一种不同的方法在小型设备上进行页面设计,同时平衡移动设备的优点(诸如轻便性,及时性和位置识别性)和缺点(诸如传输速度慢,显示屏太小,以及输入法笨拙等)。

之二:移动标示语言和开发要点(SMS)

移动标示语言(Mobile Markup Languages),建立并传送信息到移动设备上(例如Web 电话,传呼和手持设备)的过程和将其建立和传送到台式电脑或其他Web应用程序的过程相似。当然它们也有重要的差别。开发者必须因为移动设备屏幕更小,内存更小,计算能力较弱,以及数据流量更小而做出各种权衡。因此,许多传送到移动设备中的内容没有象在Web的目前标示标准HTML4.0的版本中那样被完全格式化。这里有三种被推荐的替代方法:?WML

?Compact HTML (cHTML)

?XHTML Basic 及XHTML Mobile Profile

WAP是一套包含WML的协议,它符合XML1.0标准。WML是一个由WAP Forum设计并实施的全球工业标准。WAP2.0中对WML和低层传输协议进行了重要改进。WAP Forum 设计的2.0版本将适应W3C中关于HTTP 和XHTML的标准,安全性更好,更新后的用户界面和输入法将跟上移动电话硬件的飞速发展。

移动标示语言开发要点:

?应重新设计内容和应用,尤其是面向移动设备的。

?应通过平衡移动设备的便携性和屏幕大小以及数据流量而突出其特性。

?应使用中间件和服务器端生成动态页面来支持多种标示语言。

cHTML是由Access公司推出的一种标示语言,于1998年被吸收成为W3C标准。cHTML因其用在日本DoCoMo公司提供的时下流行的i- mode无线Web服务中而名噪一时。cHTML和HTML结合使用让i-mode应用发展得以轻松入门。结合DoCoMo公司的低成本B2C传输费用和 i-mode在年轻人当中的声望,cHTML的成功指日可待。

目前,cHTML和WML两种语言处于竞争状态,CHTML的优势是普及广,而对WML 来说,作为XML语言的实现者以及被设备制造公司和内容供应商广泛采纳则是其优势所在。如今,cHTML和WML被溶入了结合所有最佳标示选项的HTML新版本-XHTML Basic 和XHTML Mobile Profile.XHTML Basic 语言规范的制定者来自于各大公司,包括Openwave (https://www.doczj.com/doc/3b12641271.html,支持WML),Access Co. Ltd. (支持cHTML), W3C (从 XML 和 HTML 的角度出发), Sun, Ericsson,以及Panasonic.

XHTML Basic是XML中对HTML4.01版本的实现。XHTML花费了相当长的时间改进了在HTML规范中的许多模棱两可的问题。在XML的严格引进下, XHTML给浏览用器及其他浏览设备提供了清楚的页面输出导向,并允许使用“模块”组件选择处理浏览器性能的变化。XHTML是HTML的接替版,在未来的版本中所有的浏览器都将支持XHTML.

2000年12月,W3C发布了XHTML Basic 规范作为限定资源设备的推荐规范。2001年,WAP Forum 和DoCoMo正式采用XHTML Basic作为未来浏览器开发的基本标示语言。XHTML Basic是通过使用XHTML模块来实现的XML文档类型,这些模块是构造XML文档类型的“积木”。XHTML Mobile Profile是增加了用于显示元素和内部style sheets模块的XHTML Basic的扩展集。

符合WAP2.0技术的设备将通过同时支持WML 1.x 和 XHTML Basic或通过实现

XSLT转换来和WML1.x向下兼容。符合XHTML Basic规范的WAP2.0设备将具有先进的用户界面,动画效果,弹出式菜单以及颜色,这些将使得WAP内容与i-mode 内容一致。另外,Access公司和DoCoMo已就向XHTML Basic规范靠拢方面达成部分一致。

之三:多模式标示语言和开发要点

多模式标示语言(Multimodal Markup Languages)

对无线Web程序的开发者来说,最难的一关是设计用户输入法以及在设备上显示出信息,这在很大程度上是一种使用性能大挑战。对许多缺乏耐心的人来说在电话的数字键盘上打字是最为乏味和痛苦的。而且,电话机以及手持电话的屏幕太小也会使信息难以阅读,并给大量信息的显示造成一定困难。

现在有一种方法可以使这种情况得以改善,它可以在一定程度上解决问题,而且效果非常明显:使用语音传输。每种电话的听筒都有一个扩音器和扬声器用于语音的传入和传出。很多PDA产品都配有扩音器和音质良好的扬声器。有了这些语音传输工具,移动程序设计者就可以给用户提供一种其他方法去捕获和传送信息。

多模式标示语言开发要点:

绝大多数人将电话作为通话手段,其次才是将它作为数据终端。

研究智能电话的Java开发者通过结合使用XHTML+V oice 和 SALT设计出多模式程序(包括语音,文本,图形),并以此同时满足消费者和公司的要求。

尽管XHTML+V oice 和 SALT还处于早期开发阶段,但它们很可能迅速流行起来。而V oiceXML(XHTML+V oice 的前身)则被广泛用于只传输声音或其他交互式声音回应程序当中。

但是如何将语音传输功能运用到无线Web应用中去呢?在V oiceXML中定义了一套用于捕获和传送语音的的语言,但它不支持例如文本,图形或视频等其他形式的输入和输出。IBM和Motorola以及Opera共同研制了一种在Web程序中加入声音,文本和图形等多种性能的的方法:模块化 V oiceXML 2.0并将它结合到XHTML当中(XHTML+V oice)。这种方法与W3C所提倡的在内容的形式化、使XHTML易于扩展及保持该语言的灵活性方面的指导思想相一致。XHTML+ V oice支持语音合成,语音对话,命令,控件以及语音语法。

SALT(Speech Application Language Tags)是另一种解决方法,和XHTML+V oice不同,SALT 不但没有借助于V oiceXML,反而特意避免V oiceXML的开发模式以及V oiceXML支持本语言中特有的重用性。SALT能够充分利用支持语言的所有事件和脚本。例如,在使用HTML时,SALT标签的用法就和其他HTML标签一样。SALT标签可以通过使用脚本和包含属性,方法和事件等进行设计,而这些属性,方法和事件可以通过HTML页面的文档对象模式进行访问。这并不是说SALT是绑定在HTML上的,其实SALT标签能够和SGML 家族中的任何标示语言结合使用,比如Wireless Markup Language,Compact HTML,以及用在移动电话和手机上的具有新特性的XHTML profiles.同时开发者也可以将SALT和一些可视性标示结合使用,比如WML,XHTML,或用于只传输声音(voice-only browsing)的标示(2000年12月,W3C发布了XHTML Basic 规范作为限定资源设备的推荐规范。2001年,WAP Forum 和DoCoMo正式采用XHTML Basic作为浏览器未来开发的基本标示语言。XHTML Basic是通过使用XHTML模块来实现的XM在这一点上和V oiceXML很相似)。

之四:*传送和开发要点

*传送(Short Messaging)

Short Messaging Service (SMS)*息服务是指在无线电话或传呼机等无线设备之间传递小段文字或数字数据的一种服务。SMS是一种相对较简单和可靠的技术。SMS在1992

年首次出现在 GSM电话中,而今所有的主要无线设备都支持它,而且大多数移动电话都有发送和接收SMS信息的功能。有数据显示仅在2001年的12月其间全球就有 300亿条文本消息被发送出去。用户可以通过电话键将160个以内的数字或字母仔细地输入一条SMS信息中。用户也可以借助使用缩写字母或者其他捷径轻松完成信息输入过程。

*息开发要点:

SMS的地位已经确立;而EMS和MMS直到2002年底或更晚才会流行起来。

SMS并不容易开发,将*和程序结合起来的最简单的方法是使用第三方工具,比如Simplewire的 Java SMS SDK 和object XP jSMS.

EMS是SMS的升级版本,而MMS是其未来版本,它要求使用3G无线构架模式。

如果WAP2.0连同OpenWave中的新兴浏览器能在今明两年赢得市场,那么MMS会很快流行起来。

由于*息的流行,老式的SMS面临着革新。一种新的换代产品增强型信息服务(Enhanced Messaging Service EMS)问世了,它使用了SMS技术并新增了对二进制对象如声音、图像和动画等的支持。EMS可以使用预加到手机中的图像和声音。接收的信息中可以参照这些对象而不用将其下载。由于EMS对象是二进制编码,所以会使开发过程就变得更复杂一些,而且会比单一的文本信息载荷更容易出错。因此在使用SMS或者 EMS系统的界面中编写代码不是轻松的工作。Simplewire的Java SMS SDK和object XP的 jSMS等产品将同各种SMSC进行交互的大量细节方面的内容掩藏了起来,并给用户呈献一种清晰的对象界面以执行传信功能。

一些手机制造商正在研究一种更为前卫的多媒体*发送功能。这种多媒体信息服务(MMS)是在SMS产生10周年后的一个新生代产品。MMS使用XML格式和现有的HTTP 及WAP基础结构。MMS在产业界有着强大的后盾,WAP Forum已将其加入新的WAP 2.0建议书中,而手机制造巨头Nokia, Motorola,和Ericsson也开始将MMS用于他们未来的产品中。MMS网络将手机和其他MMS用户连接到MMS代理和服务器上,它们会依次连接到 Internet电子邮件服务器上,以及SMS和EMS系统中。这样将会使开发者轻松进入传信系统中,只要使它兼容于我们熟知的Web和无线开发界面及工具就可以了。

MMS已被安装到50多种装置上,但要普及的话恐怕要等到更快性能更好的第三代网络和电话的问世了。在它的首次迭代过程中,MMS使用了W3Cd 一个标准-Synchronized Multimedia Integration Language( SMIL)和WAP的WML作为其基本语言在多媒体信息中体现其文本风格和色彩图像。

之五:SyncML及开发要点SyncML

信息化同步是无线设备产生之后应运而生的产物。负责管理着我们的日程安排,通讯簿,任务目录和电子邮件的个人数字助理和智能电话通常并不能完全发挥其作用,除非将他们的信息库与个人电脑中的类似信息库或者企业信息服务器相连才能将其完全利用。有很多实现同步化的方法,但通常最简便的方法也就是最好的方法:用一个普通协议将基于文本的更新材料从一个数据源传到另一个。而SyncML就是这样一种方法。

SyncML开发要点:

?数据同步化是电话和其他移动设备应用的需求。

?

几乎所有的同步化服务器产品提供者都支持SyncML.

?如果你自己处理同步化工作,请在SourceForge中查阅sync4j项目。

由Ericsson, IBM, Lotus, Motorola, Nokia, Matsushita, Openwave, Psion,和 Starfish Software提供赞助,SyncML 联盟建立和发行了SyncML协议,它是一种使依从该协议的设备、开发程序和服务在网络中实现信息同步化的通用语言。SyncML用于在

HTTP,WSP (会议层协议,基于WAP的无线Web应用),OBEX(一种对象交换协议,它基于红外线和蓝牙技术并用于构建多种操作系统)和低层的TCP/IP以及电子邮件协议诸如SMTP, POP3, and IMAP当中。

SyncML协议使用XML语言来编译命令和数据并旨在成为和HTTP,SSL,和WAP 一样的最好的Web协议,因此它兼容用于Web- friendly移动平台(如J2ME)的开发程序。开发者只需使用最少的工具便可在移动程序中加入同步化性能。用来建立和读取XML文档的剖析器是处理 XML执行过程最好的方法,但却不是必须的方法。一条SyncML信息本身就是一个经过处理的包含标题和正文的XML文档。标题由SyncHdr元素和该信息的路由和版本信息组成。正文包括SyncBody元素和同步命令,以及相关数据。

正文部分是真正执行处理过程的地方。SyncML指定13种必带命令。例如,Add元素可以包括授权认证,指定同步化数据格式的元数据,以及数据本身。这个元数据可以直接被使用,例如,通过调用适当的XML命名空间来确定被附上的数据是一个vCard.然后该数据将出现在“text/x-vcard”命名空间里。

SyncMl语言有相应的SyncML框架支持,这种框架体现出用于完全的端到端交叉平台同步化解决方案(几乎包含所有移动设备,台式机和服务器数据源)的结构,但是SyncML 联盟也不会摈弃现存的端对端单一平台解决方案。Microsoft的 ActiveSync技术在Windows 平台上运行的很好并且Windows很可能是其单一平台。然而我们还是期待Microsoft和Palm、IBM等大的移动电话制造商合作,那么其他制造商将有可能实现同单一设备中普通实例间的同步化。

之六:802.11b无线局域网开发要点

在无需考虑耗电量但需要考虑传输速度的时候(比如在使用手提电脑浏览Web时)可以利用802.11b,802.11a和802.11gWLANs.其他无线协议如蓝牙和IRDA(红外线数据)则由于其耗电量低而更广泛地用于PDAs和电话上,但是它们的传输速度比802.11低,而且发射范围也小。

和几乎所有的网络协议一样,802.11协议完全符合七层开放式系统互联参考模型(Open Systems Interconnection (OSI) Reference Model),所以协议中的全部细则均被摘列并能够通过应用层、表象层和网络操作层中体现出来。

和蓝牙设备,便携电话,小型*器(baby monitor)及其他无线电设备一样,802.11b和802.11a的无线电操作系统也具有不规则的频段。可以借助一些高级别的协议(比如用于蓝牙技术的HTTP和Java API)来解决这种互用性问题。

IEEE小组的802.11b标准可能算是当今无线计算技术应用下最重要的主要产物了。IEEE的802.11b是802.11家族中的一种新标准,它利用无线电发射频率将电脑及移动设备同局域网连接起来。它不像“蓝牙”一样有个容易记住的名字(有人曾试图给它取个好听的别名叫做“Wi-Fi”),而且它也没有象CDMA2000 或者 UMTS (Universal Mobile Telecommunications System)那样被冠以第二代无线技术奇迹的美誉。802.11b连接通常比其他类型的无线网络连接的速度更快,而且使用802.11b无线区域网(WLANs)非常经济,也很易于安装,甚至对在家里使用的用户来说也是如此。虽然在此之前,802.11b只使用在公司办公室和家用网络中,但现在 802.11b网络的使用(常常是收费的)已遍布公共区域的“热点区”之中。结合无线局域网在办公室、家庭中的普及和在公共热点区的收益,802.11b 绝对是一个大卖点。

802.11b的成功基于以下几个原因:应用程序开发者无需知道他们的程序是在哪种网络连接(无线或有线)中运行的,因为802.11b(还有其后续标准 802.11a 和 802.11g)及其有线标准使用同样高级别的协议,类似的还有TCP/IP, HTTP, TLS等等。802.11b采用

2.4GHz无线频段并支持最大数据为11Mb/s传输速率,尽管在实际应用中的速率会低一些,那是由于用户在同一射频中共享带宽或是因超过支持范围而使性能降低。802.11a在5GHz 频段下提供56Mbit/s数据传输率,尽管它在实际应用中的速率也同样会有所降低,但它还是比802.11b快好几倍。802.11g是802.11家族中的另一成员,它能在2.4GHz频段下提供56Mbit/s数据传输率。目前只有 802.11b标准是市场的主流,但802.11a和802.11g将紧随其后并成为其替代产品。

IEEE802.11标准一个主要的安全问题已经解决。在WLAN安全性检测性的庇护下,运行在802.11标准设备中的软件更新有很大改进,但对于那些处理机密信息的应用开发人员来说,最好还是给代码加一个额外的保护层。

之七:新一代无线电话网络和开发要点

新一代无线电话网络

新一代的无线电话和数据网络使企业应用中的无线广域电话和数据网络在速度上迈进了一大步。不仅网速将提高5到10倍,而且连接模式由原来的回路交换(circuit-switched)提升到包交换(packet-switched)。这就意味着设备会始终连接到指定IP地址并能进入到所有 Internet服务中去。新一代技术中最有代表性的三种是:CDMA2000,General Radio Packet Service(GPRS),和Enhanced Data Rates for Global Evolution (EDGE)。

新一代无线电话网络开发要点:

新一代无线广域网将始终和Internet相连,并实现包交换模式。在2002年,GPRS和CDMA2000的使用将遍布全世界,这使企业开发者开发出高速可靠的无线数据传输成为可能。同时由于其使用包交换,而且速度相对更快,所以这些技术将使无线应用程序更加完善和成熟。

笔记本和大多数PDA产品通过适配器连接到GPRS和CDMA2000中去,通常是以PC 卡的形式连接。电话和一些手持设备配有内置无线电发射。如此一来,制造商通常会提供SDKs,它可以供给接用于显示一个应用程序用户界面(诸如信号强度和连接状态)的相关信息。一些SDKs还将触发事件,通过这些事件开发者能够在出现问题和捕获网络中的数据(比如位置信息)时提示用户。

CCMA2000是现存的第二代CDMA(码分多址数字无线技术Code Division Multiple Access)移动电话系统的后续产品,主要流行与美国和亚洲一带。它派生出的CDMA2000 3x 是一种用于快速的(码片速率2至4)第三代(3G)无线通信国际电信联盟标准。网络系统使CDMA2000 1x的最高传输速率达到144Mbps(但在实际应用中的速率大约只达到最高速率的三分之一或一半而已)。和GPRS和EDGE一样,CDMA2000 1x被看作是一个2.5代移动通讯产品,因为它是处于第二代到第三代的过渡产品。

GPRS将第二代GSM移动系统的速度提升到一个更高的阶段,并实现了包交换网络,它在欧洲和美国一带最为流行。和CDMA2000相比,GPRS的同时传输语音和数据的速度比目前传输速率是10Kbps的标准更快。在2002年,开发人员能将CDMA2000和GPRS应用推向全美国,多数通讯公司期待能够实现一种接近56Kbs传输速度的数据服务。

EDGE是GSM技术的未来一代。EDGE使用增强型调制系统将数据传输速度提高到400Kbps,它比现存的GSM无线电频波的速度高很多。

2002年之后(具体可能要到2003之后),世界会迈进很多人认为的真正的第三代移动通讯阶段。届时CDMA2000将发展到3x阶段,而GSM网络也将迈进宽带CDMA(WCDMA)时期。WCDMA是Universal Mobile Telecommunication Service (UMTS)的基础。目前看来CDMA2000和UMTS将同时占领3G市场。

之八:无线应用中的安全性开发要点

无线应用中的安全问题

无论是无线连接或是无线设备,端到端安全模式都是任何无线应用程序开发需要解决的首要问题。业界新闻报道说目前无线网络安全缺乏的情况很普遍,包括 IEEE802.11b WLANs都有未经授权的登陆以及遭受到使一些无线Web网络颇为头疼而臭名昭著的“WAP gap”的侵袭。那么端对端的无线安全模式真的难以实现吗?其实对于任何一种安全模式来说,没有一种是完全牢不可破的,但所有大的无线协议都提供一些方法用来保护机密信息和阻止未经授权的访问。

无线应用中的安全性开发要点:

目前使用的大多数802.11 WLAN由于缺乏安全性而受到直接的攻击。SSID和WEP 不足以保护网络资源。目前一种能够执行Extended Authentication Protocol combined with Transport Layer Security (EAP/TLS)的新型硬件可以用来进行有效验证和加密。但要确保你运行在WLAN上的无线应用程序能够利用EAP/TLS.

一些移动设备支持虚拟专用网,一些无线中间件(比如Infowave Wireless Business Engine)将实现端对端安全通讯,即使是在安全性被置疑网络中也是如此(比如WAP)。

一些蓝牙设备将提供难以编译的PIN. 这样将通过使用额外的盘问式授权(authorization challenge)来提高程序的安全性。

要确保所有的移动设备用户启用本设备特有的访问控制权(比如PIN)并确保不使用系统默认的或太简单的密码。

控制设备访问权限。企业对几乎所有的PDA、电话和移动设备实行加密保护。企业开发者可以采用这种平台层的保护来阻止未经授权的访问,或者用一个单独的个人识别号码(PIN)进入程序一个额外的保护层。

验证、授权和审核。Triple-A是安全工作做的很好的企业一直采用的一种方法。企业无线开发人员可以将用于extranet和intranet程序中的相同的triple-A用在无线开发中,由于经常在内部使用的密码很难从电话键上输入,所以另一种全数字型的密码被广泛用于移动设施。

保密性和完整性。目前许多移动设备都有足够的功率支持数据加密。开发人员很容易使用运行在Web上的SSL/TLS和无线Web中的WTLS(源自WAP堆栈)。使用被批准的证书也是确保从正常的渠道获得内容的一种直接方法。

已知的弱点。最有名的无线安全漏洞是在IEEE802.11b和WAP中发现的。802.11b安全模式的主要组件是Wireless Equivalent Privacy (WEP),其加密方法和有线Ethernet (802.3)的标准相类似。安全专家已经证实WEP的安全层是可以被破坏的,然而许多基于802.11b的WALN连WEP保护都没有。用于无线Web 的第一版WEP中列举出一个被称作是wireless transport layer security (WTLS)的SSL-like实现能够很好的运行安全模式,除非在某一时刻信息的保护权由WTLS转向TLS时(此时无线Web会连接到World Wide Web上)才会发生意外。这种情况一般发生在WAP代理或网关之中,但在公司或网络操作服务器室中通常是安全的。要确保网管能够对服务器的使用权加以限制。

之九:蓝牙技术和开发要点

用于蓝牙技术的Java APIs

蓝牙是一种无线网络技术,最初是由计算机制造商和其它制造商提出的,它替代了电缆,在计算机、PDA、电话和外设之间实现了连接。例如,蓝牙设备现在可以用来连接移动电话和免提耳机。自出现了蓝牙技术以来,它就给我们设立了更高的目标,使我们可以创建“个人网络(personal area networks,PAN)”或“piconets”。理论上,当蓝牙设备之间建立了连接时,就自然地形成了PANs.例如,当一台笔记本电脑连接到一台打印机时,就会形成一个PAN.实际上,验证、访问权限的控制以及其它的安全问题,再加上来自其它无线网络可能的干扰,会使这种情况变得复杂。

蓝牙技术开发要点:

?JABWT尽可能地影响着J2ME类和框架。

?在使用JABWT开发时会使用到The Connected Limited Device Configuration (CLDC)。

?JABWT API已经开始在其他普通协议中和其他传输媒体(OBEX和RECOMM)结合使用。

总的来说,无线网络的蓝牙版本受到了越来越多的人的喜爱,从本质上说,蓝牙技术很可靠。无线和计算机业界的倡导者们将蓝牙技术作为一种规范来开发,将它作为一种低成本、低功耗的无线通讯方法,来连接运用未经授权的2.4GHz频带的设备。该规范主要针对三种电源,它们与三个连接间距相应:100 米,10 米和0.1 米。最常用的是在多达七种不同设备之间提供10米的连接间距。蓝牙硬件和软件的设计人员考虑到了由于安全性和网络竞争带来的复杂性(如801.11b无线 LANs)。

想在应用程序中运用蓝牙技术的Java开发人员可以从两方面来考虑。首先,蓝牙技术可以是操作系统提供的一个服务,它可以从应用程序得以实现,这同 HTTP掩盖了潜在的网络协议(如802.11b和Ethernet)的低级实现有很多共同之处。第二,开发人员可以用Java APIs for Bluetooth Wireless Technologies(JABWT)来直接访问蓝牙服务。Java Community Process于2002年3月将JABWT作为最终规范发布了。JABWT至少需要512k的内存用于Java 2、一个蓝牙堆栈和频带和J2ME Connected Limited Device Configuration(CLDC)的一个兼容配置或扩展配置。

JABWT为蓝牙技术的实现提供了范围很广的一组接口,在JSR-82中有文件证明。JABWT将APIs根据discovery、设备管理和通讯加以分类。第一组接口可以帮助我们发现设备、查找设备并推广设备。设备管理APIs包括安全性和Generic Access Profile方面的信息,它们用来描述本地设备并得到远程设备的信息。通讯APIs用来同其它蓝牙设备进行通讯,这些通讯是通过协议来完成的,如 OBEX(Object Exchange,也广泛用于红外线)、RFCOMM(通过Serial Port Profile提供)、L2CAP(Logical Link Control and Adaptation Protocol)和更高级的协议(如TCP/IP)。JABWT运用J2ME的Commected Limited Device Configuration中定义的Generic Connection Framework来提供基本的连接功能。

之十:JavaPhone API和开发要点

JavaPhone API

JavaPhone API定义了一组基于Java的接口,可以用来访问智能电话和其它无线设备的功能。网络操作人员、设备制造商和内容提供商运用JavaPhone在 PersonalJava平台上构建设备。企业级Java开发人员将JavaPhone API作为一种稳固的、易用的对象接口用于设备所提供的服务,如Java Telephony API(JTAPI)、数据包信息传递、数据访问(联系人、日历、任务和用户配置信息)、电源管理和应用程序安装。

JavaPhone开发要点:

Secure Sockets Layer (SSL) API在PersonalJava中是可选的,但是必须包含在任何JavaPhone的实现中,它支持应用程序在HTTPS上运行,这是保证无线应用程序的安全的一种常见的、相对容易的方法。只有可以信赖的应用程序才可以访问JavaPhone的data stores 和消息。

Java开发人员可以在JavaPhone智能电话上发送并接受短消息,而不需要知道所运用的具体的传输方式,如SMS或WAP Push.

开发人员可以将JavaPhone的联系人、任务和日程管理作为vCard和vCalendar条目来访问,它们存储在“object soup”式的平面数据库中,互相之间没有关连,不能输入。

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

无线充电器原理

无线充电系统设计原理与实作 作者:富达通科技ART 到了2011年初,无线充电技术经过数年的推广 与演进后开始受到各界瞩目。无线充电是指具有电池的装置透过无线感应的方式取得电力而进行充电,其方便性可以让消费者愿意支付额外的费用购买无线充电相关产品;因为有商机才会有厂商愿意投入相关产品开发,目前可以知道非常多知名品牌厂商已经将无线充电这个功能列入新一代的产品的规格之一。由于这产技术相当新颖且各厂商有自己对技术的表述,所以无线充电、感应式电力、非接触充电、无接点充电都是泛指相同的技术,距离1mm 到数公尺都是一样是无线,供电端与受电端交互作用就称感应,所以无线充电是广义的名词没有一定的规格。 原理简单,实作困难 无线充电的方法在实验阶段有开发出很多方法,但目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。早期就有人发现将绕线式的变压器的将“E”型铁心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz 下,电磁波传递会随着距离增加能量快速衰退。在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm 起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。后来RFID 应用开始发展,主要就规划的三个频段LF 低频(125~135KHz)、HF 高频(13.56MHz)、UHF 超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。早在10年前电动牙刷的无线充电就已经上市,当时的传送功率小、充电时间长,在现在的智能手持装置的耗电状况来看,当时的充电能量不敷使用所以10年来还无法实用化。但这几年来发展出新的技术可用较高的“共振”接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但其它的文章都没有提到,若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、实作困难。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

无线充电系统设计方案

电源招聘专家 无线充电系统设计方案 无线充电是指具有电池的装置透过无线感应的方式取得电力而进行充电,其方便性可以让消费者愿意支付额外的费用购买无线充电相关产品;因为有商机才会有厂商愿意投入相关产品开发,目前可以知道非常多知名品牌厂商已经将无线充电这个功能列入新一代的产品的规格之一。由于这产技术相当新颖且各厂商有自己对技术的表述,所以无线充电、感应式电力、非接触充电、无接点充电都是泛指相同的技术,距离1mm到数公尺都是一样是无线,供电端与受电端交互作用就称感应,所以无线充电是广义的名词没有一定的规格。 原理简单·实作困难 无线充电的方法在实验阶段有开发出很多方法,但目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。早期就有人发现将绕线式的变压器的将“E”型铁心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz下,电磁波传递会随着距离增加能量快速衰退。 在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm 起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。 后来rfid应用开始发展,主要就规划的三个频段LF低频(125~135KHz)、HF高频(13.56MHz)、UHF超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。早在10年前电动牙刷的无线充电就已经上市,当时的传送功率小、充电时间长,在现在的智能手持装置的耗电状况来看,当时的充电能量不敷使用所以10年来还无法实用化。但这几年来发展出新的技术可用较高的“共振”接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但其它的文章都没有提到,若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、实作困难。

全面解析无线充电技术

摘要:扔掉电源线,给自己的智能手机进行无线充电。相对于大功率电能传输,小功率的无线充电技术更具实用价值,需要频繁充电的智能手机是该项技术最大的受益者。 扔掉电源线,给自己的智能手机进行无线充电。这对于许多人来说可能有点天方夜谭。但事实上,无线充电技术很快就要进入大规模的商用化,这项此前不为大众所熟悉的技术,正悄然来到我们的面前。 老技术、新技术 以无线的方式传输电能,其实是一项非常古老的技术,它可以追溯到人类开始拥有电力的19世纪。当时对于电力的传送有两种思路,一种是以爱迪生为代表的有线派,即架设线缆用于电力的远距离传输,这种方案成熟可靠,缺点是工程量巨大,并且成本高昂。还有一种就是尼古拉·特斯拉(Nikola Tesla,世界上第一台交流电发电机的发明者)在19世纪末提出的无线传输方式,特斯拉当时构想通过电磁感应的方式,让电能以大地和天空电离层为介质进行低损耗的传送。这项实验据说获得成功,但是因政治和经济因素被中止。无线传输技术后来只是被用于电信号发送领域,也就是信息的交流,远距离能量传输从来都没有进入实用化,虽然它在物理学上是完全可行的。 诺基亚Lumia 920智能手机可实现无线充电

直到一百年后的今天,这种局面才获得改变。在电动牙刷、剃须刀等不少低功率的日用家电产品中,我们看到了非接触式无线充电技术的应用,给用户带来相当的便利。随着无源式RFID电子标签的实用化和无线网络技术的大发展,诸如隔空点亮灯泡的无线供电实验也屡见报端,这一切都点亮了人们对“无线”未来生活的无限憧憬,科学界也不遗余力地朝着这个方向努力。 2001年5月,国际无线电力传输技术会议在印度洋上的法属留尼汪岛(Reunion Island, France)召开,法国国家科学研究中心的皮格努莱特(G. Pignolet)作了一个公开实验:他利用微波技术,将电能以无线的方式传输,最后点亮了一个40米外的200瓦灯泡。其后,据研究者有关文章介绍2003年在岛上建造的10千瓦试验型微波输电装置,已开始以2.45GHz 频率向接近1km的格朗巴桑村(Grand-Bassin)进行点对点无线供电。 到2006年末,也有报道称麻省理工学院在无线电力传输技术上获得突破:以物理学助教授马林·索尔贾希克为首的研究团队试制出的无线供电装置,可以点亮相隔2.1米远的60瓦电灯泡,能量效率可达到40%,相关内容刊登在2007年6月7日的《ScienceExpress》在线杂志上。这个“隔空点灯泡”实验引起了欧美及全球各大媒体的极大关注。后来英特尔西雅图实验室的Joshua R.Smith在这一成果上进行改进研究,并将供电效率提高到75%(1米范围内),这样的效率相当了不起,对于笔记本电脑、智能手机、平板这样的设备来说已足够优秀,而英特尔也在2008年8月的信息技术峰会上对此作了演示。 不过,相对于大功率电能传输,小功率的无线充电技术更具实用价值,需要频繁充电的智能手机是该项技术最大的受益者。在四年后的今天,我们在诺基亚Lumia 920智能手机上看到了商用级无线充电技术的身影,与此同时大量的手机厂商和外设厂商跟进,针对智能手机的无线充电技术一夜之间就进入爆发前夜。 无线充电四大“流派” 无线充电技术可以分为四种类型,第一类是通过电磁感应“磁耦合”进行短程传输,它的特点是传输距离短、使用位置相对固定,但是能量效率较高、技术简单,很适合作为无线充电技术使用。第二类是将电能以电磁波“射频”或非辐射性谐振“磁共振”等形式传输,它具有较高的效率和非常好的灵活性,是目前业内的开发重点。第三类是“电场耦合”方式,它具有体积小、发热低和高效率的优势,缺点在于开发和支持者较少,不利于普及。第四类则是将电能以微波的形式无线传送——发射到远端的接收天线,然后通过整流、调制等处理后使用,虽然这种方式能效很低,但使用最为方便,英特尔是这项方案的支持者。

三星手机充电器原理与维修

星手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

无线充电技术介绍

无线充电技术介绍 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放臵在充电座上即可为电池充电。今后NTT DoCoMo将在电影院、餐厅、酒店、机场休息室等公共场所设臵充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯〃奥斯特(Hans Oersted)

发现了这种电磁效应。 用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔〃法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。 无线充电使用的充电座和终端分别内臵了线圈,使二者靠近便开始从充电座向

无线充电器技术原理简介

无线充电器技术原理简介 -------------------------------------------------------------------------------- 无线充电技术利用了电磁波感应原理,及相关的交流感应技术,在发送和接收端用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电,这样的充电方式过去曾经出现在手表和剃须刀上,但是当时无法针对大容量锂离子电池进行有效充电。无线充电器技术原理构图如图2所示 最初由英国一家公司发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,这个“鼠标垫”里装有密集的小型线圈阵列,可产生磁场,将能量传输给装有专用接收线圈的电子设备,进行充电。接收线圈由磁性合金绕以电线制成,大小和形状都与口香糖相似,可以很方便地贴在电子设备上。将手机等放在垫上就能充电,并能同时给多个设备充电。 无线充电技术此前已经出现,但这项新发明更为方便实用。手机等设备只要贴上接收线圈,放置在“鼠标垫”上的任一位置都可充电,不像以前的一些技术那样需要精确定位。几个设备同时放在垫子上,可以同时进行充电。充电器产生的磁场很弱,能够给设备充电但不会影响附近的信用卡、录像带等利用磁性记录数据的物品。 电磁感应无线输电技术(无线充电技术) 电磁感应无线输电技术已经在诸如电动牙刷等小功率产品上获得了应用,但更大功率的传输目前还不现实。Intel日前则在会场上演示了无线公供电驱动一枚60W电灯泡。该项研究是由Intel西雅图实验室的Joshua R. Smith领导的,部分技术基于麻省理工学院物理学家Marin Soljacic的研究。可以在一米距离内无线给60W灯泡提供电力,效率高达75%。Intel 首席技术官Justin Rattner表示,未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA等电器放在桌上就能够立即供电。

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供 电。 以下是四种主要无线充电方式: 无线充电方式 充电 效率 使用频率范围 传输距离 电场耦合方式 电磁感应方式 92% 22KHz 数mm-数cm 磁共振方式 95% 13.56MHz 数cm-数m 无线电波方式 38% 2.45GHz 数m- 1.电磁感应方式

无线供电驱动一枚60W电灯泡,效率高达75%。 电磁感应无线充电产品示意图

电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。稍有错位的话,传输效率就会急剧下降。下图靠移动送电线圈对准位置来提高效率。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”, 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。

在伦 敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。

电动牙刷无线充电示意图 一种无线充电器发送和接收原理图

2. 磁共振方式 磁共振方式的原理与声音的共振原理相同。排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。 相比电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。 应用: 三菱汽车展示供电距离为20cm,供电效率达90%以上。线圈之间最大允许错位为20cm。如果后轮靠在车挡上停车,基本能停在容许范围内。 索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。 还有将供电线圈埋入道路中,在红灯停车时和行驶中为电动汽车充电的构想,以及利用植入轨道中的线圈为行驶中的磁悬浮列车供电的设想。 磁共振方式由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量。

手机万能充电器电路原理与维修

手机万能充电器电路原 理与维修 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

手机万能充电器电路原理与维修 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维 修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键) 才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路

无线充电工作原理分类

无线充电工作原理分类 无线充电技术分为三类:电磁感应式、共振式和微波传输。 13.1.2.1电磁感应式 目前大多数产品的无线充电功能都采用电磁感应技术。电磁感应技术主要 利用经典电磁理论和变压器理论,结合现代电力自控技术,实现电能无线传输。感应式电能传输的基本原理如图13-6所示。在初级线圈加入交流电流I s,产生 交变磁场强度H,经由空气介质耦合产生磁通密度Φ。根据法拉第电磁感应定律,次级线圈因为磁通密度Φ变化而感应出电动势,感应电动势ε=dΦ/d t。 图13-6电磁感应基本理论 电磁感应技术分为感应耦合和容性耦合。其中,感应耦合的传输形式如变 压器、电容等,基于铁磁芯的感应式电能传输方式在传统变压器和电机中得到 广泛的应用,但是由于磁场铁芯和电场媒质的限制,它们不适合向运动的物体 传输无线的隔离大气隙的能量。 如果工作频率足够高,磁场变化率将在原、副绕组之间引起很强的电磁感应,使得大气隙能量传输可行。 感应电能传输技术涉及的主要技术领域有电磁感应耦合技术、现代电力电 子能量变换技术、高频磁技术、谐振逆变技术、软开关技术以及现代控制理论;具体到一个实际系统,还涉及结构设计、通信与控制技术等。感应电能传输的 基本原理框图如图13-7所示,直接利用工频交流电作为能量供应源,可采用两 相或三相工频电源,视实际的电源容量要求合理选择。工频电源在经过整流电 路之后向逆变电路提供平稳的直流电流。该直流电流经过逆变电路的高频逆变 之后,向松耦合感应装置的初级绕组提供高频交变电流。松耦合感应装置作为

感应式电能传输的关键组件,其初级绕组中通过的高频电流产生感应电磁场, 并在次级绕组中产生电磁感应。在次级绕组中得到的感应电动势再通过整流或 逆变后提供给直流或交流负载使用,完成非接触供电的整个能量传输过程。 图13-7电磁感应原理 另外,考虑存在多个能量接收绕组,各个绕组之间的互相影响成为关键。 当某个绕组负载的等效阻抗太小(极端情况为短路)或太大(极端情况为开路)时,反应阻抗均不正常,此时将导致其他绕组负载不能工作,必须在用电设备 端加上负载供电控制单元,以保证整个系统运行的稳定性和可靠性。 13.1.2.2共振式 共振式无线电能传输的理论依据是,如果两个振荡电路具有相同的频率, 在波长范围内,通过近场瞬时波耦合,感应器产生的驻波在远远小于损耗时间内,允许能量高效地从一个物体传到另一个物体。由于共振波长远远大于振荡 器尺寸,所以不受附近物理的影响,而且由于磁场和生物体之间相互作用很弱,对生物体比较安全,适用于中距离传输,但是这种技术尚未达到实用化程度。 2006年10 月,美国麻省理工学院教授马林?索尔贾希克(Marin Solijacic) 提出了通过“磁场共振”技术实现无线电能传输的新理论,把磁场共振运用到电 能传递上。他们利用铜制线圈作为电磁共振器,一组线圈附在传送电力方,另 一组在接收电力方。当传送方送出某特定频率的电磁波后,经过电磁场扩散到 接收方。他们成功地把一盏距离发射器2.13m的60W电灯点亮(如图13-8所示),相应的研究成果发表在2007 年的《Science》杂志上。这个“隔空点灯泡”实验引起了欧美及全球各大媒体的极大关注,并进行了“Goodbye Wires”之类的 广泛报道,被认为是无线电能传输技术的里程碑。他本人因为这一发明获得了 麦克阿瑟基金会2008 年的“天才奖”,其相应的技术被称为“WiTricity”。

手机充电器电路图讲解(DOC)

手机充电器电路图讲解 时间:2012-12-18 来源:作者: 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容

滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关 13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能 量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93 的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450V·A、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:

无线充电器的设计及制作..

安徽建筑大学 毕业设计(论文) 专业电子信息工程 班级城建电子二班 学生姓名马吉智 学号09290060216 课题无线充电设备的设计与制作 ———无线充电发射部分 指导教师花海安 2013年6 月

基于现在中国市场上还没有真正的无线充电的产品,我们利用电磁感应的基本原理结合模拟数字基础理论设计制作了智能无线充电系统。此作品内部应用电流控制型脉宽调制集成电路来驱动场效应管从而产生高频振荡脉冲,通过电磁感应向外界传送能量,通过接收电路把磁场能转化成电能从而实现对用电设备的充电(此作品以手机电池充电为例)。其系统经济实用,市场前景极其广阔。 Abstract Based on the Chinese market now has not really wireless rechargeable products, we use the basic principles of electromagnetic induction combination of analog and digital design based on the theory of intelligent wireless charging system. This works the use of current-controlled pulse width modulation to drive the field effect transistor integrated circuits resulting in high frequency oscillation pulse, electromagnetic induction through the transmission of energy to the outside world, through the receiving circuit to the magnetic field can be converted into electricity to power equipment in order to achieve charge ( This mobile phone battery works as an example). The system economical and practical, market prospect is extremely broad. 关键字(Keyword): 电磁感应(Electromagnetic induction)无线充电(WirelessCharging)

无线充电技术简介

无线充电技术 无线充电技术(Wireless charging technology;Wireless charge technology )。无线充电技术,源于无线电力输送技术。无线充电,又称作感应充电、非接触式感应充电,是利用近场感应,也就是电感耦合,由供电设备(充电器)将能量传送至用电的装置,该装置使用接收到的能量对电池充电,并同时供其本身运作之用。由于充电器与用电装置之间以电感耦合传送能量,两者之间不用电线连接,因此充电器及用电的装置都可以做到无导电接点外露。[1] 概述 麻省理工学院的研究团队在2007年6月7日美国《科学》杂志的网站上发表了他们的研究成果。研究小组把共振运用到电磁波的传输上而成功“抓住”了电磁波。他们利用铜制线圈作为电磁共振器,一团线圈附在传送电力方,另一团在接受电力方。当传送方送出某特定频率的电磁波后,经过电磁场扩散到接受方,电力就实现了无线传导。这项被他们称为“无线电力”的技术经过多次试验,已经能成功为一个两米外的60瓦灯泡供电。这项技术的最远输电距离还只能达到2.7米,

但研究者相信,电源已经可以在这范围内为电池充电。而且只需要安装一个电源,就可以为整个屋里的电器供电。 共振原理 麻省理工学院的科研组不是第一个提出无线能量转换的组织。科学家早在19世纪就发现了电磁转换现象,从理论上说,电力可转化为通过无形的介质传播的电磁波,实现电力的无线输送。但是电磁波向四面八方辐射,能量大量散失,因此“无线输电”的研究始终进展不大,19世纪的物理学家和工程师尼古拉·特斯拉进行了远程无线能量转换系统实验,但是当他的财力用尽后,这项最有野心的尝试(29米高的瓦登克莱弗塔)宣告失败。其他尝试包括激光等定向能量转换机制。然而,它们与麻省理工学院的工作不同,这些都需要连续的可视线路,这对住宅周围的电力设施不好。 无线充电技术给两个手机无线充电[2] 研究组成员,助理教授马林·索亚克教授和他的科研组正在改进这个设备。“这是一项还未得到发展的系统,它证明能量转换行得通。但

智能无线充电系统电路设计详解

半导体器件应用网 https://www.doczj.com/doc/3b12641271.html,/news/200515_p1.html 智能无线充电系统电路设计详解【大比特导读】智能无线充电器利用电磁感应原理,是非接触充电系统,不 再通过导线(充电线)传输电能,而是无线传输方式充电。没有充电所用的物理接 口,与一般充电器相比,避免了插线或拔电池的麻烦。 在电子科技技术高速发展的今天,全球范围内的手机用户数量已经达到了33亿,再加 上MP3、MP4等其他周边电子产品,平均不到2人就拥有一个需要充电的便携式电子产品。 目前普遍使用的都是数据线插接式充电,这种充电方式数据线接口用久了通常会有触不良等 现象,而且单个充电器适应面不广,因不同的类型电子产品需要使用不同的充电器,充电时 还要寻找合适的插口和理顺接线,真可谓费时费力;各种便携式电子产品的充电是一件令人 头痛的麻烦事。为了改良上面的现象,研发智能无线充电器是很有必要的。 智能无线充电器利用电磁感应原理,是非接触充电系统,不再通过导线(充电线)传输电 能,而是无线传输方式充电。没有充电所用的物理接口,与一般充电器相比,避免了插线或 拔电池的麻烦,具有一般充电器的工作原理;作品采用一(充电器)对多(感应负载)充电、智 能充电的设计思想;无线充电器对负载充电时,指示灯将由绿灯转换为七彩灯,手机也正确 显示充电状态并智能完成充过程(实验产品为手机)。本充电器可以同时对多个负载充电,可 以自动感应是否有负载充电,达到自动充电,充满电后10秒自动断电,达到智能化;从而大 大方便了用户。智能无线充电器使用十分方便、一个充电器就可以满足一个家庭的需要,具 有较高的推广应用价值、成本低廉(与一般充电器价格相差不多)等优点,现在世界上许多大 公司(如Sony,Intel,apple,飞利普等)也正在火热研究中;智能无线充电必将是取代物理 直插的发展方向,将肯定受到人们的欢迎和重视。 NE555D脉冲发生器模块 如图1,根据 T =(R1+Rp)C1,f = 1/T,调节Rp使NE555D输出一个36.7KHZ的脉冲频 率。

无线充电器技术及原理简介

无线充电器技术原理简介 无线充电技术利用了电磁波感应原理,及相关的交流感应技术,在发送和接收端用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电,这样的充电方式过去曾经出现在手表和剃须刀上,但是当时无法针对大容量锂离子电池进行有效充电。无线充电器技术原理构图如图2所示 最初由英国一家公司发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,这个“鼠标垫”里装有密集的小型线圈阵列,可产生磁场,将能量传输给装有专用接收线圈的电子设备,进行充电。接收线圈由磁性合金绕以电线制成,大小和形状都与口香糖相似,可以很方便地贴在电子设备上。将手机等放在垫上就能充电,并能同时给多个设备充电。 无线充电技术此前已经出现,但这项新发明更为方便实用。手机等设备只要贴上接收线圈,放置在“鼠标垫”上的任一位置都可充电,不像以前的一些技术那样需要精确定位。几个设备同时放在垫子上,可以同时进行充电。充电器产生的磁场很弱,能够给设备充电但不会影响附近的信用卡、录像带等利用磁性记录数据的物品。 电磁感应无线输电技术(无线充电技术) 电磁感应无线输电技术已经在诸如电动牙刷等小功率产品上获得了应用,但更大功率的传输目前还不现实。Intel日前则在会场上演示了无线公供电驱动一枚60W电灯泡。该项研究是由Intel西雅图实验室的Joshua R. Smith领导的,部分技术基于麻省理工学院物理学家Marin Soljacic的研究。可以在一米距离内无线给60W灯泡提供电力,效率高达75%。Intel 首席技术官Justin Rattner表示,未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA等电器放在桌上就能够立即供电。

相关主题
文本预览
相关文档 最新文档