当前位置:文档之家› 双面电池、双面组件简介

双面电池、双面组件简介

双面电池、双面组件简介
双面电池、双面组件简介

双面电池、组件简介

一、电池技术

1.1 PERC技术

PERC 电池的工艺流程包括:沉积背面钝化层,然后开槽形成背面接触。相较常规光伏电池的工艺流程新增了两个重要工序。此外,基于湿式化学工作台的边缘隔离工序需要针对

背面抛光稍做调整。抛光的程度基于所选技术的不同而异。因此,钝化膜沉积设备和开槽设

备(可采用激光或化学蚀刻方法)是需要在传统电池产线上额外增加的加工设备。对于较少应用的激光边缘隔离处理工艺生产线,需要增加一个化学湿式工作台进行背面抛光。

相对于常规P型电池,P-PERC电池有两个明显的优势:

①显著降低背表面复合电流密度,提高电池开路电压;

②形成良好的背表面内反射机制,增加光吸收几率,提高电池短路电流;

电池效率的提升多晶会在0.5%~0.8%,单晶会在0.8%~1.0%。PERC电池的优点:相当

容易改造的,只需要加2~3个步骤,就能够实现技改的升级,而且投入也比较低,相对来说每100兆瓦的投入大概会在2000万元。

图1 perc 电池流程图

电池生产商广泛用于规模化生产的两种氧化铝沉积技术是等离子体增强化学汽相沉积(PECVD)和原子层沉积(ALD)。PECVD 所占市场份额最大,且在电池生产中不仅可

用于氮化硅的沉积,而且沉积氧化铝并覆以氮化硅可以在不同腔体的同一工序中完成。ALD 技术沉积膜的质量比PECVD 更佳,但该技术需要在生产线上额外增加一套PECVD 设备,用于氮化硅的沉积。

双面PERC电池背面采用铝栅线设计,可以有效降低局域接触空洞。对改善局域铝背场

均匀性从而提升电池开路电压有帮助。关键技术如下:(1)铝栅线烧结后需具有一定的高

宽比,可以增加光照面积,有利于收集更多的光生电流,提升PERC电池背面转换效率(2)具备良好接触处局域填充效果及厚度适合的铝背场,以减小体电阻率。其对背面铝浆和金属

化提出了一些特殊工艺要求:(1)背面印刷精度较单面PERC电池的要求略高;(2)背面需丝网印刷铝栅线,对铝浆提出了更高的要求。根据阿特斯的经验,双面PERC技术制作完善的条件下,正面效率不会降低。

图2 介质钝化效果比较

高效PERC双面电池:与常规PERC电池相比,正面加载SE技术,电池Voc提升7 mV 左右;背面铝栅线二次印刷,提高双面电池的填充因子, PERC (SE)+平均效率为22.06%;

1.2 N型电池

相较于P型电池,N型双面电池具备的优势。

(1)N型CZ硅片的少子寿命比P型硅片的高出1~2个数量级,达到毫秒级。无硼氧

(B-O)复合体所造成的光致衰减(LID)效应。

(2)其次,N型硅片对金属污染的容忍度要高于P型硅片。

(3)温度系数低,高温条件下仍可获得高功率输出。工作温度较常规单玻组件低3-9℃,减小因温度提高带来的功率下降。

(4)N型单晶双面电池正背面均印刷Ag栅线且图形相近,因此N型单晶双面电池结

构均有对称性,电池在丝网烧结印刷后不产生翘曲。

基于晶体结构的特性,具有少子寿命高、光衰减系数低、弱光响应佳、温度系数低、工

作温度低、且双面皆可发电的优点,目前最高效的晶硅太阳电池也都是采用了N型硅片,比如IBC,HIT,N型双面电池等。而爱康、赛维、中科院微系统所/通威、晋能、彩虹、中

智则想在异质结HJT双面电池有一番作为。

PERC单晶正面产线效率21.3%~21.8%左右,双面率维持在70-80%左右,而龙头企业

的PERC单晶正面效率已经突破22%,双面率也达到80%左右。高双面因子(双面率,背

面转化效率占正面转化效率的百分比),HJT、N-PERT双面因子(双面率)可高于90%,IBC的双面因子(双面率)约为80%。

PERT技术

PERT(Passivated Emitter,Rear Totally-diffused cell),钝化发射极背表面全扩散电池,

是一种典型的双面电池。双面太阳电池是指硅片的正面和反面都可以接受光照并能产生光生

电压和电流的太阳电池,这种电池可以用P型硅片制造,也可以用N型硅片制造。nPERT 双面电池基本工艺流程为:(1)双面制绒(2)上表面扩散硼制成P+N结(3)背面扩散磷制成N+N结(4)双面钝化薄膜(5)双面金属化,结构示意图如图3所示。

图3 nPERT电池结a双面 b 单面

在N型电池技术领域,中来光电通过创新型离子注入法进行磷扩散,简化工艺的同时

也提升了电池效率,目前已量产的N-PERT双面电池效率可达21.5%。

TOPCon

TOPCon:Tunnel Oxide Passivated Contact 隧穿氧钝化接触:该电池采用高质量的超薄

氧化硅和掺杂多晶硅层,实现全背面的高效钝化和载流子选择性收集。其优点为:插入氧化层有效降低体载流子在表面的复合;提升了体内光生载流子浓度;有效扩大了准价带和准

导带能级差;最终提高器件的V oc ;

图4 TOPCon 电池示意图

2018年上半年,中来TOPCon(隧穿氧化钝化)将平均电池转换效率提高到22.5%以上,叠加其他组件高效封装技术可提高60片N型双面组件正面功率达330W以上。下半年,中来独创的悬浮主栅设计N型单晶双面IBC电池也将量产,到时平均转换效率将超过24%。

图5 PER高效电池路线图

异质结电池

异质结HJT(Hereto-junction with Intrinsic Thin-layer)电池(同时也简称HIT,SHJ,SJT 等),HJT电池的结构如图所示,以N型单晶硅(c-Si)为衬底光吸收区,经过制绒清洗后,

其正面依次沉积厚度为5-10nm的本征非晶硅薄膜(i-a-Si:H)和掺杂的P型非晶硅(p-a-Si:H),和硅衬底形成p-n异质结。硅片的背面又通过沉积厚度为5-10nm的i-a-Si:H和掺杂的N型非晶硅(n-a-Si:H)形成背表面场,双面沉积的透明导电氧化物薄膜(TCO)不仅可以减少收集电流时的串联电阻,还能起到像晶硅电池上氮化硅层那样的减反作用。最后通过丝网印刷在两

侧的顶层形成金属基电极,这就是异质结电池的典型结构。

图5 异质结电池

日本化学品制造商KanekaCorporation的研究人员于2016年底将HIT电池光电转换率提升到26.3%,打破了之前松下25.6%的纪录。目前,叠加了IBC技术后的HJT电池能展现出更惊人的转化效率,目前已达26.63%。2018年3月晋能科技HJT电池量产平均效率达23.27%,量产最高效率可达24.04%。在成本下降空间方面,相对于其他超高效太阳能电池

技术,HJT技术工艺步骤少。通过对关键技术的突破和规模化生产,实现成本的进一步大幅

下降。2017年HJT组件的量产成本是每瓦0.7美元,晋能科技预期是三年内使HJT组件的量产成本下降至每瓦0.4美元。

HIT电池中TCO 层的作用:形成良好的欧姆接触,增加载流子的收集效率,起到钝化

表面的效果。高迁移率的TCO 薄膜是获得高J SC的关键。提高迁移率的方法:降低载流子浓度;增大晶粒尺寸;减少晶粒边界的势垒(晶粒边界的钝化);减少补偿度(减少杂质

浓度);减少高价离子数量(如氧空位);提高ITO 薄膜的晶化率。

温度是决定太阳电池输出特性的关键因素之一,和传统的扩散pn结相比,传统扩散pn 结太阳能电池的温度系数为-0.42%/℃,而异质结太阳能电池的温度系数可低于-0.25%/℃,开路电压高的HIT太阳电池表现出更好的温度特性。

2017年中来股份研发的N型IBC组件电池效率高于23%,60片型组件正面功率高达

340W.N型电池具备更高的发电效率和发展前景,特别是N型双面电池,具有双面发电的特性,背面效率可达到19%以上,

图6 电池技术叠加HIT+IBC=HBC

二、双面组件

光伏市场上 3 种主要的双面光伏组件为:单晶N型双面光伏组件、单晶PERC双面光伏组件、异质结(HIT 或HJT) 双面光伏组件。双面电池根据基底的不同,可以分为P型双面和N型双面,包括N型PERT电池、HJT电池、IBC电池,以及P型PERC双面电池等。2018年仅隆基一家就将新增 3.5GW的双面双玻组件产能。但在选择技术方向上,目前主流

厂家存在较大的分歧。晶科,英利,阿特斯等一线企业均已推出自己的双玻双面产品,其中我们看到以隆基,晶澳和天合为主的企业主要推进P型PERC的双面双玻产品,而以英利,

晶科和林洋为主的企业主要推动N型PERC的双面双玻产品,另外如中环股份,第一太阳

能等企业则侧重在HIT(异质结层电池)上。从3个的优劣来看,目前P型PERC双面虽然双面率最低,转化效率也最低,但是是目前最快达到量产化的产品。N型PERC双面转化效率介于两者之间,但是量产化之后成本下降有待验证。(林洋N型电池已经成功量产,公司预

计其生产成本将与传统P型PERC接近)而HIT技术虽然整体的效率最高,但是由于其晶硅

电池表面需要再添加非晶硅薄膜,因此量产化之后成本一直较高,因此需要进一步的生产技

术突破或优化。

2.1普通PERC组件发电量

PERC组件多发电的原理在于其优秀的低辐照性能,更好的功率温度系数以及首年光衰

问题的解决。PERC电池红外波段的量子效率显著提高,尤其在1100~1200nm波段增加的发电不计入到标称功率当中。据大同中电发电公司段涛介绍,单晶PERC在大同中电光伏发电项目中表现也十分优秀,可以多发 2.61%电量。中国电力科学研究院黄晶生的研究数据表明,

单晶PERC发电时长高出常规组件 2.8%左右。按双面PERC相对常规组件多发3%的电来计算,在系统投资相同,装机容量相同的情况下,PERC单晶收益率提高约 1.5%,双面PERC收益率提高4~5%。PERC单晶度电成本降低约2分,双面PERC度电成本降低约7分。晶澳孙杰分析认为,从成本角度讲,相比于PERC单面产品,PERC双面产品仅在电池的丝网印刷工序做

了调整和优化,因此成本基本与PERC单面产品相差无几。相比于常规单/多晶以及PERC 单晶,P型PERC双面组件可有效降低光伏电站的LCOE,以10%发电增益的双面组件为例,LCOE可降低0.05元/kWh以上。

图8 地貌光谱及安装角

双面发电组件安装位置的背景反射率决定了背面发电量的多少,只有背面尽量多的接收

反射和散射光,背面增效才会增加。由于不同地区冬季降雪量不同,通常设计的系统最低点

离地高度也不同,随着最低点离地高度的变化,组件背面接收的辐照度也随之变化,系统最低点离地越高,组件与地面之间的空间越大,组件背面可接收的周围反射面越大,背面的发电量也越多。因此组件背面的发电量主要是安装朝向、安装角度、地面反射率和离地高度共

同作用的结果。

协鑫集成执行总裁董曙光表示,与普通电站相比,由于水面反射增加光利用率,以及温度低、清洁度较高的特性,水面电站的发电增益要较一般电站高出5-6%以上,在应用金刚

双面双玻组件时,可使发电量进一步提升10%以上。董曙光认为水面光伏电站的投资优势较

普通地面电站更为显著,值得投资者们关注。

双面发电组件应用1500V系统电压设计,与1000V系统相比,系统平衡成本降低约3%,100兆瓦电站的总投资可减少约2000万元;与1000V集中式系统相比,1500V集中式系统损耗降低约0.47%。

2.2半片

半片电池组件具有以下特点:(1)电池片一分为二,可减少热阻损失,半片电池组件

的输出功率比同版型整片电池组件高约5-10W;(2)半片电池组件的热斑温度比同版型整

片电池组件的温度低约25℃,可有效降低组件的热斑效应;(3)半片电池组件满足1500V 系统电压设计要求,可降低系统端成本约10%。由于半片电池组件在大幅提升输出功率的同

时,所增加的额外成本并不多,因此目前高功率半片电池组件正在实现规模化发展。

目前,半切技术已被多家光伏组件制造商采用,规模持续扩大。据亚化咨询统计,截至2018年5月,全球半片电池组件产能已超过15GW,其中晶科、天合、晶澳、阿特斯、东方

日升、韩华Q Cells、REC Solar等均实现GW级半片组件产能。

2.3跟踪系统

跟踪系统专家认为,通过跟踪系统的应用,可以在光照条件好的地区降低电价在5%- 10%。具体体现在电价方面可以是0.05-0.1元/度电,甚至0.15元/度电。

晶澳PERC双面+跟踪系统带来更多的发电增益促使度电成本进一步降低。双面发电与

单轴支架系统联用,更能体现1+1>2的叠加优势。有数据表明,在不同的经纬度下,平单轴

系统发电量高出10%-18%,斜单轴高出20%-30%。如果与PERC双面发电组件整合,则在平单轴系统中,有望获得18%-34%的发电增益,在斜单轴系统中,有望获得28%-46%的发电增益。这对于大幅降低光伏度电成本,无疑具有里程碑的重要意义。

双面组件电站注意事项:

使用双面组件时,选择逆变器时要注意:一是不能超配,因为双面组件有时候能增加

20%到30%的发电量,也就是说会增加输出功率,建议组件和逆变器按0.9:1配置。二是组件功率增加时,只能电流增加,电压不会增加,因此要选择每一路输入组串电流要大于12A 的逆变器。双面组件直流侧输出电流高于常规组件,根据双面组件厂家提供的I类资源光照区格尔木的仿真和测试结果,背面增益30%的情况下,输出电流峰值为11.75A,这就要求逆变器直流侧输入电流提高,综合现有部分组件厂家实际测试数据,SG80BF直流侧每串输入

电流提升至12.5A,以满足双面组件电流增加的需求。

双面组件背面辐照不均匀,导致组件最终输出总体功率不同,组件电流离散率达到5%以上。这就要求逆变器MPPT颗粒度更细,另外在设计组串和组串接入逆变器时应尽量避免

不一致造成的失配损失。MPPT是光伏系统核心设备光伏逆变器的主要功能之一,通过不断

调整逆变器自身的等效电阻值,影响所跟踪的组件的电压电流值,寻找并保持系统工作在

P-V特性曲线的最高功率点。

组件级电力电子技术的应用,可以有效削弱由于组件失配带来的发电量损失,使双面组件充分发挥其多发电的优势,提升系统的综合收益。

锂电池极片狭缝式挤压涂布特性

锂电池极片狭缝式挤压涂布特性 锂离子电池极片涂布过程具有浆料粘度大,涂层厚,基材薄、精度要求高等特点,目前已经广泛采用狭缝挤压式涂布技术。本文主要介绍了狭缝挤压式涂布预计量式的特点与涂布量的预估方法;流体的受力情况、流场无量纲参数的含义;以及流体力学有限元对涂布流场的分析。 锂离子电池是目前性能最优的二次电池产品,在能量密度、功率密度、寿命、环境适应性、安全和成本方面均有较大的改进空间,锂离子动力电池是混合动力车、纯电动汽车、储能系统等应用技术和工程技术的基础。极片制作工艺是制造锂离子动力电池的基础工艺,所以对于此环节所用设备的精度、智能化水平、生产性能的可靠性等要求非常高。目前,锂离子动力电池行业已经普遍采用狭缝挤压式涂布技术制造电池极片。挤压涂布技术能获得较高精度的涂层,同时也可以用于较高粘度流体涂布,被广泛应用于柔性电子、功能薄膜、平板显示器、微纳米制造、印刷等众多领域。 实际工艺过程中,涂布液的均匀性、稳定性、边缘和表面效应受到涂布液的流变特性影响,从而直接决定涂层的质量。采用理论分析、涂布实验技术、流体力学有限元技术等研究手段可以进行涂布窗口的研究,涂布窗口就是可以进行稳定涂布,得到均匀涂层的工艺操作范围,其受到三类因素的影响: (1)流体特性,如粘度μ、表面张力σ、密度ρ; (2)挤压模头几何参数,如涂布间距H,模头狭缝尺寸w; (3)涂布工艺参数,如涂布速度v,浆料送料流量Q等。 对于挤压式涂布,在固定的流量下,存在一个涂布速度上限和一个涂布速度下限,介于涂布速度上下限之间的范围即为涂布窗口。涂布窗口上限主要受到涂布液稳定性的影响,如当流量不足,或者涂布速度太快时,涂布液珠开始不稳定,容易产生空气渗入、横向波等缺陷。涂布窗口下限发生时,如流量过大或者涂布速度过慢,流体无法及时被带走,涂布液珠大量累积,容易形成水窒或者垂流。 而锂离子动力电池极片涂布过程具有其自身的特点:双面单层依次涂布,即使现在市场上出现的双面涂布机也是两面依次进行涂布的;浆料湿涂层较厚,一般为100 ~ 300 μm;浆料为非牛顿型高粘度流体;相对于一般涂布产品而言,极片涂布精度要求高,和胶片涂布精度相近;涂布基材为厚度为6~ 30 μm的铝箔或铜箔。

【CN210025555U】一种用于锂电池极片模切机的模切辊【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920645678.3 (22)申请日 2019.05.06 (73)专利权人 萍乡市清安锂硫科技有限公司 地址 337000 江西省萍乡市安源区安源商 务中心12楼1209室 (72)发明人 张鹏 别永合 黄炳龙 候敏  (74)专利代理机构 北京劲创知识产权代理事务 所(普通合伙) 11589 代理人 陆滢炎 (51)Int.Cl. B26F 1/38(2006.01) B26D 7/26(2006.01) (54)实用新型名称 一种用于锂电池极片模切机的模切辊 (57)摘要 本实用新型公开了一种用于锂电池极片模 切机的模切辊,包括转轴、第一模切辊和第二模 切辊,第一模切辊与转轴的一端固定套接,第二 模切辊与转轴的另一端活动套接,第一模切辊的 外侧设有至少两个第一切割刀片,第二模切辊的 外侧设有至少两组第二切割刀片,第二模切辊外 侧设有第三切割刀片,转轴的两端均开设有螺纹 槽,转轴的一端通过螺纹槽螺纹连接有螺母。本 实用新型通过将第一模切辊固定在转轴上,第二 模切辊活动套接在转轴上,使第一模切辊和第二 模切辊能够相对转动,再配合设有的螺纹槽和螺 母能够保持第二模切辊和第一模切辊的相对固 定,实现对极片上极耳模切位置的调整,降低员 工更换的劳动强度,同时提高对极片的模切效 率。权利要求书1页 说明书3页 附图2页CN 210025555 U 2020.02.07 C N 210025555 U

权 利 要 求 书1/1页CN 210025555 U 1.一种用于锂电池极片模切机的模切辊,包括转轴(1)、第一模切辊(2)和第二模切辊(3),其特征在于:所述第一模切辊(2)与转轴(1)的一端固定套接,所述第二模切辊(3)与转轴(1)的另一端活动套接,所述第一模切辊(2)的外侧设有至少两个第一切割刀片(4),所述第二模切辊(3)的外侧设有至少两组第二切割刀片(5),所述第二模切辊(3)外侧的边侧呈环形这列固定连接有第三切割刀片(6),所述转轴(1)的两端均开设有螺纹槽(12),所述转轴(1)的一端通过螺纹槽(12)螺纹连接有螺母(11),且所述螺母(11)的一侧与第二模切辊(3)的另一侧相贴合。 2.根据权利要求1所述的一种用于锂电池极片模切机的模切辊,其特征在于:一组所述第二切割刀片(5)的数量为两个且对称固定连接于第二模切辊(3)的外侧,一组所述第二切割刀片(5)的宽度小于相邻两个第一切割刀片(4)之间的宽度。 3.根据权利要求1所述的一种用于锂电池极片模切机的模切辊,其特征在于:所述第一模切辊(2)的一侧开设有环型卡槽(8),所述第二模切辊(3)的一侧固定连接有与环型卡槽(8)相配合的环型卡板(7),所述环型卡板(7)与环型卡槽(8)活动卡和。 4.根据权利要求3所述的一种用于锂电池极片模切机的模切辊,其特征在于:所述环型卡槽(8)的一侧内壁环形设有第一卡齿(9),所述环型卡板(7)的内壁环形设有第二卡齿(10),且所述第一卡齿(9)与第二卡齿(10)活动卡和。 5.根据权利要求3所述的一种用于锂电池极片模切机的模切辊,其特征在于:所述环型卡板(7)的宽度小于等于环型卡槽(8)的宽度。 2

光伏电池组件简介

光伏电池组建简介 单体太阳电池不能直接做电源使用。作电源必须将若干单体电池串、并联连接和严密封装成组件。光伏组件(也叫太阳能电池板)是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。 目录 1、基本信息 1.1 组成结构 1.2 制作流程 1.3 生产流程 1.4 制造特点 2、材料构成 3、组件应用 4、组件类型 4.1 单晶硅 4.2 多晶硅 4.3 非晶硅 4.4 多元化 5、功率计算 6、测试条件 6.1 测试原理 6.2 测试工具 6.3 测试参数 7、应用领域 8、逆变器 9、安全细则

1、基本信息 1.1 组织结构 又称太阳电池组件( Solar Cell module),是指具有封装及内部联结的,能单独提供直流电输出的,最小不可分割的光伏电池组合装置。 光伏组件(俗称太阳能电池板)由太阳能电池片(整片的两种规格125*125mm、156*156mm、124*124mm等)或由激光切割机机或钢线切割机切割开的不同规格的太阳能电池组合在一起构成。由于单片太阳能电池片的电流和电压都很小,然后我们把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。 并且把他们封装在一个不锈钢、铝或其他非金属边框上,安装好上面的玻璃及背面的背板、充入氮气、密封。 整体称为组件,也就是光伏组件或说是太阳电池组件。 1.2 制作流程 组件制作流程经电池片分选-单焊接-串焊接-拼接(就是将串焊好的电池片定位,拼接在一起)-中间测试(中间测试分:红外线测试和外观检查)-层压-削边-层后外观-层后红外-装框(一般为铝边框)-装接线盒-清洗-测试(此环节也分红外线测试和外观检查.判定该组件的等级)-包装. (1)电池测试 由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 (2)正面焊接 将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。 (3)背面串接 背面焊接是将电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40

锂电池极片模切机

标签:模切机极片模切机电池极片模切机电池极片成型机锂电池极片机锂电池极片模切机锂电池极片成型机极片成型机间隔涂布极片成型机三本极片机三本极片模切机 间隔涂布极片成型机 用途:电池极片成型(间隔涂布极片)

性能特点: 1、极片卷料放料是采用光电开关控制,根据成型长度所需自 动同步放卷,放卷轴可正反转调节并在无料时可及时停机; 2、采用进口伺服拉料系统,确保拉料走位精准,减少浪费; 3、装置机械强制供油系统,使设备在运转中正常无磨损, 从而延长设备寿命; 4、传动方式采用国际顶尖技术,具有噪音小,稳定性强的 特点; 5、采用光电感应自动纠偏系统; 6、各装置开关简单易辨别,操作方便并特别装置了人性化 的换带装置,从而节省了大量的换带时间提高生产效率; 7、成品出料工作台加装可调速循环输送带,可配合极片大 小或机器速度进行齐片,所有边废料均由收废杆同步收卷; 8、模具运行部位装有红外线安全保护装置,确保操作员的 人身安全。

极片成型机

用途:电池极片成型(连续性涂布极片) 性能特点: 1、极片卷料放料是采用光电开关控制,根据成型长度所需自 动同步放卷,放卷轴可正反转调节并在无料时可及时停机; 2、采用进口伺服拉料系统,确保拉料走位精准,减少浪费; 3、装置机械强制供油系统,使设备在运转中正常无磨损, 从而延长设备寿命; 4、传动方式采用国际顶尖技术,具有噪音小,稳定性强的 特点; 5、各装置开关简单易辨别,操作方便并特别装置了人性化 的换带装置,从而节省了大量的换带时间提高生产效率; 6、成品出料工作台加装可调速循环输送带,可配合极片大 小或机器速度进行齐片,所有边废料均由收废杆同步收卷; 7、模具运行部位装有红外线安全保护装置,确保操作员的 人身安全。

太阳能光伏组件种类

光伏系统的分类与介绍 光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(Small DC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。 3 大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通讯基站工程。 4 交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。

锂电池-极片浆料涂布工艺路线

极片浆料涂布工艺路线的选择 1、极片浆料涂布工艺路线的选择 1.1涂布方法的选择 成功解决极片浆料涂布的关键之一是选择合适的涂布方法。大约有20多种涂布方法可以用于将液体料液涂布于支持体上,而每一种技术有许多专门的配置,所以有许多种涂布型式可供选择。 在研制锂离子电池实验室研究阶段,有用刮棒、刮刀或挤压等自制简单的涂布实验装置进行极片涂布试验,只能涂布出少量样品供实验研究,效果并不太理想,并存在各种各样的问题。 一般选择涂布方法需要从下面几个方面考虑,包括:涂布的层数,湿涂层的厚度,涂布液的流变特性,要求的涂布精度,涂布支持体或基材,涂布的速度等。 如何选择适合极片浆料的涂布方法?除上述因素外,还必须结合极片涂布的具体情况和特点。锂离子电池极片涂布特点是:①双面单层涂布;②浆料湿涂层较厚(100~300μm);③浆料为非牛顿型高粘度流体;④极片涂布精度要求高,和胶片涂布精度相近;⑤涂布支持体为厚度10~20μm的铝箔和铜箔;⑥和胶片涂布速度相比,极片涂布速度不高。 我们首先从涂布层数来考虑选择涂布的技术路线。极片需要在金属箔两面都涂浆料。目前有同时在支持体两面进行涂布的技术,但如果选用同时双面涂布方法,就会使涂布后的干燥和极片传送设备变成极为复杂和难于操作。因此涂布技术路线决定选用单层涂布,另一面在干燥后再进行一次涂布。考虑到极片涂布属于厚涂层涂布。刮棒、刮刀和气刀涂布只适用于较薄涂层的涂布,不适用于极片浆料涂布。在余下的几种涂布方法中,浸涂最为简单,但其涂布厚度受涂布浆料粘度和涂布速度影响,难于进行高精度涂布。 综合考虑极片浆料涂布的各项特殊要求,挤压涂布或辊涂可供选择. 1.2条缝挤压涂布及其涂布窗口 挤压涂布技术是较为先进的技术,可以用于较高粘度流体涂布,能获得较高精度的涂层。

锂电池极片模切机

锂电池极片模切机 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

标签:模切机极片模切机电池极片模切机电池极片成型机锂电池极片机锂电池极片模切机锂电池极片成型机极片成型机间隔涂布极片成型机三本极片机三本极片模切机 用途:电池极片成型(间隔涂布极片) 性能特点: 1、极片卷料放料是采用光电开关控制,根据成型长度所需自 动同步放卷,放卷轴可正反转调节并在无料时可及时停 机; 2、2、采用进口伺服拉料系统,确保拉料走位精准,减少浪 费; 3、3、装置机械强制供油系统,使设备在运转中正常无磨 损,从而延长设备寿命; 4、4、传动方式采用国际顶尖技术,具有噪音小,稳定性强 的特点; 5、5、采用光电感应自动纠偏系统; 6、6、各装置开关简单易辨别,操作方便并特别装置了人性 化的换带装置,从而节省了大量的换带时间提高生产效率;

大小或机器速度进行齐片,所有边废料均由收废杆同步收卷; 8、8、模具运行部位装有红外线安全保护装置,确保操作员 的人身安全。 用途:电池极片成型(连续性涂布极片) 性能特点: 1、极片卷料放料是采用光电开关控制,根据成型长度所需自 动同步放卷,放卷轴可正反转调节并在无料时可及时停 机; 2、2、采用进口伺服拉料系统,确保拉料走位精准,减少浪 费; 3、3、装置机械强制供油系统,使设备在运转中正常无磨 损,从而延长设备寿命; 4、4、传动方式采用国际顶尖技术,具有噪音小,稳定性强 的特点; 5、5、各装置开关简单易辨别,操作方便并特别装置了人性 化的换带装置,从而节省了大量的换带时间提高生产效率;

一种分析锂电池极片涂布干燥过程的新方法

一种分析锂电池极片涂布干燥过程的新方法 锂电池电极是一种颗粒组成的涂层,电极制备过程中,均匀的湿浆料涂敷在金属集流体上,然后通过干燥去除湿涂层中的溶剂。电极浆料往往需要加入聚合物粘结剂或者分散剂,以及炭黑等导电剂。尽管固含量一般大于30%,但是干燥过程中,溶剂蒸发时,涂层总会经历一定的收缩,固体物质在湿涂层中彼此接近,最后形成多孔的干燥电极结构。 1、前言 毛细管力作用在三相界面上,半月形液相蒸发固化,并显著影响电极微结构。当涂层收缩完成,随着溶剂进一步蒸发,气-液界面逐步从孔隙中退出,最后形成干涂层。在涂层收缩和溶剂蒸发过程中,添加剂容易迁移,可能在多孔电极中重新分配,比如普遍认为存在的粘结剂迁移。当干燥速度太高时,涂层表面溶剂蒸发,可溶性的或分散性的粘结剂倾向于以高浓度存在于涂层表面。相反,较低的干燥速度可以使粘结剂分布平衡。粘结剂迁移是电极制造过程中不期望发生的,局部富集必然导致其他区域量减少,比如涂层和集流体界面粘结剂减少会导致涂层结合强度低。而且粘结剂分布不均匀也会导致电池电化学性能裂化,比如内阻增加,相应倍率特性变差。因此,干燥条件以及溶剂蒸发对电极制造过程是非常重要的。 另外,涂层干燥又是和能源消耗相关的,因此电极干燥也是决定性的成本因素。近年来,电池工业上不断要求提高干燥速度,减少烘箱长度,从而降低能源消耗成本。要想提高干燥速度,就需要提高温度或者加大风量,然而这又会导致电极性能的下降。幸好,电极干燥不是一个线性过程,可以分为两个阶段,在第二阶段可以提高干燥速率。基于此,多区域干燥模型能够显着减少所需的干燥时间。这就需要我们深入认识电极干燥过程,不断克服目前的局限。 德国卡尔斯鲁厄理工学院薄膜技术研究所的StefanJaiser等人引入了一种实验装置,在涂层干燥溶剂蒸发过程中能够测量涂层的收缩,涂层表面液体含量,以及表面孔洞消失的过程。在电极浆料中少量加入一种荧光增白剂,涂层中的液体在UV-A 紫外线辐照下能够发出蓝光,因而可以用相机观察到液相。图像处理可以估算涂层表面的液体含量,跟踪电极孔隙中的液相消失过程。同时,湿涂层的厚度采用二维激光位移传感器测量。实验结果揭示了液相去除,电极孔隙中开始形成的时刻。 2、实验方法

锂离子电池工艺流程

锂离子电池工艺流程 正极混料 ●原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 ●干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原

有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

干货锂电池极片挤压涂布常见缺陷

干货|锂电池极片挤压涂布常见缺陷目前,电动车、储能电池等新能源产业在全球范围内发展迅速。作为公认的理想储能元件,动力锂电池也得到高度关注。 涂布机是动力锂电池极片的生产关键工艺设备。目前,锂电池极片涂布工艺主要有刮刀式、辊涂转移式和狭缝挤压式等。我在工作过程中,这三种涂布方式都接触过。一般实验室设备采用刮刀式,3C电池采用辊涂转移式,而动力电池多采用狭缝挤压式。 刮刀涂布 工作原理如图1所示,箔基材经过涂布辊并直接与浆料料槽接触,过量的浆料涂在箔基材上,在基材通过涂辊与刮刀之间时,刮刀与基材之间的间隙决定了涂层厚度,同时将多余的浆料刮掉回流,并由此在基材表面形成一层均匀的涂层。刮刀类型主要逗号刮刀。逗号刮刀是涂布头中的关键部件之一,一般在圆辊表面沿母线加工成形似逗号的刃口,这种刮刀具有高的强度和硬度,易于控制涂布量和涂布精度,适用于高固含量和高黏度的浆料。

图1 逗号刮刀涂布示意图 辊涂转移式 涂辊转动带动浆料,通过逗号刮刀间隙来调节浆料转移量,并利用背辊和涂辊的转动将浆料转移到基材上,工艺过程如图2所示。辊涂转移涂布包含两个基本过程:(1)涂布辊转动带动浆料通过计量辊间隙,形成一定厚度的浆料层;(2)一定厚度的浆料层通过方向相对的涂辊与背辊转动转移浆料到箔材上形成涂层。

图2 辊涂刮刀转移涂布工艺示意图 狭缝挤压涂布 作为一种精密的湿式涂布技术,如图3所示,工作原理为涂布液在一定压力一定流量下沿着涂布模具的缝隙挤压喷出而转移到基材上。相比其它涂布方式,具有很多优点,如涂布速度快、精度高、湿厚均匀;涂布系统封闭,在涂布过程中能防止污染物进入,浆料利用率高、能够保持浆料性质稳定,可同时进行多层涂布。并能适应不同浆料粘度和固含量范围,与转移式涂布工艺相比具有更强的适应性。

太阳能光伏组件种类

太阳能光伏组件种类 光伏系统的界定与光伏介绍 光伏系统定义:光伏系统是利用太阳电池组件辅助其他和设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统独立系统、并网系统和混合系统。如果根据光伏光伏系统的表现形式应用形式,应用规模和型态负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(SmallDC);简单变频器系统(SimpleDC);大型太阳能电力系统(LargeDC);交流、直流供电系统(AC/DC);并网系统(UtilityGridConnect);混合供电系统(Hybrid);并网混合系统。下面就每种或进行系统的工作原理和特点进行点出。 1.小型发电供电系统(SmallDC) 该系统的特点负载是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了东部这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(SimpleDC) 该系统的特点是系统的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天转用使用,所以系统中没有选用使用电瓶,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载送电,省去了能量在蓄电池中的储存和释放过程,以及驱动器中的能量驱动程序损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施。下图显示的就是一个简单三

相的PV水泵系统。这种地区在发展中国家的无纯净自来水供饮的系统 得到了广泛的应用,形成了良好的社会效益。 3大型太阳能供电系统(LargeDC) 与两种上述两种发电系统相比,这种光伏系统仍然是适用于系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给 负载提供稳定有效保证的电力供应,其相应的控制系统系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应 用形式有用有通信、遥测、监测电子系统电源,农村的集中供电,航 标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站 就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地 区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通 讯基站工程。 4交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时 为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载达致的需求。通常这 种系统的负载一般会耗电量也比较大,从而系统的比重也较大。在一 些同时具有交流和逆变器负载技术交流的通讯基站和其它一些含有交、直流负载的应用光伏发电站中得到应用。5并网系统(UtilityGridConnect) 种太阳能光伏系统最大的特点就是光伏阵列产生的直流电经过并 网逆变器转换成符合市电电网要求的交流电之后直接接入市电网络, 并网系统中PV方阵所产生电力除了供给交流负载外,多余的日电力反 馈给电网。在阴雨天或夜晚,光伏阵列没有产生电能或者不能产生的 电能不能满足负载需求时则就由电网供电。因为直接将电能输入电网,免去配置蓄电池,省掉了电磁铁储能和省掉释放的过程,可以充分利 用PV方阵所发的电力从而减小了能量的损耗,并减少了系统的成本。 但是系统中必需需要专用的并网逆变器,以保证输出的电力满足用户

涂布方法的选择及极片涂布工艺流程

涂布方法的选择及极片涂布工艺流程 1、极片浆料涂布工艺路线的选择 1.1涂布方法的选择 成功解决极片浆料涂布的关键之一是选择合适的涂布方法。大约有20多种涂布方法可以用于将液体料液涂布于支持体上,而每一种技术有许多专门的配置,所以有许多种涂布型式可供选择。 在研制锂离子电池实验室研究阶段,有用刮棒、刮刀或挤压等自制简单的涂布实验装置进行极片涂布试验,只能涂布出少量样品供实验研究,效果并不太理想,并存在各种各样的问题。 一般选择涂布方法需要从下面几个方面考虑,包括:涂布的层数,湿涂层的厚度,涂布液的流变特性,要求的涂布精度,涂布支持体或基材,涂布的速度等。 如何选择适合极片浆料的涂布方法?除上述因素外,还必须结合极片涂布的具体情况和特点。锂离子电池极片涂布特点是:①双面单层涂布;②浆料湿涂层较厚(100~300μm); ③浆料为非牛顿型高粘度流体;④极片涂布精度要求高,和胶片涂布精度相近;⑤涂布支持体为厚度10~20μm的铝箔和铜箔;⑥和胶片涂布速度相比,极片涂布速度不高。 我们首先从涂布层数来考虑选择涂布的技术路线。极片需要在金属箔两面都涂浆料。目前有同时在支持体两面进行涂布的技术,但如果选用同时双面涂布方法,就会使涂布后的干燥和极片传送设备变成极为复杂和难于操作。因此涂布技术路线决定选用单层涂布,另一面在干燥后再进行一次涂布。考虑到极片涂布属于厚涂层涂布。刮棒、刮刀和气刀涂布只适用于较薄涂层的涂布,不适用于极片浆料涂布。在余下的几种涂布方法中,浸涂最为简单,但其涂布厚度受涂布浆料粘度和涂布速度影响,难于进行高精度涂布。 综合考虑极片浆料涂布的各项特殊要求,挤压涂布或辊涂可供选择. 1.2条缝挤压涂布及其涂布窗口 挤压涂布技术是较为先进的技术,可以用于较高粘度流体涂布,能获得较高精度的涂层。

锂离子电池原理及生产工艺流程

锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二工艺流程

1.正负极配方 1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极) (10μm):93.5% LiCoO 2 其它:6.5% 如Super-P:4.0% PVDF761:2.5% NMP(增加粘结性):固体物质的重量比约为810:1496 a)正极黏度控制6000cps(温度25转子3); b)NMP重量须适当调节,达到黏度要求为宜; c)特别注意温度湿度对黏度的影响 ●钴酸锂:正极活性物质,锂离子源,为电池提高锂源。 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。 ●导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。 非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。 ●PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。 非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。 ●NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。 ●正极引线:由铝箔或铝带制成。 1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜 箔)负极) 负极材料:94.5% Super-P:1.0% SBR:2.25% CMC:2.25% 水:固体物质的重量比为1600:1417.5

干货锂电池极片挤压涂布常见缺陷修订稿

干货锂电池极片挤压涂 布常见缺陷 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

干货|锂电池极片挤压涂布常见缺陷目前,电动车、储能电池等新能源产业在全球范围内发展迅速。作为公认的理想储能元件,动力锂电池也得到高度关注。 涂布机是动力锂电池极片的生产关键工艺设备。目前,锂电池极片涂布工艺主要有刮刀式、辊涂转移式和狭缝挤压式等。我在工作过程中,这三种涂布方式都接触过。一般实验室设备采用刮刀式,3C电池采用辊涂转移式,而动力电池多采用狭缝挤压式。 刮刀涂布 工作原理如图1所示,箔基材经过涂布辊并直接与浆料料槽接触,过量的浆料涂在箔基材上,在基材通过涂辊与刮刀之间时,刮刀与基材之间的间隙决定了涂层厚度,同时将多余的浆料刮掉回流,并由此在基材表面形成一层均匀的涂层。刮刀类型主要逗号刮刀。逗号刮刀是涂布头中的关键部件之一,一般在圆辊表面沿母线加工成形似逗号的刃口,这种刮刀具有高的强度和硬度,易于控制涂布量和涂布精度,适用于高固含量和高黏度的浆料。

图1 逗号刮刀涂布示意图 辊涂转移式 涂辊转动带动浆料,通过逗号刮刀间隙来调节浆料转移量,并利用背辊和涂辊的转动将浆料转移到基材上,工艺过程如图2所示。辊涂转移涂布包含两个基本过程:(1)涂布辊转动带动浆料通过计量辊间隙,形成一定厚度的浆料层;(2)一定厚度的浆料层通过方向相对的涂辊与背辊转动转移浆料到箔材上形成涂层。

图2 辊涂刮刀转移涂布工艺示意图 狭缝挤压涂布 作为一种精密的湿式涂布技术,如图3所示,工作原理为涂布液在一定压力一定流量下沿着涂布模具的缝隙挤压喷出而转移到基材上。相比其它涂布方式,具有很多优点,如涂布速度快、精度高、湿厚均匀;涂布系统封闭,在涂布过程中能防止污染物进入,浆料利用率高、能够保持浆料性质稳定,可同时进行多层涂布。并能适应不同浆料粘度和固含量范围,与转移式涂布工艺相比具有更强的适应性。

太阳能电池组件技术示范

太阳电池组件成品技术规范 编写: 校对: 审核: 会签:、 、 、 、

、 、 批准: 太阳电池组件技术总规范 1目的 通过制定太阳电池组件技术总规范,使公司所生产的太阳能电池组件的生产及质量处于规范、可控的状态。保证产品质量,满足客户要求。 2适用范围 2.1本技术规范规定了太阳电池组件的技术要求、外观质量及性能要求。 2.2本技术规范适用于本公司生产的太阳能电池组件(客户另有要求除外)。 2.3本技术规范不能取代本公司与客户签订的技术协议。 3职责权限 3.1技术开发部制定太阳能电池组件成品技术总规范; 3.2公司各相关部门在电池组件生产、检验等环节依据本规范执行。 4引用文件 4.1 GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型(IEC 61215-2005,

IDT); 4.2 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求(IEC 61730-1:2004); 4.3 GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求(IEC 61730-2:2004); 4.4 QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0; 4.5 QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2; 4.6 QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2; 4.7 QEH-2011- RD-I122A太阳电池组件用背板材料技术规范V2; 4.8 QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2; 4.9 QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0; 4.10 QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范; 4.11 QEH-2011-RD-I119A 太阳电池组件用透明胶带技术规范V1.0; 4.12 QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0; 4.13 IEC 60364-2005 Electrical installations of buildings-Part 5-51 Selection and erection of electrical equipment-Common rules. 5定义 5.1 组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。 6内容 6.1 关键材料要求 用于制造晶硅太阳电池的所有材料应根据客户要求,考虑强度、耐用性、化学物

光伏电池板介绍资料

光伏电池板 1.1 光伏电池板的发电原理 利用太阳能电池的光生伏打效应直接把太阳的辐射能转换为电能的一种发电方式; 1.2 光伏发电的优点 光伏电池板发电过程简单,没有机械转动部件,不消耗燃料,不排放包括温室气体在内的任何物质,无噪音、无污染;太阳能资源分布广泛且取之不尽;光伏电池板发电性能稳定可靠,使用寿命长达(25年以上); 1.3 光伏发电的缺点 (1)能量密度低,通常用太阳辐照度来表示,地球表面最高值为1.2KW·H/㎡,且绝多数地区和大多数的日照时间内都低于1.0KW·H/㎡. (2)占地面积大。每10KW太阳能发电功率占地约100㎡,平均每平方米面积发动功率为100W (3)效率低成本高,受气候环境因素影响大。 1.4 光伏电池板效率组件的性能参数 (1)短路电流:将光伏组件的正负极短路,此时的电流就是电池组件的短路电流,短路电流是随光强的变化而变化的 (2)开路电压: 当光伏电池组件的正负极不接负载时,组件正负极之间的电压就是开路电压,开路电压时随电池片串联数量的增减而变化的。 (3)峰值电流: 光伏电池组件在最大的输出功率时的工作电流。 (4)峰值电压: 光伏电池组件在最大的输出功率时的工作电压,组件的峰值电压随电池片串联数量的增减而变化的。 (5)峰值功率: 光伏组件的最大输出功率,峰值功率是指光伏电池组件在正常工作或测试条件下得最大输出功率,光伏电池组件的测量要在标准条件下进行,其条件是:辐照度1000W/㎡、光谱AM1.5 、测试温度25℃。 (6)转换效率:η= 光伏电池组件的峰值功率÷(光伏电池组件的有效面积×单位面积的入射光功率);其中单位面积的入射光功率 = 1000W/㎡; 1.5 光伏电池组件安装注意事项

太阳能电池(组件)生产工艺

太阳能电池(组件)生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库 组件高效和高寿命如何保证: 1、高转换效率、高质量的电池片; 2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂 胶)、高透光率高强度的钢化玻璃等;

3、合理的封装工艺; 4、员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识。 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。

太阳能电池组件的封装

太阳能电池组件的封装

太阳能电池组件的封装 (二)组件的封装结构 (三)组件的封装材料 1上盖板2黏结剂3底板4边框(四)组件封装的工艺流程 不同结构的组件有不同的封装工艺。平板式硅太阳能电池组件的封装工艺流程,如图17所示。可将这一工艺流程概述为:组件的中间是通过金属导电带焊接在一起的单体电池,电池上卞两侧均为EVA膜,最上面是低铁钢化白玻璃,背面是PVF复合膜。将各层材料按顺序叠好后,放人真空层压机内进行热压封装。最上层的玻璃为低铁钢化白玻璃,透光率高,而且经紫外线长期照射也不会变色。EVA膜中加有抗紫外剂和固化剂,在热压处理过程中固化形成具有一定弹性的保护层,并保证电池与钢化玻璃紧密接触。PVF复合膜具有良好的耐光、防潮、防腐蚀性能。经层压封装后,再于四周加上密封条,装上经过阳极氧化的铝合金边框以及接线盒,即成为成品组件。最后,要对成品组件进行检验测试,测试内容主要包括开路电压、短路电流、填充因

子以及最大输出功率等。 硅片划片切割工艺概况 1用激光来划片切割硅片是目前最为先进的,它使用精度高、而且重复精度也高、工作稳定、速度快、操作简单、维修方便。 2激光最大输出≧50W(可调)、激光波长为1.064μm、 切割厚度≦1.2mm、光源是用Nd:YAG晶体组成激光器、是单氪灯连续泵浦、声光调Q、并用计算机控制二维工作台可预先设定的图形轨迹作各种精确运动。 ± 部件分析: 1操作可分为外控与内控。 2计算机操作系统-有专用软件设立工作台划片步骤实现划片目标。 3电源控制盒-供应激光电源、Q电源驱动、水冷系统的输入电源进行分配及自控,当循环水冷系统出现故障时,自动断开激光电源及Q电源驱动盒的供电。 4激光电源盒-点燃氪灯的自动引燃恒流电源。 5 Q电源驱动盒-产生射频信号并施加到Q开

相关主题
文本预览
相关文档 最新文档