当前位置:文档之家› 地震资料处理大作业promax软件应用

地震资料处理大作业promax软件应用

地震资料处理大作业promax软件应用
地震资料处理大作业promax软件应用

地震资料处理/解释大作业

(处理部分)

专业:

班级:

姓名:

学号:

年月日

评分标准:第三章和第四章各20分,其余各章10分

目录

第一章数据加载和观测系统定义 (2)

第二章道编辑和真振幅恢复 (4)

第三章反褶积 (6)

第四章速度分析 (9)

第五章动校正和水平叠加 (10)

第六章静校正 (11)

第七章偏移 (12)

第八章总结和体会 (13)

第一章数据加载和观测系统定义

地震资料处理流程第一步为数据输入和预处理。预处理是地震数据处理前的准备工作,是将地震数据正确加载到地震资料处理系统,进行观测系统定义,并对数据进行编辑和校正的过程。原数据是SGY格式的地震记录文件,用Promax 对其进行处理需要格式转换,将其格式转换成软件定义的格式。图1.1是原始数据炮集。

格式转换后可对数据进行加载与处理,但是处理需要的各种测网信息需要进行定义,所以我们做观测系统定义,用FFID(野外文件号)和CHAN(记录道号)为索引将测网的各检波器与炮点坐标、高程、CDP号等信息与数据的各道联系起来。观测系统定义分为炮点定义,检波点定义与炮检关系定义。图1.3是测线与炮点位置,图1.4是CDP覆盖次数。

图1.1 原始炮集

图1.2a 炮点与检波点信息

图1.2b 炮点与检波点信息

图1.3 炮点与测网

图1.4 多次覆盖次数

第二章道编辑和真振幅恢复

通常的地震采集中,由于检波器数量很多、野外干扰因素复杂等原因,不是每一道都能很好的反应地下反射界面带回来的信息,最基础的我们需要挑出其中坏检波器采集的道(如图2.1)与极性不正常的道(如图2.2),称为道编辑。在记录图中使用picking进行编辑。点击picking,有编辑错道和编辑极性翻转道。拾取所有的错道和翻转道集后,分别放在两个文件里面。

由震源引发的地震波,会随着波前面变大,底层吸收衰减等因素而能量减小,而我们需要的通常是深部的地层信息,所以我们需要对地震波进行振幅恢复,如图2.3a和b为振幅恢复后的炮集。

图2.1 挑出废道

图2.2 极性相反的道

图2.3a 振幅恢复后炮集

图2.3b 振幅恢复后炮集

可以看出,经过真振幅恢复以后,深层反射波能量相对增强了,反射界面变

得清晰,但面波等干扰波也增强了。

第三章反褶积

此步骤为包含反褶积在内的预处理,其中反褶积这里选用预测反褶积,因为预测反褶积能够有效消除多次波影响,提高信噪比又不致使得分辨率下降,而进行预测反褶积需要选取适当的预测步长与时窗(图 3.1是选择进行反褶积的时窗)。

我们进行地震勘探,所用的是深层的反射波信息,因此直达波与折射波是不需要的,我们要选择适当的位置切除直达波与折射波信息(如图3.2)。

此外我们还要进行野外静校正,也就是基准面静校正,就是将在地表采集的地震记录校正到基准面上,消除地表高程和风化层对地震记录旅行时的影响。这包括了炮点静校正、检波点静校正,这里我们需要先计算静校正量再进行静校正(图3.3是野外静校正后炮集),本次主要做了高程静校正。

图3.1 反褶积时窗拾取

图3.2 直达波与折射波切除

反褶积之后的地震剖面图,分辨率明显提高。

图3.4 检波点静校正量

图3.5 检炮点静校正量

图3.6 CDP静校正量

第四章速度分析

地震波在地下介质中传播速度是地震资料数字处理和解释中非常重要的参数,速度参数不仅关系到地震资料处理的诸多环节的质量,其本身也提供了关于地下构造和岩性的重要信息。在速度场准确的情况下,地震数据通过叠加和偏移处理能较好的反应地下的构造特征,反之,会产生假象,甚至错误的解释结果,所以我们需要更为准确的速度信息。以零炮检距做速度扫描,然后对不同速度的双曲线上能量叠加,然后不同的速度形成的能量团不同从而生成速度谱,在速度谱上选择速度(图4.1)。

速度分析时我们把地震道集转换成超道集(supergather)来进行处理,速度选取结束后我们可以查看速度分布(图4.2)。

图4.1 速度谱及动校正速度拾取

图4.2 速度分布图

第五章动校正和水平叠加

动校正的目的是消除炮检距对反射波旅行时的影响,校平共深度点反射波时距曲线的轨迹,增强利用叠加技术压制干扰的能力,减小叠加过程引起的反射波同相轴的畸变。叠加的目的是压制干扰,提高地震资料的信噪比。速度分析的结果便是叠加速度,直接用叠加速度就可以进行动校正了,Promax里有进行动校正的模块,该模块也可以人工输入速度变化来进行动校正,我们先输入大致的速度变化进行叠加得到的结果(见图5.1)称为初叠剖面,然后再将速度分析的结果带入进行动校正,然后再叠加形成叠加剖面(图5.2)。

图5.1 初叠剖面

图5.2 动校正后叠加剖面

经过动校正后进行叠加,得到的叠加剖面地下反射界面明显变清晰,信噪比提高。

第六章静校正

静校正用于补偿由于地表高程变化、风化层的厚度和速度变换对地震资料的影响,其目的是获得一在个平面上进行采集,且没有风化层或低速介质存在时的反射波到达时间。在第三步中做了野外静校正后仍然存在着时差称为剩余静校正时差,这种时差通常以高频短波长出现,会影响叠加的效果与质量,妨碍地层的判断。

剩余静校正有基于地表一致性的时差分解的方法,也有互相关(也称作叠加能量)的方法。这里我们用互相关的方法进行处理,我们首先在叠后剖面上选取标准层(图 6.1),然后形成标准道,对各道进行相关,计算剩余静校正量,进行剩余静校正,然后叠加形成叠后剖面(图6.2)。

图6.1 选取标准层

图6.2 静校正后叠加剖面

第七章偏移

偏移的目的是使倾斜界面归位,绕射波收敛,菲涅尔带收缩提高横向分辨率,使地震剖面更好的展示地下构造的空间形态和接触关系。偏移的两个步骤为波场延拓和成像。叠后偏移有多种方法,我们选用有限差分的方法进行偏移。首先偏移需要地层的速度分布,我们可以用之前进行的速度分析结果(既叠加速度分布)转换生成层速度分布(图7.1),层速度就可以指导我们进行偏移,偏移后形成的剖面如图7.2。可以进行频谱分析,频谱分析的结果如图7.3。

图7.1 层速度分布

图7.2 偏移剖面

图7.3 频谱分析

第八章总结和体会

本次地震资料处理大作业,用Promax软件进行了简单的处理流程,既是对之前学习的地震资料处理课程的复习巩固,也是对理论知识的实践与再认识,在整个地震资料处理流程中,我们对道编辑(找废道、反转道)、振幅恢复、速度分析、叠加、偏移等各操作流程有了大致的了解,知道了每个步骤的重要性。比如道编辑中若存在异常道,在之后处理的结果剖面上会产生很大的影响,直接妨碍我们对其进行解释;再如速度分析的结果不同会使得动校正及偏移效果的明显不同。

而且地震资料处理环环相扣,每一步既是为下一步处理铺陈,也是继承着上一步的结果,比如偏移是在叠加剖面上的进行;动校正用的叠加速度与偏移用的层速度也是由速度分析直接而来的,所以每一步的处理都要我们细心对待,每个细节都会影响最后的处理结果。

通过这次学习,我们认识到了实际工作于理论学习的差异,认识了实际工作

中的不足,为今后继续的学习明确了目标,也起到了指导性的作用。

地震资料解释

地震资料解释期末复习(王松版) 1地震资料解释——以地质理论和规律为指导,运用地震波传播理论和地震勘探方法原理,综合地质、测井、钻井和其它物探资料,对地震数据进行深入研究、综合分析的过程。 2地震子波(wavelet):地震勘探过程中,爆炸产生的尖脉冲传播到一定距离时波形逐渐稳定。 3褶积模型的应用: 已知r(t)和w(t),求s(t):正演问题 已知w(t) 和s(t) ,求r(t) :反演问题 已知s(t) 和r(t),求w(t):子波处理 4同相轴:指地震时间剖面上相同相位的连接线 5极性判断 6有效波的识别标志 1)强振幅: 叠后资料往往经提高信噪处理,反射波能量大于干扰波能量 2)波形相似性: 子波相同、同一界面反射波传播路径相近,传播过程影响因素相近,相邻地震道上的波形特征(主周期、相位数、振幅包络形状等)是相似的。 3)同相性: 同一个反射波的相同相位,在相邻地震道上的到达时间也是相近的,每道记录下来的振动图是相似的,形成一条平滑的、有一定长度的同相轴,也称相干性。 4)时差变化规律: 在共炮点道集上,直达波、折射波是直线,反射波、绕射波、多次波等为曲线。在动校正后的剖面上,原来直线的同相轴被校正成曲线,一次反射波成为直线,多次波、绕射波为曲线。 1、2用于识别波的出现; 3、4用于识别波的类型、特征及地层界面特征的判断。 7水平叠加剖面的特点 (1)在测线上同一点,根据钻井资料得到的地质剖面上的地层分界面,与时间剖面上的反射波同相轴在数量上、出现位置上,常常不是一一对应的。 (2)时间剖面的纵坐标是双程旅行时t0 ,而地质剖面或测井资料是以铅垂深度表示的,两者需经时深转换,其媒介就是地震波的传播速度,它通常随深度或空间而变化。 (3)反射波振幅、同相轴及波形本身包含了地下地层的构造和岩性信息,如振幅的强弱与地层结构、介质参数密切相关。但是反射波同相轴是与地下的分界面相对应,同相轴与界面两侧的地层、岩性有关。必须经过一些特殊处理(如声阻抗反演技术等)才能把反射波所包含的“界面”的信息转换成为与“层”有关的信息后,才能与地质和钻井资料进行直接地对比。 (4)地震剖面上的反射波是由多个地层分界面上振幅有大有小、极性有正有负、

地震勘探复习资料

绪论 1、地球物理勘探的概念 (1)简称“物探”,是通过观察存在地球及其周围的地球物理场的特征和岩石的各种物理特性来研究地质规律和勘查各种矿产的各种方法的总称。(2)是以物理学原理为基础,利用电子学、计算机的数字处理、信息论等科学技术中的新技术所建立起来的一整套勘探地下矿产的方法。(3)是借助于各种物探仪器在地面观测地下岩石的各种物理参数,从而解释和推断地下岩石的构造特点、岩石性质等,从而到达勘查地下矿产(金属非金属矿产、煤、油气等等)的目的。 2、地球物理勘探的分类,不同勘探方法的优缺点。 重力勘探:利用岩石的密度差异 磁法勘探:利用岩石的磁性差异 电法勘探:利用岩石的电性差异 地震勘探:利用岩石的弹性差异 放射性勘探:利用岩石的放射性差异 地震勘探的优点:精度高,分辨率高,穿透深度大,能较详细地了解由浅至深一整套地层的地质规律。缺点:成本高 3、地震勘探的概念、分类,目前地震勘探以何种方法为主。 概念:利用岩石的弹性差异来进行矿产勘察。是通过人工激发地震波,研究地震波在弹性不同的地下地层中传播的规律,以查明地下的地质构造,达到油气或其他勘探目的的一种物探方法。 分类:地质法(优:在找油初期,可以起到一个指向作用,避免了盲目性,成本低。缺:野外地质方法很难准确了解地下地质情况!);钻探法(优点:精度最高,缺点:一孔之见,而采用大量的钻井,不仅成本高,而且效率低);物探方法(优点:精度高于地质法,成本低于钻探法;不足:精度低于钻探法,成本高于地质法)。 应用最多的方法:物探方法 4、地震勘探的三个阶段 地震资料野外采集、地震资料室内处理、地震资料解释。 第一章 各种介质的概念 重点:①物体是否为弹性、塑性介质与受力大小、时间及温度有关。②均匀介质与各向同性介质的关系。 (1)理想弹性介质:当介质受外力后立即发生形变,而外力消失后能立即完全恢复为原状的介质; (2)粘弹性介质:当外力消失后不是立即恢复原状,而是过一段时间后才恢复原状的介质称为粘弹性介质。 (3)塑性介质:当外力消失后不能完全恢复原状,保留了一部分形变的介质称为塑性介质。(4)各向同性介质:凡介质的弹性性质与空间方向无关的介质称为各向同性介质 (5)各向异性介质:凡介质的弹性性质与空间方向有关的介质称为各向同性介质 (6)均匀介质:弹性性质(波速)不随空间坐标的变化而变化,是常数。 (7)非均匀介质:弹性性质(波速)随着空间坐标的变化而变化,不是定值。 (8)层状介质:如果非均匀介质的物理性质呈层状分布,则称这种介质为层状介质。层状介质中各层的弹性系数是不变的。层状介质模型已经成为地震勘探中常用的物理 模型。 (9)连续介质:层状介质的层数无限增加,每层的厚度无限减小时,层状介质就可以视

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震等自然灾害应急预案及处理流程

地震应急预案及处理流程 为加强我院安全生产工作,做好安全生产和灾害事故应急处理工作,保护人民的生命和财产安全,根据《中华人民共和国安全生产法》和《灾害事故医疗救援工作管理办法》、参照《全国救灾防病预案》、《国家突发公共事件医疗卫生救援应急预案》和《医疗卫生机构灾害事故防范和应急处置指导意见》有关规定,结合我院实际,制定本预案: 一、指导思想 根据有关规定和我院安全工作的总体部署,切实做好地震等灾害事故各项准备工作,当破坏性地震发生后迅速启动本预案,统一部署,紧急处置,迅速全面地做好各项抗震救灾准备,高效、有序地开展应急自救工作,以最快速度恢复医疗工作正常开展,最大限度减轻地震灾害,减少人员伤亡和经济损失。 二、组织机构 1、指挥部 总指挥:院长(党支部书记) 副总指挥:业务副院长 成员:保卫科、后勤科、医务科、护理部、各临床科室主任 职责:

(1)统一领导,健全组织,强化工作职责,加强对破坏性地震及防震减灾工作的研究,完善各项应急预案的制定和各项措施的落实。 (2)充分利用各种渠道进行地震灾害知识的宣传教育,组织、指导医院防震抗震知识的普及教育,广泛开展地震灾害中的自救和互救训练,不断提高广大医务人员防震抗震的意识和基本技能。 (3)认真做好各项物资保障,严格按预案要求积极筹储、落实食品饮用水、防冻防雨、医疗器械、抢险设备等物资,强化管理,使之始终保持良好状态。 (4)破坏性地震发生后,采取一切必要手段,组织各方面力量全面进行抗震减灾工作,把地震灾害造成的损失降到最低点。 (5)调动一切积极因素,迅速恢复正常医疗秩序,全面保证和促进社会安全稳定。 指挥部设在院办,电话: 2、疏散组: 组长:保卫科科长 组员:各临床、医技科室主任、护士长 职责:平时负责全院地震等自然灾害培训演练的具体工作,保持疏散通道畅通。 (1)现场指挥,迅速组织医务人员指导患者及其家属按照

地震资料处理解释大作业(处理部分)

地震资料处理/解释大作业 (处理部分) 专业:勘查技术与工程 班级:12-4 姓名:封辉、孙运庆、何瑞川 学号:2012011236、2012011249、2012011239 2016年 1 月 15 日 评分标准:第三章和第四章各20分,其余各章10分

目录 第一章数据加载和观测系统定义 (2) 第二章道编辑和真振幅恢复 (4) 第三章反褶积 (6) 第四章速度分析 (7) 第五章动校正和水平叠加 (8) 第六章静校正 (10) 第七章偏移 (12) 第八章总结和体会 (13)

第一章数据加载和观测系统定义 地震资料处理流程第一步为数据输入和预处理。预处理是地震数据处理前的准备工作,将地震数据正确加载到地震资料处理系统,进行观测系统定义,并对数据进行编辑和校正。原数据是SGY格式的地震记录文件,用Promax对其进行处理需要格式转换,将其格式转换成软件定义的格式。 图1.1是原始数据炮集。格式转换后可对数据进行加载与处理,但是处理需要的各种测网信息需要进行定义,所以我们做观测系统定义,用FFID(野外文件号)和CHAN(记录道号)为索引将测网的各检波器与炮点坐标、高程、CDP 号等信息与数据的各道联系起来。观测系统定义分为炮点定义,检波点定义与炮检关系定义。图1.3是CDP覆盖次数。 图1.1 原始数据炮集

图1.2a 炮点与检波点信息 图1.2b 炮点与检波点信息

图1.3 多次覆盖次数 第二章道编辑和真振幅恢复 通常的地震采集中,由于检波器数量很多、野外干扰因素复杂等原因,不是每一道都能很好的反应地下反射界面带回来的信息,最基础的我们需要挑出其中坏检波器采集的道与极性不正常的道,称为道编辑(如图2.1)。 在记录图中使用picking进行编辑。点击picking,有编辑错道和编辑极性翻转道。拾取所有的错道和翻转道集后,分别放在两个文件里面。由震源引发的地震波,会随着波前面变大,底层吸收衰减等因素而能量减小,而我们需要的通常是深部的地层信息,所以我们需要对地震波进行振幅恢复(如图 2.2),经过真振幅恢复以后,深层反射波能量相对增强了,反射界面变得清晰,但面波等 干扰波也增强了。

地震资料解释基础 复习题

地震解释基础 复习题 1.为什么并非每一个地质界面都对应一个反射同相轴? 子波有一定的延续长度,若地层很薄,相邻分界面的信号可能会重叠到一起形成复合波,导致无法分辨界面。所以一个反射同相轴可能包含多个地质界面。 2.影响地震资料纵向分辨率的因素有哪些?提高分辨率的实质是什么? 1)激发条件——激发宽频带子波——井深、药量、激发岩性、虚反射、激发组合 2)接收条件——检波器类型、地表岩性、检波器耦合、组合方式、仪器响应 3)近地表低降速带的影响 4)大地滤波作用、地层速度 实质:提高主频,拓宽频带 3.提高横向分辨率的方法是什么?为什么它能提高横向分辨率? 偏移是提高地震勘探横向分辨率的根本方法 提高横向分辨率的核心是减小菲涅尔带的大小, 菲涅尔带的极限 : 要想减小菲涅尔带的大小就要减小h ,偏移将地表向下延拓到地下界面,使h=0,所以 菲涅尔带减小到极限L=λ/4,所以偏移能提高横向分辨率。 4.地震剖面的对比方法 1)掌握地质规律、统观全局 在对比之前,要收集和分析勘探区的各种资料。研究规律性的地质构造特征,用地质规律指导对比解释。了解地震资料采集和处理的方法及相关因素,以便准确识别和判断出剖面假象。 2)从主测线开始对比 在一个工区有多条地震剖面,应先从主测线开始对比工作,然后从主测线的反射层延伸到其他测线上去。(主测线:指垂直构造走向、横穿主要构造,并且信噪比高、反射同相轴连续性好的测线。它还应有一定的延伸长度,最好能经过钻探井位。) 3)重点对比标准层 对某条测线而言,可能有几个反射层,应重点对比目标层(或称为标准层,标准层:具有较强振幅、连续性较好、可在整个工区内追踪的目标反射层。它往往是主要的地层或岩性的分界面,与生油层或储集层有一定的关系,或本身就为生油层、储油层)。 4)相位对比 反射波的初至难以辨认,采用相位对比。若选振幅最强、连续性最好的某同相轴进行追()222042164h L O C h h h λλλλ??'==+-=+== ???

地震资料地质解释总复习

地震层序分析 不整合面的分类: 1)按地层产状特征分类: 可分为平行不整合和角度不整合两大类 A 平行不整合:地质标志为冲刷面,底砾岩,古土壤层,赤铁矿,钙质结核等。 B 角度不整合:受地壳运动的影响使岩层发生倾斜或褶皱。 2)按成因分类: 1.动力作用不整合,因构造等动力活动是地层产状发生变化造成时间缺失的不整合。 包括:a .褶皱不整合:由于褶皱作用而地层弯曲遭受剥蚀 b.掀斜不整合:由于掀斜作)用而使抬升一侧的地层遭受剥蚀 c.块断不整合:因差异升降而使断凸遭受剥蚀形成的不整合 d.抬升不整合:因整体抬升而形成,一般为平行不整合 e.岩浆侵入不整合:因岩浆岩后期侵入形成时间反转(相当于逆断层),形成的不整合。 f.塑性岩侵入不整合:因塑性岩层侵入造成界面间出现时间间断,形成的不整合。 2.外动力作用不整合:在没有构造变动的情况下,主要由于沉积、侵蚀等外动力地质作用造成地层中的时间缺失而形成的不整合。包括: a.河谷下切不整合 b.海底峡谷下切不整合 c.淹没不整合:因海平面快速上升从而使碳酸盐台地停止发育而形成的不整合。 d.沉积过路:海平面相对静止时期,形成沉积物的进积作用,在沉积基准面附近,沉积作用与侵蚀作用达到动态平衡,即形成沉积过路。 e.沉积间歇:沉积间歇是规模较小,持续时间相对较短的沉积间断。无明显地层侵蚀造成沉积间歇的原因可以是水平面的高频相对变化界面。围小到中等。 (3)按分布围分类 1、区际不整合:多个相邻盆地同时发育 2、区域不整合:在盆地大部分地区发育 3、4、局部不整合:在盆地局部发育 不整一界面(5种): 削截,视削截,顶超,上超,下超

石油地震勘探资料处理

石油地震勘探资料处理 1.地震资料数字处理是怎么回事? 既然野外地震已经采集到了反映地下地质情况的地震记录,为什么还要进行地震资料数字处理呢?这是因为野外采集的地震记录仅仅是把来自地下地层的各种信息以数码形式记录在磁带上或光盘上,还不能直接反映出地下地层的埋藏深度及起伏变化情况,还需要将地震记录拿到室内输入到运算速度非常快、存贮量非常大、专业功能非常强的计算机系统中,在专家的指令下进行反复计算和分析,才能获得直接反映地下地层真实情况的数据和图像,专业上把这一过程叫做地震资料数字处理。这个过程有点像我们生活中使用的数码照相机(或数码摄像机)的显像过程,将数码照相机拍摄到的图像输入到室内的电脑上,根据需要,对显示在屏幕上的影像进行修改、调整、增加、删减,满意后可通过屏幕拷贝、彩色打印输出图片来,也可以录制到光盘上存贮以供调用,这个过程叫做编辑,也叫处理。不过地震资料的数字处理所用的硬、软件则要复杂得多。因为数码相机拍摄到的图像仅是几米到几十米远的景物,而地震资料数字处理要对从地面开始到地下五六千米甚至上万米深范围内的地震数据进行处理,不仅将上面第一套地层,还要将下面很多套地层逐层搞清楚。这些地层在不同地区形态都不一样,有的很平,有的像喜马拉雅山似的高山,有的像雅鲁藏布江似的河谷。可见地震数字处理要把地下数千米深的看不见、摸不着,又极其复杂的地层情况搞清楚,这是多么难的一门学科。 不过,近些年来由于将迅速发展起来的计算机技术、信息技术等许多高新科学技术引用到地震资料数字处理中,为搞清地下地层情况,寻找深埋地下的油气田提供了条件,提供了可能,而且提高了油气勘探的成功率。 经过数字处理后的成果有好几十种。专业上把反映地层的埋藏深度、厚度以及形态的图件叫做水平叠加剖面(简称叠加剖面)、偏移剖面。把反映地层岩石(砂岩、泥岩等)组成及其物理性质(速度高低、孔隙大小等)等的成果叫地震属性资料。将经过数字处理的这些剖面和属性资料录制到数字磁带或光盘上,可提供给下道工序(解释)使用。

地震数据处理 重点

1.一维傅里叶变换及其应用:傅里叶变换是地震数据处理的主要数学基础。它不仅是地震道、地震记录分析和数据滤波的基础,同时在地震数据处理的各个方面都有着广泛的应用。 2.采样定理:设x(t)是连续的时间函数,x(t)的最高截止频率为fn,则可用采样间隔为Δt=1/2fn的离散序列X(nΔt)唯一的确定。采样过程:从模拟地震信号到数字地震信号的过程。采样间隔/采样率:采样所用的时间间隔。 3.数字滤波:利用频谱特征的不同来压制干扰波,以突出有效波的方法。 4.频率域滤波的步骤: ①对已知地震道进行频谱分析;②设计合适的滤波器:为了滤去干扰波的频谱成分,应当设计一个带通滤波器,保留有效波频率,把干扰波频率成分滤掉; ③进行滤波运算;④对输出信号谱X(w)进行傅里叶反变换,便得到滤波后的输出X(t). 5.相位性质:最小相位也叫相位滞后或最小能量延迟,实际上最小相位滞后是指频率域,而最小能量延迟则是指时间域而言。最小能量延迟子波:能量聚集在首部;最大能量延迟子波:能量集中在尾部;混合延迟子波:能量聚集在中部。 6.褶积滤波的物理意义: 单位脉冲响应:在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观测滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的脉冲响应。也称滤波器的时间特性。 褶积滤波的物理意义:它相当于把地震信息x(t)分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间书序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的的起始时间、不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出x(t). 7.数字滤波的特殊性质:离散性:数字滤波是对离散的信号进行运算,这是所谓的离散性;有限性:在数字计算机上进行计算时,滤波因子不可能无穷项,而是取有限项,这就是所谓的有限性。 8.产生“伪门”原因:由于对A离散采样造成的,可以证明“伪门”在频率域出现的周期为A,为了避免“伪门”造成的影响,可以适当的选择采样间隔A,使第一个“伪门”出现在干扰波的频谱范围之外。9.波谱:以任何一种形式展示电磁辐射强度与波长之间的关系,叫波谱。波数:波长的倒数。K0=1/λ 二维频率-波数域中的二维频率-波数谱(简称二维频-波谱)分析是对地震波场进行分析的重要手段,它是建立在二维傅里叶变换的基础上。 10.空间假频:频率不变,倾角越大或者倾角不变,频率越高越容易产生空间假频。产生条件:地震信号的频率f一定时,地震信号倾斜时差δt越大,其频-波振幅谱中的波数k0也越大,而当地震信号频率f 增大时,具有相同倾斜时差δt的地震信号的频-波振幅谱中的波数k0随之增大,当频率f增大到某一个门槛频率fmax时,便开始产生空间假频。 11.二维滤波器的设计:一般二维滤波是指对于波动函数X(t,x)所进行的频率-波数域滤波。这时设计的滤波因子是时间-空间的函数h(t,x),滤波过程类似一维滤波在时间-空间域,可用二维褶积公式表示A. 12.共中心点CMP叠加及叠后处理流程图:野外采集地震数据-解编-预处理-反褶积-抽CMP道集-速度分析-动校正-CMP水平叠加-叠后时间深度偏移。13.共中心点叠加优点:①压制多次波;②压制规则干扰波;③压制随机噪声。综上,共中心点叠加可以有效地压制各种干扰波,增强有效波,使地震剖面的信噪比明显提高,掀桌改善地震剖面的质量。 14共中心点水平叠加存在的问题:当反射界面为弯曲界面时,其反射旅行时存在如图1所示的畸变;当反射界面为,其射旅行时发生如图2所示的畸变;当覆盖介质速度横向变化时,其反射旅行时存在如图3所示的畸变;当覆盖介质速度各向异性时,其反射旅行时存在如图4所示的畸变. 15.块状介质模型地震数据处理的特点:①介质呈块状分布,它不仅有顶部和底部界面,而且其侧面也由断层面或岩层界面所封闭;②由于剧烈的构造运动作用,界面往往呈弯曲界面,界面陡、倾角较大;③介质速度往往沿水平方向变化较快。 16.共反射点CRP叠前处理基本流程图:野外采集地震数据-解编-预处理-反褶积-抽CRP道集-层速度场-速度深度模型-叠前深度偏移 ①②③④⑤⑥⑦ 1.预处理:指地震数据处理前的准备工作,是地震数据处理中的重要基础工作,一般定义为将野外采集的地震数据正确加载到地震资料处理系统,进行观测系统定义并对地震数据进行编辑和校正的过程。预处理包括:数据解编、格式转换、道编辑、观测系统定义等工作。 2.解编:就是按照野外采集的记录格式将地震数据检测出来,并将时序的野外数据转换为道序数据,然后按照道和炮的顺序将地震记录存放起来。 3.野外观测系统定义:观测系统就是以野外文件号和

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

地震勘探资料数字处理

中国地质大学(北京) 课程名称:应用地震学 教师:段云卿 第25册 第四章:地震勘探资料数字处理 野外采集到的原始资料是以二进制的数字形式记录在磁带上,必须经过计算机的各种运算,才能输出供地震地质解释的各种资料,或直接输出某些解释成果,本章介绍如何进行数据处理。 §4.1校正和叠加处理 一、动校正 1.动校正的含义:(§3.5) (1) 对于一次覆盖共炮点资料来说,把双曲线型或近似双曲线型反射波同 相轴拉直,也就是消去炮检距不为0对反射波旅行时的影响,使同相轴能直观地反映地下界面的构造形态。 (2) 对于共反射点道集来说,把各道均校正成共中心点M 处的自激自收道, 再叠加起来作为共中心点M 处的叠加道,使一次波同相叠加而加强,多次波等干扰波非同相叠加而减弱。 2.动校正公式(§3.5) 2 022V t x t = ? (6.2-26) 3.计算动校正量(使用共反射点道集) (1)公式 为了对共反射道集的每一道的整个道进行计算,将(6.2—26)改写为: 2 002 ) (2i i j ij t V t x t = ? (j=1,2,……,n ; i=1,2,……,m ) (6.4-1) j —— 道序号。 i —— 采样点序号。 x j —— 第j 道的炮检距。 n —— 覆盖次数。 M ——道长 t 0i ——为第i 个界面共中心点处自激自收时间。 (2)问题 不知什么地方有反射界面,就不知什么地方有反射波。 不知反射波的t 0时间。

中国地质大学(北京) 课程名称:应用地震学 教师:段云卿 第25册 (3)解决方法 地震道上有一个采样值就有一个反射波。 地震道上每一个采样点的时间i △,都看成一个t 0时间,记为t oi 。 (4)例子 ①设采样间隔△=4ms ②长为0.5S -4.5S 的记录,就有1001个t 0值: )(5.00,0s t = )(004.05.01,0s t += )(004.025.02,0s t ?+= )(004.05.0,0s i t i += )(004.010005.01000,0s t ?+= ③对任意一道就有1001个动校正量。例如炮检距为1000m 的第j 道,动校正量为: )(207.0) 5.0(5.021000 2 2,0s V t j =??= ? ) (205.0) 504.0()504.0(21000 2 2,1s V t j =??= ? ) (204.0) 508.0()508.0(21000 2 2,2s V t j =??= ? ) ?() 004.05.0()004.05.0(21000 2 2,s i V i t j i =+?+?= ? )(000.0) 5.4()5.4(21000 2 2,1000s V t j =??= ?

《地震资料数字处理》复习

《地震资料数字处理》复习 地震资料数字处理围绕以下三方面工作: 1、提高信噪比; 2、提高分辨率; 3、提高保真度。 一、提高信噪比的处理 1、原理 利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。 2、处理顺序 提高信噪比包含消除噪声和增强信号两部分内容。 消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等, 增强信号一般在叠后剖面上进行,主要针对随机噪声。 3、随机噪声 是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。 随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。 随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。 4、一维滤波器(伪门、Gibbs现象) 频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。它压制通放带以外的频率成分,保留通放带以内的频率成分。 Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。 5、二维滤波器 二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。 通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。 二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。 6、频率-波数域二维滤波实现步骤: (1)把时间和空间窗口里的数据变换到f-k域; (2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ; (3)从f-k域反变换到t-x域。 8、数字滤波有两个特殊性质: (1)数字滤波由于时域离散化会带来伪门现象,

成都理工大学 地震勘探资料处理及解释复习资料及答案

1----断层在时间剖面的特征标志 1)标准层反射同相轴发生错断,是断层在地震剖面上表现的基本形式。2)标准层反射波同相轴数目突然增减或消失,波组间隔发生突变,断层下降盘地层加厚,上升盘地层变薄。3)反射同相轴形状和产状发生突变,这往往是断层作用所致。4)标准层反射波同相轴发生分叉、合并、扭曲及强相位转换等。5)断面波、绕射波等异常波的出现,是识别断层的主要标准。 2----伪门条件及消除方法 滤波处理的是离散信号,由付氏变换的特性可知:离散函数的频谱是一个周期函数,其周期为1/△,即有:DFT(h(n))=H(k)=H(k+1/Δ)则通频带以1/△为周期重复出现,若称第一个门为“正门”,则其它的门为“伪门”。②克服的方法:a)选择适当的采样间隔△使伪门出现在干扰波频率范围之外,一般采样间隔△取得越小,伪门处于频率越高的地方,离正门越远,b) 在离散采样之前让信号通过“去假频”滤波器,滤掉高频成分。 3--反滤波原理及影响因素 地震记录是地层反射系数序列r(t)与地震子波b(t)的褶积,x(t)=r(t)*b(t),b(t)就相当地层滤波因子。为提高分辨率,可设计一个反滤波器,设反滤波因子为a(t),并要求a(t)与b(t)满足a(t)* b(t)=(t),用a(t)对地震记录x(t)反滤波x(t)* a(t)= r(t)*b(t) * a(t)= r(t)* (t)= r(t),其结果为反射系数序列,即为反射波的基本原理。影响因素:1)各种反滤波方法都必须有若干假设条件;2)反射地震记录的褶积模型问题;3)噪声干扰的影响;4)原始地震资料的质量问题。4----.爆炸反射界面成像原理(叠后偏移成像原理)①把地下地质界面看成具有爆炸性的爆炸源。②爆炸源的形状、位置与地质界面一致。③爆炸源产生的波的能量、极性与地质界面反射系的大小、正负对应。④并假定当t=0时,所有爆炸源同时起爆,沿界面法线方向发射上行波到达地面观测点。(5)用波动方程式将地表接收的波场(地震记录)作反时间方向传播(向下延拓),当波场延拓到(t=0)时的波场的值就正确地描述了地下反射界面位置,即自动实现偏移成像。 说明:爆炸反射界面成像原理适用于叠后的地震资料。即自激自收剖面,自炮点发出的下行波到达反射点的路径与自该点反射返回地面的上行波的路径完全一样。只考虑上行波,若将时间剖面中时间减半,或将传播速度减一半,就可将自激自收剖面看作在反射界上同时激发的地震波沿界面法线传播到地表所接收的记录。偏移时,只需把速度减半,用单程波动方程延拓法,把波场从地面延拓到反射界面,令t=0,即可实现偏移。 5.有限差分法波动方程偏移有什么特点 ①是求解近似波动方程的一种近似数值解法,是否收敛于真解,取决于差分网格的划分和延拓步长的选择。②能适应速度的纵、横向变化,偏移噪音小,在剖面信噪比低的情况下也能做的优点;③受反射界面倾角的限制,当倾角较大时,产生频散现象,使波形畸变。 法波动方程偏移有什么特点 偏移结果好,精度高,稳定性好,噪音低,运算速度快,无倾角限制,无频散现象。 优点:偏移结果好,精度高,稳定性好,噪音低,运算速度快,无倾角限制,无频散现象。缺点:假定传播速度为常速,速度横向变化时,会使反射界面畸变,对偏移速度误差较敏感。7克希霍夫积分偏移有什么特点与绕射扫描叠加的区别是什么 不受倾角限制,能适应任意倾角地层,做三维偏移较容易实现,对网格要求较灵活。 优点:不受倾角限制,能适应任意倾角地层,做三维偏移较容易实现,对网格要求较灵活。缺点:费时;难以处理速度的横向变化;偏移噪声大,“划弧”现象严重;确定偏移参数困难。 -区别:A克希霍夫积分偏移考虑了波的振幅值随传播距离和方向不同的影响,保持了波的

地震资料处理复习总结

数字地震记录中,每个地震到是按一个按一定时间采样间隔排列的时间序列数字滤波,每一个地震道都可以用一系列具有不同频率和不同振幅、相位的简谐曲线叠加而成。 应用一维傅里叶变换可以得到每个地震道德简谐成分; 应用傅里叶反变换可以将简谐成分合成为原来的地震道的时间序列函数。 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。它可以写成指数形式 式中 复数的模,称为振幅谱; 复数的幅角,称为相位谱。 离散情况下和这个差不多 一维频谱的特征: 1. 傅里叶变换的几个基本性质 线性 翻转 共轭 时移 褶积 相关(功率谱) 2. 假频 尼奎斯特频率 二维谱分析 二维波场函数X(x,t)的二维傅里叶变换° X(,)ωκ 表明了二维波场函数X(x,t)的各个频率f 一波数 简谐成分的频一波谱。 由°X(,)ωκ这些频率f 一波数 的简谐成分叠加即可恢复原来的波场函数X(x,t)。 二维傅里叶变换X(w,k)称为二维函数X(x,t)的频一波谱。其模量 为函数X(x,t)的振幅谱。 如果有效波和干扰波得平面简谐波成分有差异,有效波的平面简谐波成分与干扰波的平面简谐波成分不同的视速度传播,则可以用二维视速度滤波将他们分开,达到压制干扰,提高性噪比的目的。 二维频谱的特征:空间假频 ~~ () ()()()()i w i w X w X w e A w e ??==)(ωA ()?ω1()()tan () i r x w w x w ?- =()A w =t f ?=21N o k o k ~ X(,)k ω

在地震勘探中,用数字仪器记录地震波时,为了保持更多的波得特征,,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。有效波和干扰波得差异表现在多个方面(频谱、传播方向、能量……)。利用频谱特征的不同来压制干扰波,以突出有效波的方法就是数字滤波。 滤波器的响应特性:对滤波器能力的最普遍度量是其响应特性 滤波器的频率特性:其滤波器时间函数或滤波因子 的频谱 称为滤波器的频率特性, 滤波器的时间特性(单位脉冲响应):在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观侧滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的时间特性。也 称滤波器的“脉冲响应” 频率响应函数应该就是 时间和频率响应函数合起来应该就是就是响应特征 滤波机理: 输出信号的振幅谱等于输入信号的振幅谱与滤波器的振幅频率特性的乘积, 输出信号的相位谱等于输入信号的相位潜与滤波器相位特性之和。 (频率) 时间域上就是褶积 褶积滤波的物理意义:它相当于把地震信息 分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间顺序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的起始时间,不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出分。 频率域滤波的步骤 (1)对已知地震记录道进行频谱分析。 (2)设计合适的滤波器 (3)进行滤波运算 (4)对输出信号谱 进行傅里叶反变换 褶积滤波的具体计算 褶积滤波的具体计算步骤如下: (1)对地震记录进行频谱分析,确定通频带中心频率 和带宽 。 (2)确定滤波因子长度N 。 )()()(~ ~~w H w X w X =)(t x ∧ )(~ w H )(t h )(~ w H ) ()()(w w w H x x Φ+Φ=Φ∧)()()(~ ~w H w X w X ?=∧)(~ w X )(t x

地震资料解释大作业报告

新疆准噶尔盆地西北缘夏子街地区地震资料解释报告 中国石油大学(北京) 地球科学学院 肖鸿宇

一、概述 1、研究区背景信息 本区位于新疆准噶尔盆地西北缘夏子街地区。区域地质研究表明本区主要发育三个大的区域不整合面:白垩系/侏罗系不整合面、侏罗系/三叠系不整合面和三叠系/二叠系不整合面。其基本特征为:①均为角度不整合面②界面之上均为厚层砂砾岩,界面之下岩性较细,甚至于为泥岩。本区砂砾岩波阻抗高,泥岩波阻抗低。 本区在区域构造单元上属克——乌逆掩断裂带,发育众多断裂,主断裂与区域构造的走向基本一致,断面一般北西倾斜,它们和方向不一、倾向不同的派生断裂一起将本区切割为若干断块,形成了三叠系以背斜——断块为主的构造圈闭。 2 地震资料概况 资料采用新疆准噶尔盆地西北缘夏子街地区部分三维测线,共21条。其中主测线(inline)10条,联络测线(crossline)11条,线距均为500m,比例尺为1:25000。 本区剖面经过三维叠加偏移处理。 采用SEG标准显示,负反射系数界面为波峰,正反射系数界面为波谷。 3 任务与要求 1)标志层和不整合面的识别 要求:对所有剖面进行观察,确定本区存在几个标志层。识别出三个大的区域不整合面,确定其是波峰还是波谷。确定在三叠系内部和侏罗系内部有几个标志层。确定各标志层的地层接触关系和性质。 2)断层解释和主要界面的追踪对比 要求:对21条剖面进行断层解释,对三大区域不整合面和三叠系内部、侏罗系下部标志层共5个界面进行追踪对比。要求断层和界面在所有的剖面交点上闭合

3)三叠系底界T0构造图编制和构造特征分析 要求:剖面上断点投影到平面底图上,并且标出断层的性质、倾向。断层组合。T0图勾绘,等值线间距为20ms。分析主要断层和褶皱的性质及形成时期 4)地震相分析(编制侏罗系下部层序地震相平面图) 要求:对侏罗系下部层序进行剖面地震相划分。编制沉积相平面图。进行的初步的沉积相解释。 二、地层格架 1 标志层及其特征 地震反射标志层是指波形特征突出、稳定且分布广泛的同相轴或波组。通过对地震资料的分析,确定以下4个标志层,以剖面Y 360(附图1)为例,标志层为T1、T3、T5、T6,标志层T1、T3、T5、T6均延伸较远,几乎全区都有分布,而且特征十分明显突出,横向变化稳定。 T1、T3与上覆、下伏同相轴均呈整一接触关系。T5与上覆同相轴均呈上超接触关系,于下伏同相轴呈整一接触关系,T6与上覆同相轴呈整一接触关系,与下伏同相轴呈削截接触关系。 2 不整合界面及其特征 不整合面是指具有不整合接触关系的两套地层之间的接触面。以剖面Y 360(附图1)为例,不整合面T1、T4、T6将岩层分别划分为白垩系、侏罗系、三叠系和二叠系,T1、T6同时也为标志层。均为全区分布,而且不整合面延伸较远,特征十分明显。如果通过横剖面进行观察,以剖面X433(附图2)为例,则可以发现在横剖面上T1、T4延伸较远,T6则较短。T1与上覆同相轴呈上超接触关系,与下伏同相轴呈整一接触关系。T4与上覆同相轴呈整一接触关系,与下伏同相轴呈削截接触关系。T6与上覆同相轴呈整一接触关

《地震勘探原理》考试复习

《地震勘探原理》考试复习 1、油气勘探的三种方法:1、地质法:(Geology Method) 2、地球物理方法:(Exploration Meth 3、钻探法:Drill Way (Log/Well) 4、综合方法:地质、物探(物化探)、钻探结合起来,进行综 合勘探。 2、地球物理勘探方法概念及分类:它是以岩矿石(或地层)与其围岩的物理性质差异为物质基础, 用专门的仪器设备观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源和解决工程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。 相应的各种勘探方法,叫地球物理勘探方法,简称为物探方法。 分类:地震勘探弹性差异 重力勘探密度差异 磁法勘探磁性差异 电法勘探电性差异 地球物理测井 3地震勘探:在油气勘探中,地震勘探已成为一种最有效的方法。 地震勘探方法就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 地震勘探所获得的资料,与其它的地球物理资料、钻井资料及地质资料联合使用,并根据相应的物理与地质概念,能够得到有关构造及岩石类型分布等信息 4、地震勘探基本原理: ?利用岩石、矿物(地层)之间的弹性差异(Elasticity Property Difference ) ?引起弹性波场变化(Elasticity Filed) ?产生弹性异常(速度不同)(Elasticity Waves Abnormal) ?用地震仪测量其异常值(时间变化) (Seismograph ) ?根据异常变化情况反演地下地质构造情况(Inversion Geological Structure

地震资料处理合同(基地内)

说明 一、起草单位与起草人 本合同由中国石油化工集团公司法律事务部组织起草,由胜利石油管理局负责编写,起草人:加庆段清海,联系:0,传真:0,电邮:duanqhslof.。 二、注意事项 1、本合同适用基地场景,发包方、承包方均为系统且在同一基地的单位所发生的地震资料处理业务。 2、本合同的修改。修改本合同不影响甲方实质性权利义务的,应经甲方兼职合同管理员审查同意。修改本合同影响甲方实质性权利义务的,应经甲方专职合同管理员审查同意。 3、具体条款使用说明。 (1)地震资料处理合同示文本作为一个整体,其部的各条款容之间是具有关联性的,在实际应用过程中如对个别条款做出变动,那么其相对应的条款也要做出相应的调整。如:要调整双方权利义务的条款容,在与之相对应的违约责任条款中也要改动相应的容。 (2)文本中质量标准和技术要求条款的规定,应结合实际针对不同井的具体情况,选择、引用明确的标准,并把该质量标准详细列明作为本合同的组成部分。 (3)文本中HSE条款对甲方、乙方在安全、环保、健康方面做出了原则性的要求和规定,在实际操作中可以引用HSE方面的法规或相关规定执行,或双方另行签订HSE责任书将容细化,并作为合同的附件双方共同遵守。 (4)文本中的价款支付方式和费用的调整,可根据具体项目的不同和本单位的习惯性做法,在与乙方协商一致后做出调整。 (5)违约金的约定在文本中都是以“空格”的形式列出的,在实践过程中应根据具体情况协商做出约定。 (6)违约责任条款中关于赔偿限额的规定,参考国同行业在此问题上的惯例,制定出一个客观的、合理的赔偿额度。 (7)文本中有关“时间”、“期限”的要求,在实际填写中应结合生产实际,按照地震资料处理服务的工序、要求制定出合理的时间和期限。 合同编号:

相关主题
文本预览
相关文档 最新文档