2016年江西省中等学校招生考试数学模拟试卷(解析版)(三)
- 格式:doc
- 大小:580.00 KB
- 文档页数:22
江西省2016年中等学校招生考试数学试卷(江西 毛庆云)说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25 B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。
【解答】 这组数据中28出现4次,最多,所以众数为28。
由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。
【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。
【分析】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.根据法则直接计算.【解答】 A 选项中3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B 是幂的乘方,幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方(底数不变,指数相乘),结果应该-86a ;C 是平方差公式的应用,结果应该是24a 1-;D.是多项式除以单项式,除以2a 变成乘以它的倒数,约分后得2a-1。
2016年江西省中考数学模拟试卷(1)一、选择题:每小题3分,共18分江西省2015年中等学校招生考试数学模拟试卷试题卷(三)1.下列运算正确的是()A.a•a2=a2B.a6÷a2=a4C.(a3)4=a7D.(a2b)3=a2b32.下列各数中是有理数的是()A. B.4πC.sin45°D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>04.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A.B.C.D.5.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差 B.众数 C.中位数D.平均数6.在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点C(4,﹣3)关于原点对称D.点A与点F(﹣4,3)关于第二象限的平分线对称二、填空题7.在平面直角坐标系中,点P(﹣2,1)在第象限.8.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.9.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是.10.如图,在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,把△AOB绕点O逆时针旋转90°,得到△A1OB1,写出点A1的坐标:.11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是.12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB=m(用计算器计算,结果精确到0.1米)13.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,则下列结论正确的序号为(多填或错填得0分,少填酌情给分)①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4.14.如图在直角坐标系中,△ABC的面积为2,三个顶点的坐标分别为A(﹣3,﹣2),B(﹣1,﹣1),C(a,b),且a、b均为负整数,则点C的坐标为.三、(本大题共4小题,每小题6分,共24分)15.关于x的不等式组.(1)当a=3时,解这个不等式组;(2)若不等式组的解集是x<1,求a的值.16.已知点A、点B.在网格中用无刻度直尺画两个不全等的菱形,使菱形的顶点A、B、C、D恰好为格点,并计算所画菱形面积.17.如图,已知正五边形ABCDE,过点A作直线AF∥CD,交DB的延长线于点F(1)求∠AFD的度数;(2)求证:AF=BD.18.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2的卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.四、(本大题4小题,每小题8分,共32分)19.如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交⊙O于点F,连接OE、EF.(1)试判断△ACD的形状,并说明理由;(2)求证:∠ADE=∠OEF.20.某中学准备从体育用品商店一次性购买若干个足球和篮球(2015•江西校级模拟)如图,直线y=x与反比例函数y=(k>0,x>0)的图象交于点A.将直线y=x向上平移4个单位长度后,与y轴交于点C,与反比例函数y=(k>0,x>0)的图象交于点B,分别过点A,B作AD⊥x轴于点D,BE⊥x轴于点E,且OD=3OE.(1)直线BC对应的函数解析式是;(2)求k的值.22.2014年某校有若干名学生参加了中考,学校随机抽取了考生总数的8%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:(1)在所抽取的考生中,若D级只有4人:①请估算该校所有考生中,约有多少人数学成绩是D级?②考生数学成绩的中位数落在等级中;(2)天天同学在计算所抽取的考生数学成绩的平均数时,其方法是:=(105+90+80+30)÷4=76.25,问天天同学的计算正确吗?若不正确,请你帮他计算正确的平均数.23.甲、乙两玩具厂从已有订单来看,两厂都预计自2011年起本厂的月利润y(十万元)与月份x之间满足一定的函数关系.甲厂预测的关系:y=x2﹣x+2;乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同.又知乙厂预测的该厂前几个月份的月利润如图所示,试根据上述信息解决下列问题:(1)求乙厂预测的月利润y(十万元)与月份x之间的函数关系式;(2)x为何值时,两厂的月利润差距为5万元?(3)当两厂的月利润差距超过50万元时,月利润低的玩具厂被月利润高的玩具厂收购.如果不考虑其他因素,按上述趋势,是否会出现收购的情况?如果会,谁被谁收购?何时被收购?如果不会,请说明理由.六、(本大题共12分)24.已知如图1、2,D是△ABC的BC边上的中点,DE⊥AB于E、DF⊥AC于F,且BE=CF,点M、N分别是AE、DE上的点,AN⊥FM于G(1)如图1,当∠BAC=90°时;①求证:四边形AEDF是正方形;②试问AN与FM之间的数量关系与四边形AEDF的两对角线的数量关系相同吗?请证明你的结论;(2)如图2,当∠BAC≠90°,且AF:DF=2:1时,求AN:FM的值;(3)根据(1)中②和(2)的结论或求解过程,在一般情况下(即除去条件:“∠BAC﹣90°,AF:DF=2:1”,其他条件不变),问AN与FM之间的数量关系有何规律?直接用文字说明或用等式表示(不证明).2016年江西省中考数学模拟试卷(1)参考答案与试题解析一、选择题:每小题3分,共18分江西省2015年中等学校招生考试数学模拟试卷试题卷(三)1.下列运算正确的是()A.a•a2=a2B.a6÷a2=a4C.(a3)4=a7D.(a2b)3=a2b3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法和除法、幂的乘方和积的乘方进行计算即可.【解答】解:A、a•a2=a3,错误;B、a6÷a2=a4,正确;C、(a3)4=a12,错误;D、(a2b)3=a6b3,错误;故选B.【点评】此题考查同底数幂的乘法和除法、幂的乘方和积的乘方,关键是根据法则进行计算.2.下列各数中是有理数的是()A. B.4πC.sin45°D.【考点】特殊角的三角函数值.【专题】计算题.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.【点评】本题考查了特殊角的三角函数值以及有理数的分类,解题时熟记特殊角的三角函数值是关键,此题难度不大,易于掌握.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.【点评】本题考查的是正比例函数的性质,熟知正比例函数的图象与系数的关系是解答此题的关键.4.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:左视图是从左面看所得到的图形,正方体从左面看是正方形,圆柱从左面看是长方形,并且正方体挡住了圆柱体,所以一个正方体和一个圆柱体紧靠在一起,则它们的左视图是一个正方形底部是一个长方形,长方形用虚线,【点评】此题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.5.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差 B.众数 C.中位数D.平均数【考点】统计量的选择.【分析】李老师想了解小张数学学习变化情况,即成绩的稳定程度.根据方差的意义判断.【解答】解:由于方差反映数据的波动大小,故想了解小张数学学习变化情况,则应关注数学成绩的方差.故选A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点C(4,﹣3)关于原点对称D.点A与点F(﹣4,3)关于第二象限的平分线对称【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【专题】压轴题.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【解答】解:A、点A的坐标为(﹣3,4),则点A与点B(﹣3,﹣4)关于x轴对称,故此选项错误;B、点A的坐标为(﹣3,4),点A与点C(3,﹣4)关于原点对称,故此选项错误;C、点A的坐标为(﹣3,4),点A与点C(3,﹣4)关于原点对称,故此选项错误;D、点A与点F(﹣4,3)关于第二象限的平分线对称,故此选项正确;【点评】此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.二、填空题7.在平面直角坐标系中,点P(﹣2,1)在第二象限.【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣2,1)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是170m.【考点】勾股定理的应用.【专题】计算题.【分析】根据正南方向和正东方向成九十度,利用勾股定理进行计算即可.【解答】解:∵正南方向和正东方向成90°,∴根据勾股定理得学校与书店之间的距离为=170(米).故答案为:170.【点评】此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.9.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是﹣1.【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故答案为:﹣1.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.10.如图,在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,把△AOB绕点O逆时针旋转90°,得到△A1OB1,写出点A1的坐标:﹙﹣2,1﹚.【考点】坐标与图形变化-旋转.【专题】探究型.【分析】先根据A点坐标得出AB及OB的长,由图形旋转的性质可知△AOB≌△A1OB1,故可得出AB=A1B1=2,OB=OB1=1,进而可得出A1点的坐标.【解答】解:∵在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,∴AB=2,OB=1,∵△A1OB1由△AOB绕点O逆时针旋转90°得出,∴△AOB≌△A1OB1,∴AB=A1B1=2,OB=OB1=1,∴A1的坐标:(﹣2,1).故答案为:(﹣2,1).【点评】本题考查的是坐标与图形的变化﹣旋转,熟知图形旋转后所得图形与原图形全等是解答此题的关键.11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是10.【考点】平行四边形的判定与性质;线段垂直平分线的性质.【分析】利用平行四边形的性质和判定得出四边形ABCD是平行四边形,AB=CD,进而利用线段垂直平分线的性质得出AE=EC,进而求出答案.【解答】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴AB=CD=4,∵EF是AC的垂直平分线,∴AE=EC,∴△CDE的周长是:ED+EC+DC=AD+DC=10.故答案为:10.【点评】此题主要考查了平行四边形的性质和判定以及线段垂直平分线的性质,得出AB=CD=4是解题关键.12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C 的C处测得∠BCA=50°,BC=10m,则桥长AB=11.9m(用计算器计算,结果精确到0.1米)【考点】解直角三角形的应用.【分析】在Rt△ABC中,tan∠BCA=,由此可以求出AB之长.【解答】解:在△ABC中,∵BC⊥BA,∴tan∠BCA=.又∵BC=10m,∠BCA=50°,∴AB=BC•tan50°=10×tan50°≈11.9m.故答案为11.9.【点评】此题考查了正切的概念和运用,关键是把实际问题转化成数学问题,把它抽象到直角三角形中来.13.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,则下列结论正确的序号为①③④(多填或错填得0分,少填酌情给分)①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4.【考点】二次函数图象与系数的关系.【分析】根据抛物线的性质逐项判断即可.由抛物线的开口判断a的符号;由对称轴和a的符号判断b的符号;由抛物线与x轴的交点判断b2﹣4ac的符号,根据B的坐标和函数的对称性即可判断AE+CD的值.【解答】解:∵抛物线开口向下,∴a<0.∵抛物线对称轴是x=﹣>0,∴b>0.∵抛物线与x轴有两个交点,∴b2﹣4ac>0;∵CD⊥DE于D,∴四边形CDEO是矩形,∴CD=OE,∵A、B是关于对称轴DE的对称点,∴AE=BE,∴AE+CD=BE+OE=OB,∵B点坐标为(4,0),∴OB=4,∴AE+CD=4.故答案为①③④.【点评】本题考查了二次函数的图象与系数的关系以及二次函数的性质,熟练掌握二次函数的性质是解题的关键.14.如图在直角坐标系中,△ABC的面积为2,三个顶点的坐标分别为A(﹣3,﹣2),B(﹣1,﹣1),C(a,b),且a、b均为负整数,则点C的坐标为(﹣5,﹣1)、(﹣1,﹣3)、(﹣3,﹣4).【考点】坐标与图形性质;三角形的面积.【专题】数形结合.【分析】根据三角形面积公式,在第三象限内找出格点C使△ABC的面积为2,然后写出C点坐标.【解答】解:如图,∵a、b均为负整数,∴C点在第三象限,当以BC为底边时,由于△ABC的面积为2,则BC=4或BC=2,则C1(﹣5,﹣1),C3(﹣1,﹣3);当以AC为底边时,由于△ABC的面积为2,则AC=2,则C2(﹣3,﹣4);故答案为(﹣5,﹣1)、(﹣1,﹣3)、(﹣3,﹣4).【点评】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系,记住各象限内点的坐标特征.也考查了三角形面积公式.三、(本大题共4小题,每小题6分,共24分)15.关于x的不等式组.(1)当a=3时,解这个不等式组;(2)若不等式组的解集是x<1,求a的值.【考点】解一元一次不等式组.【分析】(1)把a=3代入不等式组,分别求出各不等式的解集,再求其公共解集即可.(2)解出不等式组的解集,根据已知不等式组有解比较,可求出a的值.【解答】解:(1)当a=3时,由①得:2x+8>3x+6,解得:x<2,由②得x<3,∴原不等式组的解集是x<2.(2)由①得:x<2,由②得x<a,而不等式组的解集是x<1,∴a=1.【点评】(1)把a=3代入不等式组,再根据求不等式组解集的方法求解即可.(2)是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.已知点A、点B.在网格中用无刻度直尺画两个不全等的菱形,使菱形的顶点A、B、C、D恰好为格点,并计算所画菱形面积.【考点】作图—应用与设计作图.【分析】由勾股定理得出AB==,根据菱形的性质以及格点的位置作图即可.【解答】解:如图,第一个菱形的面积为8,第二个菱形的面积为6.【点评】此题主要考查了作图﹣应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.17.如图,已知正五边形ABCDE,过点A作直线AF∥CD,交DB的延长线于点F(1)求∠AFD的度数;(2)求证:AF=BD.【考点】全等三角形的判定与性质.【分析】(1)首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可;(2)先证明∠CBD=∠F=36°,∠FBA=∠BCD=108°,于是△ABF≌△DBC,即可得出结论.【解答】(1)解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°;(2)证明:∵∠CBA=108°,∠CBD=36°,∴∠DBA=72°,∴∠FBA=108°,在△ABF和△DBC中,,∴△ABF≌△DBC,∴AF=BD.【点评】本题考查了多边形的内角和外角及平行线的性质、全等三角形的判定与性质,解题的关键是求得正五边形的内角和外角度数.18.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2的卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.【考点】概率公式.【分析】(1)用总数乘以标有数字1的概率即可求得张数;(2)首先列方程求得标3的卡片的张数,然后利用概率公式求解即可.【解答】解:(1)根据题意得:50×=10,答:箱中装有标1的卡片10张;(2)设装有标3的卡片x张,则标2的卡片有3x﹣8张,根据题意得:x+3x﹣8=40,解得:x=12,所以摸出一张有标3的卡片的概率P==.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题4小题,每小题8分,共32分)19.如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交⊙O于点F,连接OE、EF.(1)试判断△ACD的形状,并说明理由;(2)求证:∠ADE=∠OEF.【考点】圆周角定理;等腰三角形的判定与性质.【分析】(1)由AB是⊙O的直径,利用圆周角定理易得AE⊥CD,又因为ED=EC,利用垂直平分线的性质可得AC=AD,得出结论;(2)首先由外角的性质易得∠ADE=∠DEF+∠F,∠OEF=∠OED+∠DEF,由圆周角定理易得∠B=∠F,等量代换得出结论.【解答】解:(1)△ACD是等腰三角形.连接AE,∵AB是⊙O的直径,∴∠AED=90°,∴AE⊥CD,∵CE=ED,∴AC=AD,∴△ACD是等腰三角形;(2)∵∠ADE=∠DEF+∠F,∠OEF=∠OED+∠DEF,而∠OED=∠B,∠B=∠F,∴∠ADE=∠OEF.【点评】本题主要考查了圆周角定理,垂直平分线的性质,外角的性质等,作出适当的辅助线,等量代换是解答此题的关键.20.某中学准备从体育用品商店一次性购买若干个足球和篮球(2015•江西校级模拟)如图,直线y=x与反比例函数y=(k>0,x>0)的图象交于点A.将直线y=x向上平移4个单位长度后,与y轴交于点C,与反比例函数y=(k>0,x>0)的图象交于点B,分别过点A,B作AD⊥x轴于点D,BE⊥x轴于点E,且OD=3OE.(1)直线BC对应的函数解析式是y=x+4;(2)求k的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)由平移可直接求得BC的解析式;(2)可设OE=x,则OD=3x,可表示出A、B坐标,代入反比例函数解析式可求得x的值,可求得k.【解答】解:(1)∵直线BC是直线y=x向上平移4个单位得到,∴直线BC解析式为y=x+4,故答案为:y=x+4;(2)设OE=x,则OD=3x,∴B点坐标为(x,x+4),A点坐标为(3x,x),又∵A、B两点都在反比例函数图象上,∴x(x+4)=3x×x,解得x=0(舍去)或x=1,∴A点坐标为(3,),∴k=3×=.【点评】本题主要考查平移的性质和函数图象的交点,掌握函数解析式中的“左加右减、上加下减”是解题的关键,在(2)中注意A、B两点横坐标的关系是解题的关键.22.2014年某校有若干名学生参加了中考,学校随机抽取了考生总数的8%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:(1)在所抽取的考生中,若D级只有4人:①请估算该校所有考生中,约有多少人数学成绩是D级?②考生数学成绩的中位数落在B等级中;(2)天天同学在计算所抽取的考生数学成绩的平均数时,其方法是:=(105+90+80+30)÷4=76.25,问天天同学的计算正确吗?若不正确,请你帮他计算正确的平均数.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)①根据统计图中所提供的数据计算即可;②有所抽取的考生数为4÷10%=40人分别算出各等级的人数即可求出考生数学成绩的中位数落在B等级中;(2)不正确,设抽取的考生数为n,利用加权平均数来求.【解答】解:(1)①D级的人数比:100%﹣30%﹣40%﹣20%=10%,所抽取的考生数;4÷10%=40人,该校考生总数:40÷0.08=500人,∴该校所有考生中约有500×10%=50人数学成绩是D级;②∵所抽取的考生数为4÷10%=40人,∴A级人数40×30%=12人,B级人数40×40%=16人,C级人数40×20%=8人,D级4人,∴考生数学成绩的中位数落在B等级中;故答案为:B;(2)不正确,设抽取的考生数为n,则==86.5,答;正确的平均数为:86.5,【点评】本题考查了条形统计图,扇形统计图,加权平均数,中位数,熟记这些概念是解题的关键.23.甲、乙两玩具厂从已有订单来看,两厂都预计自2011年起本厂的月利润y(十万元)与月份x之间满足一定的函数关系.甲厂预测的关系:y=x2﹣x+2;乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同.又知乙厂预测的该厂前几个月份的月利润如图所示,试根据上述信息解决下列问题:(1)求乙厂预测的月利润y(十万元)与月份x之间的函数关系式;(2)x为何值时,两厂的月利润差距为5万元?(3)当两厂的月利润差距超过50万元时,月利润低的玩具厂被月利润高的玩具厂收购.如果不考虑其他因素,按上述趋势,是否会出现收购的情况?如果会,谁被谁收购?何时被收购?如果不会,请说明理由.【考点】二次函数的应用;条形统计图.【分析】(1)根据:乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同,设乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=x 2+bx+c ,根据图象,把x=2,y=0.5,x=4,y=1代入求b 、c 的值,确定乙厂的函数关系式;(2)分两种情况:y 甲﹣y 乙=0.5,y 乙﹣y 甲=0.5,列方程分别求解;(3)分两种情况:①y 乙﹣y 甲>5,②y 甲﹣y 乙>5,列不等式求x 的范围,作出判断.【解答】解:(1)设乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=x2+bx+cc由上图可知,取,则,解得.所以,乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=; (2)①若y 甲﹣y 乙=0.5,则(x 2﹣x+2)﹣()=0.5,解得x=1②若y 乙﹣y 甲=0.5,则()﹣(x 2﹣x+2)=0.5,解得x=3所以,x=1或3时,两厂的月利润差距为5万元;(3)①若y 乙﹣y 甲>5,即()﹣(x 2﹣x+2)>5,解得x >12 ②y 甲﹣y 乙>5,即(x 2﹣x+2)﹣()>5,解得x <﹣8(不合题意)所以,会出现收购的情况,12个月后(或一年后或第13个月),甲厂会被乙厂收购.【点评】本题考查了二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.六、(本大题共12分)24.已知如图1、2,D 是△ABC 的BC 边上的中点,DE ⊥AB 于E 、DF ⊥AC 于F ,且BE=CF ,点M 、N 分别是AE 、DE 上的点,AN ⊥FM 于G(1)如图1,当∠BAC=90°时;①求证:四边形AEDF 是正方形;②试问AN 与FM 之间的数量关系与四边形AEDF 的两对角线的数量关系相同吗?请证明你的结论;(2)如图2,当∠BAC ≠90°,且AF :DF=2:1时,求AN :FM 的值;(3)根据(1)中②和(2)的结论或求解过程,在一般情况下(即除去条件:“∠BAC﹣90°,AF:DF=2:1”,其他条件不变),问AN与FM之间的数量关系有何规律?直接用文字说明或用等式表示(不证明).【考点】相似形综合题.【分析】(1)①证明Rt△BED≌Rt△CFD,得到DE=DF,证明结论;②根据已知和正方形的性质证明Rt△AEN≌Rt△FAM,得到答案;(2)根据已知设AF=2k,DF=k,求出AD:EF,证明△FME∽△AND,求出AN:FM的值;(3)根据(1)中②和(2)的结论,可以得到AN与FM之间的数量关系与四边形AEDF的两条对角线之间的关系.【解答】(1)①证明:∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,以上BD=DC,∠DEB=∠DFC=90°,BE=CF,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴矩形AEDF是正方形.②答:AN与FM之间的数量关系与四边形AEDF的两条对角线的数量关系相同;理由:在正方形AEDF中,AF=AE,又∵AN⊥FM于G,∠AMF=∠ANE,∠AEN=∠MAF=90°,∴Rt△AEN≌Rt△FAM(AAS),∴AN=FM,又∵正方形AEDF的对角线相等,∴AN与FM之间的数量关系与四边形AEDF的两对角线的数量关系相同.(2)连接AD、EF,设AF=2k,DF=k,在Rt△ADF中,AD==k,∵Rt△BED≌Rt△CFD(HL),∴∠B=∠C,DE=DF,∴AB=AC,AE=AF,∴AD的垂直平分EF,则OF=EF,DF⊥AC与F,=2k×k×,∴PF=,∴EF=,又∵∠NEM=∠MGN=90°,∠GME+∠ENG=∠DNG+∠ENG=180°,∠EMF=∠DNA,∠AEO=∠NDA,∴△FME∽△AND,∴==;(3)根据(1)中②和(2)的结论或求解过程可知,∵∠NEM=∠MGN=90°,∠GME+∠ENG=∠DNG+∠ENG=180°,∠EMF=∠DNA,∠AEO=∠NDA,∴△FME∽△AND,∴=,AN、FM与四边形AEDF的两条对角线对应成比例.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质,灵活运用判定定理和性质定理是解题的关键,注意方程思想在解题中的运用.。
江西省2016年中等学校招生模拟考试数学试题一、填空题,每小题3分,共18分1.下列运算中,正确的是()A.x+x=2x B.2x﹣x=1 C.(x3)3=x6D.x8÷x2=x42.在正三角形、正方形、正五边、正六边形中不能单独镶嵌平面的是()A.正三角形 B.正方形C.正五边形 D.正六边形3.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70° B.65° C.50° D.25°4.如图,数轴上两点A、B在线段AB上任意取一点C,则点C到表示1的距离不大于2的概率是()A.B.C.D.5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.546.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.二、填空题、每小题3分,共18分,7.若m、n互为倒数,则mn2﹣(n﹣1)的值为.8.关于x的方程kx﹣1=2x的解为正实数,则k的取值范围是.9.已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为.10.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD 是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.11.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.12.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需根火柴棒.三、解答题、13.解方程: +=1.14.化简求值:,其中x=.15.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.16.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.17cm,宽为16 cm的长方形纸板上剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们设计出不同类型的,你认为符合条件的等腰三角形,(分别在下列矩形中画出示意图)并分别计算剪下的等腰三角形的面积.(位置不同,形状全等的将视为一种结果)18.已知x1,x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=3﹣.(1)求x1,x2及a的值;(2)求x13﹣3x12+2x1+x2的值.19.在平面直角坐标系中,将A(1,0)、B(0,2)、C(2,3)、D(3,1)用线段依次连接起来形成一个图案(图案①).将图案①绕点O逆时针旋转90°得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③.(1)在坐标系中分别画出图案②和图案③;(2)若点D在图案②中对应的点记为点E,在图案③中对应的点记为点F,则S△DEF= ;(3)若图案①上任一点P(A、B除外)的坐标为(a,b),图案②中与之对应的点记为点Q,图案③中与之对应的点记为点R,则S△PQR= .(用含有a、b的代数式表示)20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C 的抛物线上;(3)在(2)的条件下,求证:直线CD是⊙M的切线.21.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如(1)表中的a= ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第组;(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:.22.如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.23.如图,在Rt△ABC中,∠C=90°,AC=3,AD=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回,点Q从点A出发沿AB 以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BC﹣CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.江西省2016年中等学校招生模拟考试(数学试题卷(C)参考答案与试题解析一、填空题,每小题3分,共18分1.下列运算中,正确的是()A.x+x=2x B.2x﹣x=1 C.(x3)3=x6D.x8÷x2=x4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的除法.【分析】根据合并同类项法则,只需把系数相加减,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相加减,对各选项分析判断后利用排除法求解.【解答】解:A、x+x=2x,正确;B、应为2x﹣x=x,故本选项错误;C、应为(x3)3=x9,故本选项错误;D、应为x8÷x2=x6,故本选项错误.故选A.2.在正三角形、正方形、正五边、正六边形中不能单独镶嵌平面的是()A.正三角形 B.正方形C.正五边形 D.正六边形【考点】平面镶嵌(密铺).【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.【解答】解:A.正三角形的每个内角是60°,能整除360°,能密铺;B.正方形的每个内角是90°,4个能密铺;C.正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;D.正六边形的每个内角是120°,3个能密铺,故选C.3.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70° B.65° C.50° D.25°【考点】平行线的性质;翻折变换(折叠问题).【分析】由平行可求得∠DEF,又由折叠的性质可得∠DEF=∠D′EF,结合平角可求得∠AED′.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∴∠DEF=∠EFB=65°,又由折叠的性质可得∠D′EF=∠DEF=65°,∴∠AED′=180°﹣65°﹣65°=50°,故选C.4.如图,数轴上两点A、B在线段AB上任意取一点C,则点C到表示1的距离不大于2的概率是()A.B.C.D.【考点】几何概率;数轴.【分析】先求出AB两点间的距离,根据距离的定义找出符合条件的点,再根据概率公式即可得出答案.【解答】解:∵AB间距离为6,点C到表示1的点的距离不大于2的点是﹣1到3之间的点,满足条件的点组成的线段的长是4.∴点C到表示1的距离不大于2的概率为=;故选D.5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.6.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.【考点】动点问题的函数图象.【分析】本题考查动点函数图象的问题.【解答】解:由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C.随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D.故选A.二、填空题、每小题3分,共18分,7.若m、n互为倒数,则mn2﹣(n﹣1)的值为 1 .【考点】代数式求值;倒数.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.8.关于x的方程kx﹣1=2x的解为正实数,则k的取值范围是k>2 .【考点】一元一次方程的解.【分析】先解方程,然后根据解为正实数,可以得到关于k的不等式,从而可以确定出k的范围.【解答】解:∵kx﹣1=2x∴(k﹣2)x=1,解得,x=,∵关于x的方程kx﹣1=2x的解为正实数,∴>0,解得,k>2,故答案为:k>2.9.已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为9<k<41 .【考点】不等式的性质.【分析】根据已知条件先将原式化成a2+b2的形式,最后根据化简结果即可求得k的取值范围.【解答】解:∵正数a、b、c满足a2+c2=16,b2+c2=25,∴c2=16﹣a2,a2>0所以0<c2<16同理:有c2=25﹣b2得到0<c2<25,所以0<c2<16两式相加:a2+b2+2c2=41即a2+b2=41﹣2c2又∵﹣16<﹣c2<0即﹣32<﹣2c2<0∴9<41﹣2c2<41即9<k<41.10.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD 是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9 .【考点】扇形面积的计算.【分析】要求图1中的圆与扇环的面积比,就要先根据面积公式先计算出面积.再计算比.【解答】解:设正方形的边长为2,则圆的面积为π,扇环的面积为(4π﹣π)=π,所以图1中的圆与扇环的面积比为4:9.11.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是x<﹣1或x>3 .【考点】二次函数与不等式(组).【分析】由抛物线与x轴的一个交点(3,0)和对称轴x=1可以确定另一交点坐标为(﹣1,0),又y=ax2+bx+c>0时,图象在x轴上方,由此可以求出x的取值范围.【解答】解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故答案为:x<﹣1或x>3.12.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需6n+3@9+6(n﹣1)根火柴棒.【考点】规律型:图形的变化类.【分析】通过观察发现后边的图形总比前边的图形多的根数,即可解决.【解答】解:观察图形发现:第一个图形中有9根,后边是多一个图形,多6根.根据这一规律,则第n个图形中,需要9+6(n﹣1)=6n+3.三、解答题、13.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.14.化简求值:,其中x=.【考点】分式的化简求值.【分析】首先把除法运算转化成乘法运算,进行因式分解,约分,然后进行减法运算,最后代值计算.【解答】解:原式====;当x=时,原式=.15.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【考点】列表法与树状图法;概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.16.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;【分析】(1)要求x,y的值,根据表格中的数据,即可找到只含有x,y的行或列,列出方程组即可;(2)根据(1)中求得的x,y的值和每行的3个数、每列的3个数、斜对角的3个数之和均相等即可完成表格的填写.【解答】解:(1)由题意,得,解得;(2)如图17.在劳技课上,老师请同学们在一张长为17cm,宽为16 cm的长方形纸板上剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们设计出不同类型的,你认为符合条件的等腰三角形,(分别在下列矩形中画出示意图)并分别计算剪下的等腰三角形的面积.(位置不同,形状全等的将视为一种结果)【考点】作图—应用与设计作图.【分析】(1)在BA、BC上分别截取BE=BF=10cm;(2)在BA上截取BE=10,以E为圆心,10长为半径作弧,交AD于F;(3)在BC上截取BF=10,以F为圆心10为半径作弧,交CD于E.【解答】解:如图所示:(1)10×10÷2=50cm2;(2)AE=16﹣10=6cm,AF==8cm,10×8÷2=40cm2;(3)CF=17﹣10=7cm,EC==cm,10×÷2=5cm2.画出一个且面积计算正确得,两个得,三个得.18.已知x1,x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=3﹣.(1)求x1,x2及a的值;(2)求x13﹣3x12+2x1+x2的值.【考点】根与系数的关系;解二元一次方程组;一元二次方程的解.【分析】(1)将x1+2x2=3﹣与两根之和公式、两根之积公式联立组成方程组即可求出x1,x2及a的值;(2)欲求x13﹣3x12+2x1+x2的值,先把代此数式变形为两根之积或两根之和的形式,代入数值即可求出x13﹣3x12+2x1+x2的值.【解答】解:(1)由题意,得,解得x1=1+,x2=1﹣.所以a=x1•x2=(1+)(1﹣)=﹣1;(2)由题意,得x12﹣2x1﹣1=0,即x12﹣2x1=1∴x13﹣3x12+2x1+x2=x13﹣2x12﹣x12+2x1+x2=x1(x12﹣2x1)﹣(x12﹣2x1)+x2=x1﹣1+x2=(x1+x2)﹣1=2﹣1=1.19.在平面直角坐标系中,将A(1,0)、B(0,2)、C(2,3)、D(3,1)用线段依次连接起来形成一个图案(图案①).将图案①绕点O逆时针旋转90°得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③.(1)在坐标系中分别画出图案②和图案③;(2)若点D在图案②中对应的点记为点E,在图案③中对应的点记为点F,则S△DEF= 15 ;(3)若图案①上任一点P(A、B除外)的坐标为(a,b),图案②中与之对应的点记为点Q,图案③中与之对应的点记为点R,则S△PQR= (a2+b2).(用含有a、b的代数式表示)【考点】作图-位似变换;三角形的面积;矩形的性质.【分析】(1)将图案①中的各顶点绕点O逆时针旋转90°得到知顶点的对应点,顺次连接对应点得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③;即连接OA,OB,OC,OD,并延长到A′,B′,C′,D′,使OA′,OB′,OC′,OD′是OA,OB,OC,OD的2倍,顺次连接各点即可;(2)根据网格分析S△DEF是由哪几个图形组成,利用面积公式计算.从图中可看出三角形是矩形的面积﹣三个三角形的面积.所以S△DEF=9×5﹣4×2÷2﹣5×5÷2﹣9×3÷2=15;(3)首先从图中找出这个三角形的三点,然后再连线组成三角形,观察网格得到三角形的面积公式=矩形﹣3个三角形的面积,列出式子计算.【解答】解:(1)如图(图②(2),图③3分)(2)从图中可看出三角形是矩形的面积﹣三个三角形的面积.所以S△DEF=9×5﹣4×2÷2﹣5×5÷2﹣9×3÷2=15.(3)(a2+b2)20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C 的抛物线上;(3)在(2)的条件下,求证:直线CD是⊙M的切线.【考点】待定系数法求二次函数解析式;确定圆的条件;切线的判定.【分析】(1)题利用“两弦垂直平分线的交点为圆心”可确定圆心位置;(2)先根据A、B、C三点坐标,用待定系数法求出抛物线的解析式,然后将D点坐标代入抛物线的解析式中,即可判断出点D是否在抛物线的图象上;(3)由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【解答】(1)解:如图1,点M即为所求;(2)解:由A(0,4),可得小正方形的边长为1,从而B(4,4)、C(6,2)设经过点A、B、C的抛物线的解析式为y=ax2+bx+4依题意,解得所以经过点A、B、C的抛物线的解析式为y=﹣x2+x+4把点D(7,0)的横坐标x=7代入上述解析式,得所以点D不在经过A、B、C的抛物线上;(3)证明:如图,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD∴CE=2,ME=4,ED=1,MD=5在Rt△CEM中,∠CEM=90°∴MC2=ME2+CE2=42+22=20在Rt△CED中,∠CED=90°∴CD2=ED2+CE2=12+22=5∴MD2=MC2+CD2∴∠MCD=90°∵MC为半径∴直线CD是⊙M的切线.21.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如请结合图表完成下列问题:(1)表中的a= 12 ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第三组;(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:要让80﹣100次数的6人多锻炼.【考点】频数(率)分布直方图;频数(率)分布表;中位数.【分析】(1)根据直方图的意义,各组频数之和即样本容量,结合题意只需用总数减所有频数就是a的值;(3)根据中位数的求法,先将数据按从小到大的顺序排列,中间位置的那个数或中间的两个数的平均数就是中位数;从图中可看出是中位数的所在的位置;(4)根据题意,结合统计表的信息,给出合理的建议即可.【解答】解:(1)根据题意,有a=50﹣6﹣8﹣18﹣6=12;(2)根据(1)的答案,补全直方图如图所示;(3)根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共50人,第25、26名都在第3组,所以这个样本数据的中位数落在第三组;(4)根据直方图的信息,给出合理的建议即可,答案不唯一,如要让80﹣100次数的6人多锻炼.故填12;3;要让80﹣100次数的6人多锻炼.22.如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.【考点】二次函数综合题.【分析】(1)根据图表可以得到,抛物线经过的四点的坐标,根据待定系数法,设y=ax2+bx+c 把其中三点的坐标,就可以解得函数的解析式.进而就可以求出A、B、C的坐标.(2)易证△ADG∽△AOC,AD=2﹣m,根据相似三角形的对应边的比相等,就可以用m表示出DG的长,再根据△BEF∽△BOC,就可以表示出BE,就可以得到OE,因而ED就可以表示出来.因而S与m的函数关系就可以得到.(3)当矩形DEFG的面积S取最大值时,就是函数的值是最大值时,根据二次函数的性质就可以求出相应的m的值.则矩形的四个顶点的坐标就可以求出,根据待定系数法就可以求出直线DF的解析式.就可以求出直线DF与抛物线的交点的坐标,根据FM=k•DF,就可以表示出M的坐标,把M的坐标代入函数就可以得到一个关于k的方程,求出k的值,判断是否满足函数的解析式.【解答】解:(1)解法一:设y=ax2+bx+c(a≠0),任取x,y的三组值代入,求出解析式y=x2+x﹣4,令y=0,求出x1=﹣4,x2=2;令x=0,得y=﹣4,∴A、B、C三点的坐标分别是A(2,0),B(﹣4,0),C(0,﹣4).解法二:由抛物线P过点(1,﹣),(﹣3,﹣)可知,抛物线P的对称轴方程为x=﹣1,又∵抛物线P过(2,0)、(﹣2,﹣4),∴由抛物线的对称性可知,点A、B、C的坐标分别为A(2,0),B(﹣4,0),C(0,﹣4).(2)由题意, =,而AO=2,OC=4,AD=2﹣m,故DG=4﹣2m,又=,EF=DG,得BE=4﹣2m,∴DE=3m,∴S DEFG=DG•DE=(4﹣2m)3m=12m﹣6m2(0<m<2).(3)∵S DEFG=12m﹣6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,﹣2),F(﹣2,﹣2),E(﹣2,0),设直线DF的解析式为y=kx+b,易知,k=,b=﹣,∴y=x﹣,又可求得抛物线P的解析式为:y=x2+x﹣4,令x﹣=x2+x﹣4,可求出x=.设射线DF与抛物线P相交于点N,则N的横坐标为,过N作x轴的垂线交x 轴于H,有===,点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是k ≠且k >0.23.如图,在Rt △ABC 中,∠C=90°,AC=3,AD=5,点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回,点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB ﹣BC ﹣CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t=2时,AP= 1 ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值;若不能,请说明理由;(4)当DE 经过点C 时,请直接写出t 的值.【考点】四边形综合题.【分析】(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离;(2)过点Q作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t.【解答】解:(1)如图1,过点Q作QF⊥AC于点F,∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,∴当t=2时,AP=3﹣2=1;在Rt△ABC中,∠C=90°,AC=3,AB=5.∴BC=4,∵QF⊥AC,BC⊥AC,∴QF∥BC,∴△ACB∽△AFQ,∴=,∴=,解得:QF=;故答案为:1,;(2)如图1,过点Q作QF⊥AC于点F,如图1,AQ=CP=t,∴AP=3﹣t.由△AQF∽△ABC,得QF=.∴QF=t.∴S=(3﹣t)•t,即S=﹣t2+t;(3)能.①当由△APQ∽△ABC,DE∥QB时,如图2.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°.由△APQ∽△ABC,得=,即=.解得t=;②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得=,即=.解得t=,综上:在点E从B向C运动的过程中,当t=或时,四边形QBED能成为直角梯形;(4)t=或t=.①点P由C向A运动,DE经过点C.连接QC,作QG⊥BC于点G,如图4.∵sinB===,∴QG=(5﹣t),同理BG=(5﹣t),∴CG=4﹣(5﹣t),∴PC=t,QC2=QG2+CG2=[(5﹣t)]2+[4﹣(5﹣t)]2.∵CD是PQ的中垂线,∴PC=QC则PC2=QC2,得t2=[(5﹣t)]2+[4﹣(5﹣t)]2,解得t=;,②点P由A向C运动,DE经过点C,如图5.PC=6﹣t,可知由PC2=QC2可知,QC2=QG2+CG2(6﹣t)2=[(5﹣t)]2+[4﹣(5﹣t)]2,即t=.。
2016年江西中考数学大联考试卷3(带答案和解释)2016年江西省中考大联考数学试卷(三)一、选择题(每小题3分,共18分) 1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是() A.∠A=30°,∠B=40°B.∠A=30°,∠B=110° C.∠A=30°,∠B=70° D.∠A=30°,∠B=90° 2.下列各数中是有理数的是() A. B.4πC.sin45° D. 3.关于函数y=2x,下列结论中正确的是() A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限 C.y随x的增大而增大D.不论x取何值,总有y>0 4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A. B. C. D. 5.如图,有一个正方体纸巾盒,它的平面展开图是() A. B. C. D. 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是() A.左、右两个几何体的主视图相同 B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(每题3分,共24分) 7.函数y= 中,自变量x的取值范围是. 8.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为. 9.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为. 10.已知�x2+4x的值为6,则2x2�8x+4的值为. 11.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是个. 12.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为() 13.如图,点A、B是反比例函数(x>0)图象上的两个点,在△AOB中,OA=OB,BD垂直于x轴,垂足为D,且AB=2BD,则△AOB的面积为. 14.如图,半径为1的⊙P在射线AB上运动,且A(�3,0)B(0,3),那么当⊙P 与坐标轴相切时,圆心P的坐标是.三、解答题 15.解不等式组:,并在数轴上把解集表示出来. 16.已知(a+2+ )2与|b+2�|互为相反数,求(a+2b)2�(2b+a)(2b�a)�2a2的值. 17.当a<�1时,代数式6�9a�的值是正的还是负的?试说明你的理由. 18.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(�3,1),B、C两点在直线y=�3上,D、E两点在y轴上.(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;(2)求F点到y轴的距离. 19.如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为n≥8 .规定:顶点既在圆上又是正方形格点的直角三角形称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来. 20.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1 一班 5 8 8 9 8 10 10 8 5 5 二班 10 6 6 9 10 4 5 7 10 8 表2 班级平均数中位数众数方差及格率优秀率一班 7.6 8 a3.82 70% 30% 二班 b 7.5 104.94 80% 40% (1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率. 21.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元? 22.如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.(1)求证:四边形ABFE是平行四边形.(2)△ABD 沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,①当t为何值时,▱ABFE是菱形?请说明你的理由.②▱ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由. 23.已知二次函数.(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a�k2+6k�4=0 有大于0且小于3的实数根,求a的整数值. 24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足 = ,求的值.(提示:请利用备用图进行探求) 2016年江西省中考大联考数学试卷(三)参考答案与试题解析一、选择题(每小题3分,共18分) 1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是() A.∠A=30°,∠B=40° B.∠A=30°,∠B=110° C.∠A=30°,∠B=70° D.∠A=30°,∠B=90° 【考点】命题与定理.【分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解答】解:例如:若∠A=30°,∠B=70°,则∠A+∠B>90°.故选C 2.下列各数中是有理数的是() A. B.4π C.sin45° D.【考点】特殊角的三角函数值.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、 = =3 ,是无理数; B、4π是无理数; C、sin45°= 是无理数; D、 = =2,是有理数;故选D. 3.关于函数y=2x,下列结论中正确的是() A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限 C.y随x的增大而增大 D.不论x取何值,总有y>0 【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误; B、函数图象经过第一、三象限,错误; C、y随x的增大而增大,正确; D、当x>0时,才有y>0,错误;故选C. 4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A. B. C. D.【考点】生活中的旋转现象.【分析】根据△ABC 绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A. 5.如图,有一个正方体纸巾盒,它的平面展开图是() A. B. C. D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B. 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是() A.左、右两个几何体的主视图相同 B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误; B、左、右两个几何体的左视图为:,故此选项正确; C、左、右两个几何体的俯视图为:,故此选项错误; D、由以上可得,此选项错误;故选:B.二、填空题(每题3分,共24分) 7.函数y= 中,自变量x的取值范围是x≥0且x≠1.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x�1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1. 8.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为4.32×10�6 .【考点】科学记数法―表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10�n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000432用科学记数法表示为4.32×10�6.故答案为:4.32×10�6. 9.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为70π.【考点】由三视图判断几何体.【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(π×42�π×32)=70π,故答案为70π. 10.已知�x2+4x 的值为6,则2x2�8x+4的值为�8 .【考点】代数式求值.【分析】直接将原式变形进而将已知代入求出答案.【解答】解:∵�x2+4x=6,∴x2�4x=�6,∴2x2�8x+4=2(x2�4x)+4 =2×(�6)+4 =�8.故答案为:�8. 11.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是20 个.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【解答】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在20%和40%,∴口袋中白色球的个数很可能是(1�20%�40%)×50=20(个).故答案为:20. 12.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质得出位似比进而得出答案.【解答】解:如图所示:∵△ABO缩小后变为△A′B′O,∴△OAB∽△OA′B′,∴ = = ,∵线段AB上有一点P(m,n),∴点P在A′B′上的对应点P′的坐标为:(,). 13.如图,点A、B是反比例函数(x>0)图象上的两个点,在△AOB中,OA=OB,BD垂直于x轴,垂足为D,且AB=2BD,则△AOB的面积为 3 .【考点】反比例函数综合题.【分析】作等腰三角形底边上的高,利用等腰三角形的性质和已知条件得到两个三角形全等,由此可以得到△AOB的面积是△OBD的2倍,进而求得△OAB的面积.【解答】解:作OC⊥AB于C点,∵OA=OB,∴AC=CB,∵AB=2BD,∴BC=BD,∵∠BDO=∠BCO=90°,OB=OB,∴△OCB≌△ODB,∵S△OBD= ,∴S△OAB=2S△OBC=2× =3.故答案为:3. 14.如图,半径为1的⊙P在射线AB上运动,且A(�3,0)B(0,3),那么当⊙P与坐标轴相切时,圆心P的坐标是(�2,1)或(�1,2)或(1,4).【考点】切线的性质;坐标与图形性质.【分析】由⊙P与坐标轴相切画出符合题意的图形可知有三种情况,再根据圆的半径长为1以及点A和点B的坐标即可求出不同情况下圆心的坐标.【解答】解:如图所示:当点P在第一项象限时,则点P的坐标为(1,4);当点P在第二象限时,则点P′坐标为(�1,2);点P″的坐标为(�2,1),故答案为:(�2,1)或(�1,2)或(1,4).三、解答题 15.解不等式组:,并在数轴上把解集表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式,求出其解集,在数轴上表示出来,找出公共部分,即求出了不等式组的解集.【解答】解:解第一个不等式得x<1,解第二个不等式得x≥�2,所以不等式组的解集为�2≤x<1.其解集在数轴上表示为: 16.已知(a+2+ )2与|b+2�|互为相反数,求(a+2b)2�(2b+a)(2b�a)�2a2的值.【考点】整式的混合运算―化简求值.【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出a与b 的值,原式利用完全平方公式,平方差公式化简,去括号合并后代入计算即可求出值.【解答】解:∵(a+2+ )2与|b+2� |互为相反数,∴(a+2+ )2+|b+2� |=0,∴a=�2�,b=�2+ ,则原式=a2+4ab+4b2�4b2+a2�2a2=4ab=4×(�2�)×(�2+ )=4. 17.当a<�1时,代数式6�9a�的值是正的还是负的?试说明你的理由.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据a<�1进行判断即可.【解答】解:是正的.理由:原式= =�,∵a<�1,(3a�1)2>0,∴原式的值是正的. 18.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(�3,1),B、C两点在直线y=�3上,D、E两点在y轴上.(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;(2)求F点到y轴的距离.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】(1)欲证明KC=HA,只要证明△AKC≌△CHA即可.(2)作PF⊥DE于E,只要证明△AKC≌△DPF即可.【解答】(1)证明:如图,AH⊥BC于H,CK⊥AB于K.∴∠DPF=∠AKC=∠CHA=90°,∵AB=BC,∴∠BAC=∠BCA,在△AKC和△CHA中,,∴△AKC≌△CHA,∴KC=HA.(2)作PF⊥DE于E.∵B、C在y=�3上,且点A的坐标为(�3,1),∴AH=4,∴KC=AH=4,∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF,在△AKC和△DPF中,,∴△AKC≌△DPF,∴KC=PF=4.∴F点到y轴的距离4. 19.如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为n≥8 .规定:顶点既在圆上又是正方形格点的直角三角形称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来.【考点】作图―应用与设计作图.【分析】(1)以直径为斜边,直角边分别为2和6的圆内接直角三角形满足要求;(2)以直径为斜边,直角边分别为2 和4 的圆内接直角三角形满足要求;(3)以直径为斜边,直角边为2 的圆内接等腰直角三角形满足要求.【解答】解:(1)如图1所示,△ABC即为所求三角形,其中AC=2,BC=6;(2)如图2所示,△DEF即为所求作三角形,其中DF=2 ,EF=4 ,则其面积为×2 ×4 =8;(3)如图3所示,△PQR即为所求作三角形,其中PR=QR,∠PRQ=90°,∵PQ= =2 ,∴∠PRQ所对弧长为 = π. 20.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1 一班 5 8 8 9 8 10 10 8 5 5 二班 10 6 6 9 104 5 7 10 8 表2 班级平均数中位数众数方差及格率优秀率一班 7.6 8 a 3.82 70% 30% 二班 b 7.5 10 4.94 80% 40% (1)在表2中,a= 8 ,b= 7.5 ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【考点】列表法与树状图法;加权平均数;中位数;众数;方差.【分析】(1)分别用平均数的计算公式和众数的定义解答即可;(2)方差越小的成绩越稳定,据此求解;(3)列表或树状图后利用概率公式求解即可;【解答】解:(1)∵数据8出现了4次,最多,∴众数a=8; b= =7.5;(2)一班的平均成绩高,且方差小,较稳定,故一班成绩好于二班;(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P (一男一女)= = . 21.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据买了“雀巢巧克力”和“趣多多小饼干”共10包,“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元,列出方程组,求解即可;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,求出购物金额,若在B超市购物花费少,也求出购物金额,从而得出去哪家超市购物更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据在B超市累计购物超过100元后,超过100元的部分打八折,列出不等式,再进行求解,即可得出答案.【解答】解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m�50)<100+0.8(m�100),解得:m<150,若在B超市购物花费少,则50+0.9(m�50)>100+0.8(m�100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n�100)×0.8≤20n,解得:n≥8 ,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元. 22.如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.(1)求证:四边形ABFE是平行四边形.(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,①当t为何值时,▱ABFE是菱形?请说明你的理由.②▱ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.【考点】四边形综合题.【分析】(1)根据全等三角形的性质得到AB=EF,根据平行线的判定定理证明AB∥EF,根据平行四边形的判定定理证明结论;(2)①根据△ABD的移动速度和时间得到D 与C重合,根据菱形的判定定理解答即可;②根据矩形的性质和正弦的定义求出BE,根据正切的定义求出AE,求出CD的长,得到t的值,根据矩形的面积公式求出面积.【解答】(1)证明:∵已知△ABD 和△CEF都是斜边为2cm的全等直角三角形,∴AB=EF,∵∠ABD=∠FEC,∴AB∥EF,又AB=EF,∴四边形ABFE是平行四边形;(1)①当t=4时,▱ABFE是菱形.理由如下:∵△ABD沿着BE的方向以每秒1cm的速度运动, 4秒后,△ABD移动的距离为4÷1=4,又DC=4,∴D与C重合,∴AF⊥BE,又四边形ABFE是平行四边形,∴四边形ABFE是菱形;②当四边形ABFE是矩形时,∠BAE=90°,∵∠ABD=60°,∴∠BEA=30°,∴BE=2AB=4,AE= =2 ,∵∠ABD=60°,AB=2,∴BD=1,同理CE=1,∴CD=4�1�1=2,t=2÷1=2秒,矩形的面积=AB×AE=4 cm2. 23.已知二次函数.(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a�k2+6k�4=0 有大于0且小于3的实数根,求a的整数值.【考点】二次函数综合题.【分析】(1)表示出方程:x2+kx+ k� =0的判别式,即可得出结论;(2)二次函数的图象与x轴的两个交点在点A(1,0)的两侧,则可得当x=1时,函数值y<0,再由关于x 的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,可得出k的取值范围,从而得出k的整数值;(3)将求得的k的值代入,然后可求出方程的根,根据方程有大于0且小于3的实数根,可得出a的取值范围,继而得出a的整数值.【解答】(1)证明:x2+kx+ k�=0,△1=b2�4ac=k2�4( k�) =k2�2k+14 =k2�2k+1+13 =(k�1)2+13>0,∴不论k为任何实数,该函数的图象与x轴必有两个交点;(2)解:∵二次函数y=x2+kx+ k�的图象与x轴的两个交点在点(1,0)的两侧,且二次函数开口向上,∴当x=1时,函数值y<0,即1+k+ k�<0,解得:k<,∵关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,∴k≠0且△2=b2�4ac=(2k+3)2�4k2=4k2+12k+9�4k2=12k+9>0,∴k>�且k≠0,∴�<k<且k≠0,∴k=1;(3)解:由(2)可知:k=1,∴x2+2(a+1)x+2a+1=0,解得x1=�1,x2=�2a�1,根据题意,0<�2a�1<3,∴�2<a<�,∴a的整数值为�1. 24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2 ;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足 = ,求的值.(提示:请利用备用图进行探求)【考点】勾股定理的应用;相似形综合题.【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长;过点C作CD⊥AB,垂足为D,从而可求得CD、PD的长,然后在Rt三角形CDP中依据勾股定理可求得PC的长;②△ACB为等腰直角三角形,CD⊥AB,从而可求得:CD=AD=DB,然后根据AP=DC�PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CD⊥AB,垂足为D,则AP=(AD+PD)=(DC+PD),PB=(DP�BD)=(PD�DC),可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PD 的长(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC和PC的长度即可.【解答】解:(1)如图①:①∵△ABC 是等腰直直角三角形,AC=1+ ∴AB= = = + ,∵PA= ,∴PB= ,作CD⊥AB于D,则AD=CD= ,∴PD=AD�PA= ,在Rt△PCD中,PC= =2,故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD�PD)2=(DC�PD)2=DC2�2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DC•PD+PD2 ∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+B P2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2, PB2=(DP�BD)2=(PD�DC)2=DC2�2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵ ,∴ .∴ .在Rt△CP1D中,由勾股定理得: = = DC,在Rt△ACD中,由勾股定理得:AC= = = DC,∴ = .②当点P位于点P2处时.∵ = ,∴ .在Rt△CP2D中,由勾股定理得: = = ,在Rt△ACD中,由勾股定理得:AC= = = DC,∴ .综上所述,的比值为或. 2017年2月28日。
2016年江西省中考数学模拟试卷(B卷)一、选择题(共6小题,每小题3分,满分18分)1.若分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x=1 D.x<12.已知一组数据7,6,x,9,11的平均数是9,那么数x等于()A.3 B.10 C.12 D.93.如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A.45° B.60° C.90° D.120°4.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣25.计算:的结果是()A.B.3 C.3 D.96.一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张二、填空题(本大题共有3小题,每小题3分,共18分)7.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,将年发电量用科学记数法表示为千瓦时.8.分解因式:a3﹣16a= .9.如图,根据下面的运算程序,若输入x=1时,输出的结果y= .10.在计算器上,有很多按键,有的是运算符号键,有的是数字键,按照下面的程序进行操作:表中的x与y分别是输入的6个数及相应的计算结果,上面操作程序中所按的第三个运算符号键和第四个数字键应是.11.反比例函数y=的图象与正比例函数y=3x的图象交于点P(m,6),则反比例函数的关系式是.12.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.三、解答题(本大题共有5小题,共30分)13.解方程组:.14.先化简下列代数式,再求值:(﹣)÷,其中x=+1.15.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.16.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.17.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.四、解答题(本大题共有4小题,共32分)18.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:(1)求张老师抽取的样本容量;(2)把图甲和图乙都补充绘制完整;(3)请估计全年级填报就读职高的学生人数.19.如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.(1)求AO与BO的长;(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?②如图3所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润元.(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?21.我们给出如下定义:若一个四边形的有一组对边相等,另一组对边不相等,则称这个四边形为等对边四边形.(1)写出你所学过的特殊四边形中是等对边四边形的一种图形的名称;(2)请你探究:等对边四边形另一组对边中点的连线段与等对边中一条线段长度的大小关系,并证明你的结论.(写出已知、求证与证明)五、解答题(本大题共有1小题,共10分)22.小明为了通过描点法作出函数y=x2﹣x+1的图象,先取自变量x的7个值满足:x2﹣x1=x3﹣x2=…=x7﹣x6=d,再分别算出对应的y值,列出表1:表1记m1=y2﹣y1,m2=y3﹣y2,m3=y4﹣y3,m4=y5﹣y4,…;s1=m2﹣m1,s2=m3﹣m2,s3=m4﹣m3,…(1)判断s1、s2、s3之间关系,并说明理由;(2)若将函数“y=x2﹣x+1”改为“y=ax2+bx+c(a≠0)”,列出表2:表2其他条件不变,判断s1、s2、s3之间关系,并说明理由;(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表3:表3由于小明的粗心,表中有一个值算错了,请指出算错的值(直接写答案).六、解答题(本大题共有1小题,共12分)23.如图,菱形ABCD中,∠A=60°,边长为4厘米,动点P从A出发,以1厘米/秒的速度沿A﹣B﹣C运动,在P出发1秒后,点Q以同样的速度沿相同的路线运动,过点P、Q的直线L1、L2相互平行,且都与AB边所在的直线成60°角,设P点运动的时间为x秒(1<x<8),直线L1、L2在菱形ABCD上截得的图形面积为y平方厘米.(1)阴影部分的图形总是梯形吗?(2)求y与x之间的关系式;(3)当x取何值时,y的值最大,最大值为多少?2016年江西省中考数学模拟试卷(B卷)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.若分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x=1 D.x<1【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不等于0.【解答】解:∵x﹣1≠0,∴x≠1.故选:A.2.已知一组数据7,6,x,9,11的平均数是9,那么数x等于()A.3 B.10 C.12 D.9【考点】算术平均数.【分析】一组数据7,6,x,9,11的平均数是9,根据平均数的概念,即可求得x的值.【解答】解:∵(7+6+x+9+11)=9,解得:x=5×9﹣7﹣6﹣9﹣11=12.故本题选C.3.如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A.45° B.60° C.90° D.120°【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【解答】解:∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选B.4.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选D.5.计算:的结果是()A.B.3 C.3 D.9【考点】二次根式的加减法.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解: =,故选A.6.一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张【考点】等腰三角形的性质;相似三角形的判定与性质.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=4.5,所以另一段长为22.5﹣4.5=18,因为18÷3=6,所以是第6张.故选:C.二、填空题(本大题共有3小题,每小题3分,共18分)7.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,将年发电量用科学记数法表示为8.47×1010千瓦时.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:847亿=84 700 000 000=8.47×1010千瓦时.8.分解因式:a3﹣16a= a(a+4)(a﹣4).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).9.如图,根据下面的运算程序,若输入x=1时,输出的结果y= 2 .【考点】函数值.【分析】根据1的值确定利用哪个函数解析式计算,然后代入求值即可.【解答】解:x=1时,y=12+2﹣1=2.故答案是:2.10.在计算器上,有很多按键,有的是运算符号键,有的是数字键,按照下面的程序进行操作:表中的x与y分别是输入的6个数及相应的计算结果,上面操作程序中所按的第三个运算符号键和第四个数字键应是+1 .【考点】计算器—有理数.【分析】根据表格中数据求出x、y之间的关系,即可得出答案.【解答】解:根据表格中数据分析可得:x、y之间的关系为:y=3x+1,则按的第三个键和第四个键应是“+”和“1”.故答案为:+111.反比例函数y=的图象与正比例函数y=3x的图象交于点P(m,6),则反比例函数的关系式是.【考点】反比例函数与一次函数的交点问题.【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:先根据正比例函数y=3x求出P点坐标为(2,6),代入反比例函数y=中得k=12,所以反比例函数的关系式是.故答案为:.12.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.【考点】勾股定理;矩形的性质.【分析】连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,根据矩形的性质及勾股定理即可求得其周长.【解答】解:如图,连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,∵AG==2,AF==4,∴AF2=AD2+DF2=(AG+GD)2+FD2=AG2+GD2+2AG•GD+FD2,GD2+FD2=FG2∴AF2=AG2+2A G•GD+FG2∴32=20+2×2×GD+4,∴GD=,FD=,∵∠BAE+∠AEB=90°=∠FEC+∠AEB,∴∠BAE=∠FEC,∵∠B=∠C=90°,AE=EF,∴△ABE≌△ECF(AAS),∴AB=CE,CF=BE,∵BC=BE+CE=AD=AG+GD=2+,∴AB+FC=2+,∴矩形ABCD的周长=AB+BC+AD+CD=2BC+AB+CF+DF=2++2++2++=8.故答案为:8.三、解答题(本大题共有5小题,共30分)13.解方程组:.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:6x+2x=8,解得:x=1,把x=1代入①得:y=2,则方程组的解为.14.先化简下列代数式,再求值:(﹣)÷,其中x=+1.【考点】二次根式的化简求值;分式的化简求值.【分析】先算括号里的,按同分母分式相减法则:分母不变,分子相减;再将除法化成乘法,化简为x﹣2,再将x的值代入计算.【解答】解:(﹣)÷,=•,=,=x﹣2,当x=+1时,原式=+1﹣2=﹣1.15.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】相似三角形的判定与性质;平行四边形的性质;菱形的判定.【分析】(1)根据平行四边形的对角相等,以及垂直的定义可得△ABE和△ADF的两角对应相等,则两个三角形相似;(2)证明△ABG≌△ADH,则AB=AD,从而证得四边形是菱形.【解答】解:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵四边形ABCD是平行四边形,∴∠ABE=∠ADF,∴△ABE∽△ADF;(2)∵△ABE∽△ADF,∴∠BAG=∠DAH,∴AG=AH,∴∠AGH=∠AHG,∴∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.16.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.【考点】概率公式;二元一次方程组的应用.【分析】(1)根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=25.【解答】解:(1)根据题意得:,整理,得8x=3x+3y,∴5x=3y,∴;(2)解法一:根据题意,得,整理,得2x+20=x+y+10,∴y=x+10,∴5x=3(x+10),∴x=15,y=25.解法二:(2)根据题意,可得,整理得,解得.17.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【考点】利用轴对称设计图案.【分析】因为正三角形是轴对称图形,其对称轴是从顶点向底边所作垂线,故只要所涂得小正三角形关于大正三角形的中垂线对称即可.【解答】解:如图.四、解答题(本大题共有4小题,共32分)18.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:(1)求张老师抽取的样本容量;(2)把图甲和图乙都补充绘制完整;(3)请估计全年级填报就读职高的学生人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据条形图和扇形图得到填报就读普高的学生人数以及百分比,计算即可;(2)分别求出填报就读职高的学生人数和填报就读其它的学生人数,补充完整图形;(3)根据填报就读职高的学生人数所占的百分比计算即可.【解答】解:(1)由条形图可知,填报就读普高的学生人数是30人,由扇形图可知,填报就读普高的学生人数所占的百分比是50%,∴张老师抽取的样本容量为:30÷50%=60人;(2)由条形图可知,填报就读职高的学生人数是25人,则填报就读其它的学生人数是5人,图甲和图乙都补充绘制完整如图:(3)全年级填报就读职高的学生人数为540×=225人.19.如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.(1)求AO与BO的长;(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?②如图3所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)直角三角形中已知斜边和一个角,那么两条直角边就容易求得了.(2)①可先设出AC,BD的长,然后表示出OC,OD的长,根据滑动前后梯子长不变的特点在直角三角形WMC中运用勾股定理求出未知数的值,然后求出AC,BD的长.②可根据直角三角形斜边中线定理,和已知的∠ABO的度数,来求出∠B′A′O的度数,然后求出OA′的长,从而求出AA′的长.【解答】解:(1)BO=AB•cos60°=4×=2(m)AO=AB•sin60°=4×=2(m)答:BO=2m;AO=2m.(2)①设AC=2x,BD=3x,在Rt△COD中,OC=2﹣2x,OD=2+3x,CD=4m.根据勾股定理有OC2+OD2=CD2.∴(2﹣2x)2+(2+3x)2=42.∴13x2+(12﹣8)x=0.∵x≠0,∴13x+12﹣8=0,∴x=m.∴AC=2x=m.答:梯子顶端A沿NO下滑了m.②∵P点和P′点分别是Rt△AOB的斜边AB与Rt△A′OB′的斜边A′B′的中点.∴PA=PO,P′A′=P′O.∴∠PAO=∠AOP,∠P′A′O=∠A′OP′.∴∠P′A′O﹣∠PAO=∠A′OP′﹣∠AOP.∴∠P′A′O﹣∠PAO=∠POP′=15°.又∵∠PAO=30°.∴∠P′A′O=45°.∴A′O=A′B′•cos45°=4×=2(m).∴AA′=AO﹣A′O=(2﹣2)m.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润2000 元.(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?【考点】二次函数的应用.【分析】(1)原来一天可获利润=(原售价﹣原进价)×一天的销售量;(2)①根据等量关系:降价后的单件利润×销售量=总利润,列方程解答;②根据“总利润=降价后的单件利润×销售量”列出函数表达式,并运用二次函数性质解答.【解答】解:(1)×100=2000(元);故答案为:2000.(2)①依题意得:=2160即x2﹣10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=,∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10≤0,∴当x=5时,商店所获利润最大.21.我们给出如下定义:若一个四边形的有一组对边相等,另一组对边不相等,则称这个四边形为等对边四边形.(1)写出你所学过的特殊四边形中是等对边四边形的一种图形的名称;(2)请你探究:等对边四边形另一组对边中点的连线段与等对边中一条线段长度的大小关系,并证明你的结论.(写出已知、求证与证明)【考点】三角形中位线定理;等腰梯形的性质.【分析】(1)根据题目中的定义即刻得到结论;(2)连接AC,取AC的中点G,连接EG,FG,根据三角形中位线的性质和三角形的三边关系即可得到结论.【解答】解:(1)所学过的特殊四边形中是等对边四边形的一种图形的名称:等腰梯形;(2)另一组对边中点的连线段小于等对边中一条线段长度;已知:四边形ABCD,AB=CD,点E,F分别是AD,BC的中点,求证:EF<AB,证明:连接AC,取AC的中点G,连接EG,FG,∵点E,F分别是AD,BC的中点,∴AE=DE,BF=CF,∴EG=CD,GF=AB,∵AB=CD,∴GE+GF=AB=CD,在△EFG中,EG+FG>EF,∴AB>EF.五、解答题(本大题共有1小题,共10分)22.小明为了通过描点法作出函数y=x2﹣x+1的图象,先取自变量x的7个值满足:x2﹣x1=x3﹣x2=…=x7﹣x6=d,再分别算出对应的y值,列出表1:表1记m1=y2﹣y1,m2=y3﹣y2,m3=y4﹣y3,m4=y5﹣y4,…;s1=m2﹣m1,s2=m3﹣m2,s3=m4﹣m3,…(1)判断s1、s2、s3之间关系,并说明理由;(2)若将函数“y=x2﹣x+1”改为“y=ax2+bx+c(a≠0)”,列出表2:表2其他条件不变,判断s1、s2、s3之间关系,并说明理由;(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表3:表3由于小明的粗心,表中有一个值算错了,请指出算错的值(直接写答案).【考点】二次函数综合题.【分析】(1)根据表中数值计算出m1、m2、m3、m4,继而计算出s1、s2、s3的值即可得知;(2)可分别表示出s1,s2,s3的值,然后进行比较即可.(3)根据(1)(2)得出的规律,进行判断即可.【解答】解:(1)s1=s2=s3.∵m1=y2﹣y1=3﹣1=2,同理m2=4,m3=6,m4=8.∴s1=m2﹣m1=4﹣2=2,同理s2=2,s3=2.∴s1=s2=s3.(2)s1=s2=s3.∵m1=y2﹣y1=ax22+bx2+c﹣(ax12+bx1+c)=d[a(x2+x1)+b].m2=y3﹣y2=ax32+bx3+c﹣(ax22+bx2+c)=d[a(x3+x2)+b].同理m3=d[a(x4+x3)+b]、m4=d[a(x5+x4)+b].∴s1=m2﹣m1=d[a(x3+x2)+b]﹣d[a(x2+x1)+b]=2ad2.同理s2=2ad2、s3=2ad2.∴s1=s2=s3.(3)412.∵m1=y2﹣y1=50﹣10=40,m2=y3﹣y2=110﹣50=60,m3=y4﹣y3=190﹣110=80,m4=y5﹣y4=290﹣190=100,m5=y6﹣y5=412﹣290=122,…;∴且s1=s2=s3=20,而s4=22,故算错的值是412.六、解答题(本大题共有1小题,共12分)23.如图,菱形ABCD中,∠A=60°,边长为4厘米,动点P从A出发,以1厘米/秒的速度沿A﹣B﹣C运动,在P出发1秒后,点Q以同样的速度沿相同的路线运动,过点P、Q的直线L1、L2相互平行,且都与AB边所在的直线成60°角,设P点运动的时间为x秒(1<x<8),直线L1、L2在菱形ABCD上截得的图形面积为y平方厘米.(1)阴影部分的图形总是梯形吗?(2)求y与x之间的关系式;(3)当x取何值时,y的值最大,最大值为多少?【考点】四边形综合题.【分析】(1)阴影部分的图形不一定总是梯形;有三种情况:①当1<x≤4时;②当4<x <5时;③当5≤x<8时;容易得出结论;(2)分三种情况:①当1<x≤4时,由等边三角形的性质和梯形面积公式即可得出结果;②当4<x<5时,连接BD,证出△ABD和△BCD是等边三角形,得出BD=AB=4,由等边三角形的性质和图象面积公式即可得出结果;③当5≤x<8时,同①得出结果;(3)当1<x≤4时,由一次函数的性质得出y最大=;当4<x<5时,由二次函数的顶点是得出当x=时,y最大=;当5≤x<8时,由一次函数的性质得出当x=5时,y最大=;进行比较即可.【解答】解:(1)阴影部分的图形不一定总是梯形;有三种情况:①当1<x≤4时,阴影部分的图形是梯形;②当4<xxy5时,阴影部分的图形不是梯形;当③5≤x<8时,阴影部分的图形是梯形;(2)分三种情况:①当1<x≤4时,y=(x﹣1+x)×=x﹣;②当4<x<5时,连接BD,如图1所示:∵四边形ABCD是菱形,∠A=60°,∴AB=BC=CD=DA=4,∴△ABD和△BCD是等边三角形,∴BD=AB=4,y=(x﹣1+4)×(5﹣x)+(4+8﹣x)×(x﹣4)=﹣x2+x﹣;③当5≤x<8时,如图2所示y=(8﹣x+9﹣x)×=﹣x+;(3)当1<x≤4时,y=x﹣,y随x的增大而增大,当x=4时,y最大=;当4<x<5时,y=﹣x2+x﹣=﹣(x﹣)2+,∴当x=时,y最大=;当5≤x<8时,y=﹣x+,y随x的增大而减小,∴当x=5时,y最大=;综上所述:∵>,∴当x=时,y的值最大,最大值为.。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前江西省2016年中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6个小题,每小题3分,共18分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.下列四个数中,最大的一个数是( ) A .2BC .0D .2-2.将不等式321x -<的解集表示在数轴上,正确的是( )ABCD3.下列运算正确的是( )A .224a a a +=B .236()b b -=-C .23222x x x =D .222()m n m n -=-4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是 ( )A B C D5.设,αβ是一元二次方程2210x x +-=的两个根,则αβ的值是 ( )A .2B .1C .2-D .1-6.如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m ,水平部分线段长度之和记为n ,则这三个多边形中满足m n =的是( )A .只有②B .只有③C .②③D .①②③第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 7.计算:32-+= .8.分解因式:22ax ay -= .9.如图,ABC △中,33BAC ∠=︒,将ABC △绕点A 按顺时针方向旋转50︒,对应得到''ABC△,则'B AC ∠的度数为 . 10.如图,在□ABCD 中40C ∠=︒,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则BEF ∠的度数为 .11.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x =>及22(0)ky x x=>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2,则12k k -= .12.如图是一张长方形纸片ABCD ,已知8AB =,7AD =,E 为AB 上一点,5AE =,现要剪下一张等腰三角形纸片()AEP △,使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是 .三、解答题(本大题共11小题,共84分.解答应写出必要文字说明、证明过程或演算步骤) 13.(本小题满分6分)(1)解方程组:2,1.x y x y y -=⎧⎨-=+⎩CDA毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)(2)如图,Rt ABC △中,90ACB ∠=,将Rt ABC △向下翻折,使点A 与点C 重合,折痕为DE .求证:DE BC ∥.14.(本小题满分6分)先化简,再求值:221()339xx x x +÷+--,其中6x =.15.(本小题满分6分)如图,过点(2,0)A 的两条直线12,l l 分别交y 轴于点,B C ,其中点B 在原点上方,点C 在原点下方,已知AB =. (1)求点B 的坐标;(2)若ABC △的面积为4,求直线2l 的解析式.16.(本小题满分6分)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.(1)补全条形统计图;(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(本小题满分6分)如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画一个45角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图2中画出线段AB 的垂直平分线.项目情感品质日常学习习惯养成健康安全84B数学试卷 第5页(共24页) 数学试卷 第6页(共24页)18.(本小题满分8分)如图,AB 是O 的直径,点P 是弦AC 上一动点(不与,A C 重合),过点P 作PE AB ⊥,垂足为E ,射线EP 交AC 于点F ,交过点C 的切线于点D . (1)求证:DC DP =;(2)若30CAB ∠=,当F 是AC 的中点时,判断以,,,A O C F 为顶点的四边形是什么特殊四边形?说明理由.19.(本小题满分8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,依此类推,每一节套管均比前一节套管少4cm .完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm .图3(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值.20.(本小题满分8分)甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ②两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0; ③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 . (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.图2图1• • •毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页) 数学试卷 第8页(共24页)21.(本小题满分8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.已知10cm OA OB ==. (1)当18AOB ∠=时,求所作圆的半径;(结果精确到0.01cm )(2)保持18AOB ∠=不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm )(参考数据:sin90.1564,cos90.9877,sin180.3090, cos180.9511≈≈≈≈,可使用科学计算器)22.(本小题满分10分) 【图形定义】如图,将正n 边形绕点A 顺时针旋转60后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60后,交旋转前的图形于点P ,连接PO ,我们称OAB ∠为“叠弦角”,AOP △为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即AOP △)是等边三角形; (2)如图2,求证:OAB OAE ∠=∠'. 【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为 , ;(4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”); (5)图n 中,“叠弦角”的度数为 (用含n 的式子表示).23.(本小题满分12分)设抛物线的解析式为2y ax =,过点1(1,0)B 作x 轴的垂线,交抛物线于点1)(1,2A ;过点21()2,0B 作x 轴的垂线,交抛物线于点2A ;…;过点11((),0)2n n B -(n 为正整数)作x 轴的垂线,交抛物线于点n A ,连接n A 1n B +,得1Rt n n n A B B +△. (1)求a 的值;(2)直接写出线段n A n B ,n B 1n B +的长(用含n 的式子表示); (3)在系列1Rt n n n A B B +△中,探究下列问题: ①当n 为何值时,1Rt n n n A B B +△是等腰直角三角形?②设1k m n ≤<≤(,k m 均为正整数),问:是否存在1Rt k k k A B B +△与1Rt m m m A B B +△相似?若存在,求出其相似比;若不存在,说明理由.x图1图2B故选C.=x x x24【提示】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的数学试卷第9页(共24页)数学试卷第10页(共24页)数学试卷 第11页(共24页) 数学试卷 第12页(共24页)OAB S S =【提示】由反比例函数的图象过第一象限可得出5245数学试卷 第13页(共24页) 数学试卷 第14页(共24页)3)(3)(x x x -+补全条形统计图如图:46+数学试卷 第15页(共24页) 数学试卷 第16页(共24页)【考点】条形统计图,用样本估计总体17.【答案】(1)如图(画法有两种,正确画出其中一种即可)(2)如图:(画出其中一种即可)【解析】(1)如图所示,45ABC ∠=︒.(AB 、AC 是小长方形的对角线)(2)线段AB 的垂直平分线如图所示【提示】(1)根据等腰直角三角形的性质即可解决问题;(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【考点】应用与设计作图 18.【答案】(1)证明:连接OC ,∵OAC ACO ∠=∠,PE OE ⊥,OC CD ⊥,∴APE PCD ∠=∠, ∵APE DPC ∠=∠,∴DPC PCD ∠=∠,∴DC DP =; (2)解:以A ,O ,C ,F 为顶点的四边形是菱形;∵30CAB ∠=︒,∴60B ∠=︒,∴△OBC 为等边三角形,∴120AOC ∠=︒, 连接OF ,AF ,∵F 是AC 的中点,∴60AOF COF ∠=∠=︒,∴△AOF 与△COF 均为等边三角形,∴AF AO OC CF ===,∴四边形OACF 为菱形.【提示】(1)连接OC ,根据切线的性质和PE OE ⊥以及OA C OC A ∠=∠得APE DPC ∠=∠,然后结合对顶角的性质可证得结论;(2)由30CAB ∠=︒易得△OBC 为等边三角形,可得120AOC ∠=︒,由F 是AC 的中点,易得△AOF 与△COF 均为等边三角形,可得AF AO OC CF ===,易得以A ,O ,C ,F 为顶点的四边形是菱形. 【考点】切线的性质,垂径定理数学试卷 第17页(共24页)数学试卷 第18页(共24页)14)9++-他们的“最终稿点数”如下表所示:5解法二:他们的“最终稿点数”如下表所示:5数学试卷 第19页(共24页) 数学试卷 第20页(共24页)【提示】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案【考点】列表法与树状图法21.【答案】(1)所作圆的半径约为3.13cm (2)铅笔芯折断部分的长度是0.98cm【解析】(1)作OC AB ⊥于点C ,如图2所示,由题意可得,10OA OB cm ==,90OCB ∠=︒,18AOB ∠=︒, ∴9BOC ∠=︒∴22sin92100.1564 3.13AB BC OB cm ==︒≈⨯⨯≈,即所作圆的半径约为3.13cm;(2)作AD ⊥OB 于点D ,作AE AB =,如图3所示,∵保持18AOB ∠=︒不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等, ∴折断的部分为BE ,∵18AOB ∠=︒,OA OB =,90ODA ∠=︒, ∴81OAB ∠=︒,72OAD ∠=︒, ∴9BAD ∠=︒,∴22sin92 3.130.15640.98BE BD AB cm ==︒≈⨯⨯≈, 即铅笔芯折断部分的长度是0.98cm .【提示】(1)根据题意作辅助线OC AB ⊥于点C ,根据10OA OB cm ==,90OCB ∠=︒,18AOB ∠=︒,可以求得∠BOC 的度数,从而可以求得AB 的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE AB =,然后作出相应的辅助线,画出图形,从而可以求得BE 的长,本题得以解决. 【考点】解直角三角形的应用 22.【答案】(1)如图1,∵四边形ABCD 是正方形,由旋转知:'AD AD =,'90D D ∠=∠=︒,'60DAD OAP ∠=∠=︒,∴'D A P D A O ∠=∠,∴'()A P D A O D A S A△≌△∴AP AO =,∵60OAP ∠=︒,∴△AOP 是等边三角形;(2)如图2,作AM DE ⊥于M ,作AN CB ⊥于N .∵五边形ABCDE 是正五边形,由旋转知:'AE AE =,'108E E ∠=∠=︒,'60EAE OAP ∠=∠=︒∴'EAP E AO ∠=∠∴'()APE AOE ASA △≌△∴'OAE PAE ∠=∠. 在Rt △AEM和Rt △ABN中,72AEM ABN ∠=∠=︒,AE AB =∴Rt Rt ()AEM ABN AAS △≌△,∴EAM BAN ∠=∠,AM AN =.在Rt △APM 和Rt △AON 中,AP AO =,AM AN =∴Rt Rt ()APM AON HL △≌△∴PAM OAN∠=∠,∴PAE OAB∠=∠,∴'OAE OAB∠=∠(等量代换)数学试卷第21页(共24页)数学试卷第22页(共24页)所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.数学试卷第23页(共24页)数学试卷第24页(共24页)。
2016年江西省中等学校招生考试数学模拟试卷(三)一、选择题(共6小题,每小题3分,满分18分)1.下列计算中,结果是正数的是()A.1﹣3 B.(﹣1)×3C.3﹣1D.(﹣1)32.下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=13.如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图B.主视图和左视图C.主视图和俯视图D.主视图、左视图和俯视图4.如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC5.如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高6.关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴二、填空题(共6小题,每小题3分,满分18分)7.若是一个正整数,满足条件的最小正整数n= .8.如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于度.9.给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是.10.如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是度.11.一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.12.如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O 顺时针旋转a度(0<a<360),使点A落在双曲线上,则a= .三、解答题(共11小题,满分84分)13.化简:.14.解不等式组,并将解集在数轴上表示出来.15.已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.16.如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD 的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.18.如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.19.在平面直角坐标系中,若横坐标、纵坐标均为整数点称为格点,若一个多边形的顶点都是格点,则称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.(1)利用图中条件求a,b的值;(2)若某格点多边形对应的n=20,l=15,求S的值;(3)在图中画出面积等于5的格点直角三角形PQR.20.根据如图所示的程序计算:(1)选取一个你喜欢的x的值,输入计算,试求输出的y值是多少?(2)求出这样的x的值,输入计算后输出的y值是9;(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.21.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4位选手的短信支持率情况如图2,已知两次之间这4位选手的获得短信支持条数相同.(1)比较图1,图2的变化情况,写出2条结论;(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.22.我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线",锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅时的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.23.如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是的中点,点N是的中点,按要求解答下列问题:(1)如图2,连接MN交AB于点E,交AC于点F.①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.(3)在图1中,①仅用直尺找出点P,使点P为的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.2016年江西省中等学校招生考试数学模拟试卷(三)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.下列计算中,结果是正数的是( )A.1﹣3 B.(﹣1)×3C.3﹣1D.(﹣1)3【考点】负整数指数幂;有理数的混合运算.【分析】根据有理数的加减、乘除、乘方法则一一计算即可判断.【解答】解:∵1﹣3=﹣2,(﹣1)×3=﹣3,3﹣1=,(﹣1)3=﹣1,∴3﹣1>0,故选C.【点评】本题考查负整数指数幂,有理数的混合运算法则,解题的关键是熟练掌握这些知识,灵活一一法则计算,思考基础题,参考常考题型.2.下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=1【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据合并同类项的法则,同底数幂的乘法与除法的性质求解即可求得答案.【解答】解:A、a+a=2a,故本选项错误;B、a﹣a=0,故本选项正确;C、a•a=a2,故本选项正确;D、a÷a=1,故本选项正确.故选A.【点评】此题考查了合并同类项的法则,同底数幂的乘法与除法的性质.题目比较简单,解题需细心.3.如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图B.主视图和左视图C.主视图和俯视图D.主视图、左视图和俯视图【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,根据主视图、左视图和俯视图的形状,解答即可.【解答】解:如图,根据圆柱的主视图、左视图和俯视图,得,圆柱的主视图和左视图是全等形;故选B.【点评】本题考查了圆柱的三种视图,掌握三种视图的形状是解答的关键,考查了学生空间想象能力.4.如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC【考点】勾股定理.【分析】根据勾股定理得到AC2=AB2﹣BC2,又S圆环=S大圆﹣S小圆=π•AB2﹣π•BC2=π•(AB2﹣BC2)=π•AC2,即可得到答案.【解答】解:∵Rt△ABC中,∠C=90°,∴AC2=AB2﹣BC2,又∵S圆环=S大圆﹣S小圆=π•AB2﹣π•BC2=π•(AB2﹣BC2)=π•AC2,∴只需测量线段AC的长度即可计算出圆环的面积.故选D.【点评】本题考查了考查了勾股定理,圆的面积公式:S=π•R2;关键是得到S圆环=π•AC2.5.如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高【考点】函数的图象.【分析】此题只需先对图象的交点及在一点范围内图象的性质进行分析,然后再对各条信息逐一判断即可.【解答】解:由图象可以看出,30℃时两种固体物质的溶解度一样,故(A)正确;在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加,故(B)正确;在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10g,故(C)正确;在0℃﹣50℃之间,甲的溶解度比乙的溶解度高,故(D)错误,实际应改为30℃﹣50℃之间,甲的溶解度比乙的溶解度高.故选(D).【点评】本题主要考查了函数的图象,读懂图象的含义是解决该题的关键,考查的知识点也较全面.6.关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴【考点】二次函数的性质.【分析】由二次函数y=x2﹣2x+1﹣a2,可得其对称轴;由二次项系数,可知图象开口向下;由二次项系数和一次项系数可知抛物线与x轴的交点的位置,对每个选项分析、判断即可.【解答】解:A、由二次函数y=x2﹣2x+1﹣a2得,a=1>0,开口向下;故本项错误;B、由二次函数y=x2﹣2x+1﹣a2得,对称轴是x=1;故本项错误;C、由二次函数y=x2﹣2x+1﹣a2可知,与y轴的交点坐标为(0,1﹣a2),1﹣a2无法求得符号,故本项正确;D、由二次函数y=x2﹣2x+1﹣a2可知﹣=﹣=2,所以与x轴的交点一定有一个在正半轴;故本项错误;故选C.【点评】本题主要考查了二次函数的性质,应熟练掌握二次函数的性质:顶点、对称轴的求法及图象的特点.二、填空题(共6小题,每小题3分,满分18分)7.若是一个正整数,满足条件的最小正整数n= 3 .【考点】立方根.【分析】根据立方根,即可解答.【解答】解:∵,∴满足条件的最小正整数n=3,故答案为:3.【点评】本题考查立方根,解决本题的关键是熟记立方根的关键.8.如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于90 度.【考点】三角形内角和定理;多边形内角与外角.【分析】根据△ABC的外角和为360°,得出∠BAD+∠BCF+∠EBC=360°,再根据∠4=∠5=∠6=90°,即可求得∠1+∠2+∠3的度数.【解答】解:如图,三个正方形中,∠4=∠5=∠6=90°,∵△ABC的外角和为360°,∴∠BAD+∠BCF+∠EBC=360°,∴∠1+∠2+∠3=360°﹣(∠4+∠5+∠6)=360°﹣90°﹣90°﹣90°=90°,故答案为:90.【点评】本题主要考查了三角形内角和定理以及三角形的外角和,解决本题的关键是运用三角形外角和为360°,以及正方形的内角为90°进行解答.9.给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是 3 .【考点】算术平均数.【分析】直接利用算术平均数的求法得出答案.【解答】解:这组数据的平均数是:×(1+2+2+3+3+3+4+4+4+4)=3.故答案为:3.【点评】此题主要考查了算术平均数的求法,正确掌握计算公式是解题关键.10.如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是85 度.【考点】平行四边形的性质.【分析】先证明∠B=∠EAD,然后利用SAS证明△ABC≌△EAD,得出∠AED=∠BAC.再证明△ABE为等边三角形,可得∠BAE=60°,求出∠BAC的度数,即可得∠AED的度数.【解答】解:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS),∴∠AED=∠BAC.∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=85°,∴∠AED=∠BAC=85°;故答案为:85.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质,等边三角形的判定与性质;熟记平行四边形的性质,证明三角形全等和等边三角形是解决问题的关键.11.一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数解析式求得直线与坐标轴的交点坐标,再计算围成的三角形的面积即可.【解答】解:在一次函数y=20+16x中,当x=0时,y=20;当y=0时,x=﹣;∴直线与坐标轴交于(0,20)和(﹣,0)两点,∴一次函数图象与两坐标轴围成的三角形的面积=×20×=.故答案为:【点评】本题主要考查了一次函数图象上的点的坐标特征,解决问题的关键是利用直线解析式求直线与坐标轴的交点.注意:横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.12.如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O 顺时针旋转a度(0<a<360),使点A落在双曲线上,则a= 30°或180°或210°.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【分析】根据双曲线的轴对称性和中心对称性即可求解.【解答】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为30°或180°或210°.【点评】本题考查了反比例函数的综合运用,旋转的性质.关键是通过旋转及双曲线的对称性得出结论.三、解答题(共11小题,满分84分)13.化简:.【考点】整式的除法;单项式乘多项式.【分析】先根据单项式乘多项式的法则计算并整理,再根据多项式除单项式的法则计算.【解答】解:===2x﹣4.【点评】本题考查单项式乘多项式,多项式除单项式的运算,熟练掌握运算法则是解题的关键.14.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】解出不等式组,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:解不等式组,得:,∴原不等式组的解集是:﹣3≤x<2,解集在数轴上表示如右.【点评】本题考查了在数轴上表示不等式的解集问题.不等式的解集在数轴上表示出来的方法:“>"空心圆点向右画折线,“≥”实心圆点向右画折线,“<"空心圆点向左画折线,“≤”实心圆点向左画折线.15.已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.【考点】根与系数的关系;根的判别式.【分析】(1)由关于x的方程mx2+2x﹣1=0有实数根,分两种情况:①m=0时,为一元一次方程,必有实数根;②m≠0时,为一元二次方程,由判别式△≥0,可得22﹣4×m×(﹣1)≥0,解此不等式即可求得答案;(2)根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再代入+,计算即可求解.【解答】解:(1)分两种情况:①m=0时,原方程即为2x﹣1=0,为一元一次方程,必有实数根;②m≠0时,原方程为一元二次方程.△=22﹣4×m×(﹣1)=4+4m≥0,解得:m≥﹣1,即m≥﹣1且m≠0.综上可知m≥﹣1;(2)∵x1+x2=﹣,x1x2=﹣,∴+===2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.16.如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家(2016•江西校级模拟)如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.【考点】正方形的性质;平行线之间的距离.【分析】过点B作BF⊥⊥l1,垂足为点F,由正方形的性质可得出∠BAD=90°,AB=AD,再由垂直可得出∠BFA=∠AED=90°,通过角的计算得出∠EAD=∠FBA,由此即可证出△FAB≌△EDA (AAS),根据全等三角形的性质以及勾股定理即可求出AE、AD的长度.【解答】解:过点B作BF⊥⊥l1,垂足为点F,如图所示.∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD.∵BF⊥l1,DE⊥l1,∴∠FAB+∠EAD=90°,∠FAB+∠FBA=90°,∠BFA=∠AED=90°.∴∠EAD=∠FBA.在△FAB和△EDA中,,∴△FAB≌△EDA(AAS),∴AE=BF=1.∵ED=2,∴AD==.【点评】本题考查了正方形的性质、平行线间的距离以及全等三角形的判定与性质,解题的关键是根据全等三角形的性质找出AE=BF=1.本题属于基础题,难度不大,解决该题型题目时,构建全等三角形,根据全等三角形的性质找出相等的边角关系是关键.18.如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.【考点】相似三角形的判定与性质;勾股定理.【专题】计算题;图形的相似.【分析】(1)如图,过点B作BH⊥AC,交AC的延长线于点H,根据∠CAB的度数求出∠HAB 的度数,进而求出∠ABH=30°,利用30度所对的直角边等于斜边的一半及勾股定理分别求出AH与BH的长,利用勾股定理求出BC的长即可;(2)由三角形CBH与三角形ACD相似,由相似得比例求出AD的长即可.【解答】解:(1)如图,过点B作BH⊥AC,交AC的延长线于点H,∵∠CAB=120°,∴∠HAB=60°,∠ABH=30°,∵AB=3,∴AH=1.5,BH=1。
江西省2016年中等学校招生考试数学试题卷(word 解析版)(江西省 南丰县第二中学 方政昌)说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最大的一个数是( ). A .2B .C .0D .-2【答案】 A.2.将不等式的解集表示在数轴上,正确的是( ). A .B.C.D.【答案】 D .3.下列运算正确的是是( ). A . B . C . D . 【答案】 B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是( ).AB .C .D .【答案】 C.5.设是一元二次方程的两个根,则的值是( ).A. 2B. 1C. -2D. -1 【答案】 D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的...网格线...中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是().A.只有○2B.只有○3C.○2○3D.○1○2○3 【答案】 C.二、填空题(本大题共6小题,每小题3分,共18分)第6题7.计算:-3+2= ___ ____. 【答案】 -1.8.分解因式____ ____. 【答案】 .9.如图所示,中,绕点A 按顺时针方向旋转50°,得到,则∠的度数是___ _____.第9题 第10题 第11题 【答案】 17°.10.如图所示,在,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为 _______. 【答案】 50°.11.如图,直线于点P ,且与反比例函数及的图象分别交于点A ,B ,连接OA,OB ,已知的面积为2,则 ______. 【答案】 4.12.如图,是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长...是___ ____. 【答案】 5,5, .如下图所示:三、(本大题共5小题,每小题6分,共30分) 13.(本题共2小题,每小题3分) (1)解方程组【解析】 由○1得:,代入○2得: , 解得 把代入○1得: , ∴原方程组的解是 .(2)如图,Rt 中,∠ACB=90°,将Rt 向下翻折,使点A 与点C 重合,折痕为DE ,求证:DE ∥BC.【解析】 由折叠知:, ∴∠∠ ,xACAE B又点A 与点C 重合, ∴∠, ∴∠∠, ∴∠,∵∠,∴∠, ∴∠, ∴DE ∥BC.14.先化简,再求值:+ )÷ ,其中. 【解析】 原式=+ )=+ ) =- =把代入得:原式 = .15.如图,过点A(2,0)的两条直线 分别交轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=. (1)求点B 的坐标; (2)若【解析】 (1) 在Rt , ∴ ∴∴点B 的坐标是(0,3) . (2) ∵∴ ∴ ∴设 , 把(2,0), 代入得: ∴ ∴ 的解析式是 .16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”, “日常学习”, “习惯养成”, “情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.x(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和 指导?【解析】(1)如下图所示:(2) (4+6) ÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长. (3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹. (1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图(2)中画出线段AB 的垂直平分线.【解析】 如图所示:情感品质日常学习习惯养成健康安全84情感品质日常学习习惯养成健康安全图2图1AA(1) ∠BAC=45º ; (2)OH 是AB 的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,射线EP 交于点F ,交过点C 的切线于点D. (1)求证DC=DP(2)若∠CAB=30°,当F 是的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;【解析】 (1) 如图1连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE ⊥AB ,点D 在EP 的延长线上, ∴∠DEA=90º ,∴∠DPC=∠APE=90º-∠OAC. ∵OA=OC , ∴∠OCA=∠OAC. ∴∠DCA=∠DPC ,∴DC=DP.(2) 如图2 四边形AOCF 是菱形.图1连接CF 、AF , ∵F 是 的中点,∴ ∴ AF=FC .∵∠BAC=30º ,∴ =60º ,又AB 是⊙O 的直径, ∴ =120º, ∴ = 60º , ∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º, 图2 ∴⊿OAC ≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF 是菱形.图1AAAC AC B BA C =C F A FBC A C B =C F A F B19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm . (1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求的值 .图3【解析】 (1) 第5节的套管的长是34cm . (注:50-(5-1)×4 )(2) (50+46+…+14) -9x =311 ∴320-9x =311 , ∴x =1 ∴x 的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ○2两人摸牌结束时,将所得牌的“点数”相加 ,若“点数”之和小于或等于10,此时“点数”之和就是“最图2图1• • •终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”; ○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负. 现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 .(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】 (1) .(2) 如图:∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7) (7,4)(7,5)(7,6) 共12种.∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是 支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯 端点B 可以绕点A 旋转作出圆.已知OA=OB=10cm.754654764765乙甲7654(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB=18º不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090, com18º≈0.9511,可使用科学计算器) 图1 图2【解析】 (1) 图1,作OC ⊥AB ,∵OA=OB, OC ⊥AB ,∴AC=BC, ∠AOC=∠BOC=∠AOB=9°, 在Rt ⊿AOC 中,sin ∠AOC = , ∴AC ≈0.1564×10=1.564, ∴AB=2AC=3.128≈3.13. ∴所作圆的半径是3.13cm.图1(2)图2,以点A 为圆心,AB 长为半径画弧,交OB 于点C,作AD⊥BC 于点D; ∵AC=AB, AD ⊥BC ,∴BD=CD, ∠BAD=∠CAD=∠BAC, ∵∠AOB=18°,OA=OB ,AB=AC, ∴∠BAC=18°, ∴∠BAD=9°, 在Rt ⊿BAD 中, sin ∠BAD = , ∴BD ≈0.1564×3.128≈0.4892, ∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm. 图2五、(本大题共10分)22.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB 为“叠弦角”,⊿AOP 为“叠弦三角形”. 【探究证明】BD B(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形; (2)如图2,求证:∠OAB=∠OAE '. (3)图1、图2中“叠弦角”的度数分别为 , ; (4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”); 【解析】 (1) 如图1 ∵四ABCD 是正方形,由旋转知:AD=AD ',∠D=∠D '=90°, ∠DAD '=∠OAP=60°∴∠DAP=∠D 'AO , ∴⊿APD ≌⊿AOD '(ASA )∴AP=AO ,又∠OAP=60°, ∴⊿AOP 是等边三角形.(2)如右图,作AM ⊥DE 于M, 作AN ⊥CB 于N.∵五ABCDE 是正五边形,由旋转知:AE=AE ',∠E=∠E '=108°, ∠EAE '=∠OAP=60°∴∠EAP=∠E 'AO , ∴⊿APE ≌⊿AOE '(ASA ) ∴∠OAE '=∠PAE.在Rt ⊿AEM 和Rt ⊿ABN 中,∴Rt ⊿AEM ≌Rt ⊿ABN (AAS) ∴ ∠EAM=∠BAN , AM=AN. 在Rt ⊿APM 和Rt ⊿AON 中,MD'∴Rt⊿APM≌Rt⊿AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3) 15°, 24°(4) 是(5) ∠OAB=[(n-2)×180°÷n-60°]÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y = a x2 , 过点B1 (1, 0 )作x轴的垂线,交抛物线于点A1 (1, 2);过点B2 (1, 0 )作x 轴的垂线,交抛物线于点A2,…;过点B n (, 0 ) (n为正整数)作x轴的垂线,交抛物线于点A n , 连接A n B n+1 , 得直角三角形A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt⊿A n B n B n+1中,探究下列问题:○1当n为何值时,Rt⊿A n B n B n+1是等腰直角三角形?○2设1≤k<m≤n (k , m均为正整数) ,问是否存在Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解析】(1) 把A(1 , 2)代入得:2= , ∴.(2) 2×==-=(3) ○1若Rt⊿A n B n B n+1是等腰直角三角形,则.∴, ∴n=3.○2若Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似,则或,∴或,∴m=k (舍去) 或k+m=6 x∵m>k ,且m , k都是正整数,∴,∴相似比=,或.∴相似比是8:1或64:111。
2016年江西省景德镇市中考数学三模试卷一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.(3分)在实数,﹣2,0,3中,大小在﹣1和2之间的数是()A.B.﹣2C.0D.32.(3分)算式(3.0×106)•(5.0×10﹣3)的结果用科学记数法表达正确的是()A.15×103B.15×104C.1.5×103D.1.5×1043.(3分)如图是由6个相同的小立方块搭成的几何体,则下列说法正确的是()A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图面积一样大4.(3分)关于x的一元二次方程x2﹣4sinα•x+2=0有两个等根,则锐角α的度数是()A.30°B.45°C.60°D.90°5.(3分)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°6.(3分)在△ABC中,点O是△ABC的内心,连接OB、OC,过点O作EF∥BC分别交AB、AC于点E、F,已知BC=a(a是常数),设△ABC的周长为y,△AEF的周长为x,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)7.(3分)因式分解:a3﹣ab2=.8.(3分)分式方程的解x=.9.(3分)在一次体检中,测得某小组5名同学的身高分别是:170,162,155,160,168(单位:厘米),则这组数据的极差是厘米.10.(3分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.11.(3分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为.12.(3分)如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题(本大题共5小题,每小题各6分,共30分)13.(6分)解不等式组:.14.(6分)为了抓住济南消夏文化节的商机,某商场决定购进甲、乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.问购进甲乙两种纪念品每件各需要多少元?15.(6分)如图,已知在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:AC•DE=BD•CE.16.(6分)如图(甲、乙),AB为半圆⊙O1的直径,AO1为半圆⊙O2的直径,仅用无刻度的直尺完成下列作图:(1)如图甲,C为半圆⊙O1上一点,请在半圆⊙O1找个点D,使得D恰为的中点;(2)如图乙,E为半圆⊙O2上一点,请在半圆⊙O2找个点F,使得F恰为的中点.17.(6分)中考前各校初三学生都要进行体育测试,某次中考体育测试设有A、B两处考点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体育测试,请用表格或树状图分析:(1)求甲、乙、丙三名学生在同一处进行体育测试的概率;(2)求甲、乙、丙三名学生中至少有两人在B处进行体育测试的概率.四、(本大题共4小题,每小题各8分,共32分)18.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)一共调查了多少名学生;(2)请补全条形统计图;(3)若该校共有6000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.19.(8分)某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈.20.(8分)如图,在平面直角坐标系中,直线l:y1=2x+4,与y轴交于点A,与x轴交于点B,反比例函数y2=与直线l交于点C,且AB=2AC.(1)求反比例函数的解析式;(2)根据函数图象,直接写出0<y1<y2的x的取值范围.21.(8分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发20分钟后与乙相遇,…,请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当15<y<25时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.五、(本大题共1小题,每小题10分,共10分)22.(10分)定义{a,b,c}为函数y=ax2+bx+c的“特征数”.(1)“特征数”为{﹣1,2,3}的函数解析式为,将“特征数”为{0,1,1}的函数向下平移两个单位以后得到的函数解析式为;(2)我们把横、纵坐标均为整数的点称为“整点”,试问:在上述两空填写的函数图象围成的封闭图形(包含边界)内共有多少个整点?请给出详细的运算过程;(3)定义“特征数”的运算:①{a1,b1,c1}+{a2,b2,c2}={a1+a2,b1+b2,c1+c2};②λ•{a1,b1,c1}={λa1,λb1,λc1}(其中λ为任意常数).试问:“特征数”为{﹣1,2,3}+λ•{0,1,﹣1}的函数是否过定点?如果过定点,请计算出该定点坐标;如果不存在,请说明你的理由.六、(本大题共1小题,每小题12分,共12分)23.(12分)如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.●探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);●延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;●应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.2016年江西省景德镇市中考数学三模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.(3分)在实数,﹣2,0,3中,大小在﹣1和2之间的数是()A.B.﹣2C.0D.3【解答】解:根据实数比较大小的方法,可得﹣<﹣1,﹣2<﹣1,﹣1<0<2,3>2,∴在实数,﹣2,0,3中,大小在﹣1和2之间的数是0.故选:C.2.(3分)算式(3.0×106)•(5.0×10﹣3)的结果用科学记数法表达正确的是()A.15×103B.15×104C.1.5×103D.1.5×104【解答】解:(3.0×106)•(5.0×10﹣3)=1.5×104,故选:D.3.(3分)如图是由6个相同的小立方块搭成的几何体,则下列说法正确的是()A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图面积一样大【解答】解:主视图是第一层三个小正方形,第二层中间一个小正方形,主视图的面积是4;俯视图是第一层左边一个小正方形,第二层三个小正方形,第三层中间一个小正方形,俯视图的面积是5;左视图第一层三个小正方形,第二层中间一个小正方形,左视图的面积是4.故选:B.4.(3分)关于x的一元二次方程x2﹣4sinα•x+2=0有两个等根,则锐角α的度数是()A.30°B.45°C.60°D.90°【解答】解:根据题意得△=16sin2α﹣4×2=0,所以sinα=,所以锐角α=45°.故选:B.5.(3分)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°【解答】解:∵∠A=100°,∠C=30°,∴∠B=50°,∵∠BDO=∠BEO,∴∠DOE=130°,∴∠DFE=65°.故选:C.6.(3分)在△ABC中,点O是△ABC的内心,连接OB、OC,过点O作EF∥BC分别交AB、AC于点E、F,已知BC=a(a是常数),设△ABC的周长为y,△AEF的周长为x,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.【解答】解:如图,∵点O是△ABC的内心,∴∠1=∠2,又∵EF∥BC,∴∠3=∠2,∴∠1=∠3,∴EO=EB,同理可得FO=FC,∵x=AE+EO+FO+AF,y=AE+BE+AF+FC+BC,∴y=x+a,(x>a),即y是x的一次函数,所以C选项正确.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)7.(3分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).8.(3分)分式方程的解x=﹣1.【解答】解:去分母,得,2x=x﹣1,合并得,x=﹣1,经检验,x=﹣1是方程的解,故答案为﹣19.(3分)在一次体检中,测得某小组5名同学的身高分别是:170,162,155,160,168(单位:厘米),则这组数据的极差是15厘米.【解答】解:由题意可知,极差为170﹣155=15(厘米).故答案为:15.10.(3分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.11.(3分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为8.【解答】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,所以点D的横坐标最大值为8,故答案为:8.12.(3分)如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为50°或65°或80°.【解答】解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=25°,∴θ=2×25°=50°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=25°,∴∠CBH=65°,∴∠OBH=40°,∴θ=2×40°=80°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=25°,∴θ=∠BOG=65°,综上所述:当△BCP恰为轴对称图形时,θ的值为50°或65°或80°,故答案为:50°或65°或80°.三、解答题(本大题共5小题,每小题各6分,共30分)13.(6分)解不等式组:.【解答】解:由①得x≤2,由②得x>.所以,原不等式组的解集为<x≤2.14.(6分)为了抓住济南消夏文化节的商机,某商场决定购进甲、乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.问购进甲乙两种纪念品每件各需要多少元?【解答】解:设甲商品x元/件,乙商品y元/件,根据题意,得:,解得:,答:购进甲种纪念品每件各需要80元,购进乙种纪念品每件各需要40元.15.(6分)如图,已知在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:AC•DE=BD•CE.【解答】证明:∵∠ADB=∠ACB,∴∠EDB=∠ECA.又∠E=∠E,∴△ECA∽△EDB,∴,即AC•DE=BD•CE.16.(6分)如图(甲、乙),AB为半圆⊙O1的直径,AO1为半圆⊙O2的直径,仅用无刻度的直尺完成下列作图:(1)如图甲,C为半圆⊙O1上一点,请在半圆⊙O1找个点D,使得D恰为的中点;(2)如图乙,E为半圆⊙O2上一点,请在半圆⊙O2找个点F,使得F恰为的中点.【解答】解:(1)如图甲所示:(2)如图乙所示:.17.(6分)中考前各校初三学生都要进行体育测试,某次中考体育测试设有A、B两处考点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体育测试,请用表格或树状图分析:(1)求甲、乙、丙三名学生在同一处进行体育测试的概率;(2)求甲、乙、丙三名学生中至少有两人在B处进行体育测试的概率.【解答】解:(1)画树状图为:共有8种等可能的结果数,其中甲、乙、丙三名学生在同一处进行体育测试的结果数为2,所以甲、乙、丙三名学生在同一处进行体育测试的概率;(2)甲、乙、丙三名学生至少有两人在B处进行体育测试的结果数为4,所以甲、乙、丙三名学生至少有两人在B处进行体育测试的概率.四、(本大题共4小题,每小题各8分,共32分)18.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)一共调查了多少名学生;(2)请补全条形统计图;(3)若该校共有6000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.【解答】解:(1)调查的总人数是:10÷20%=50(人);(2)参加户外活动时间是1.5小时的人数是:50﹣10﹣20﹣8=12(人);补全条形统计如图:(3)该校户外活动的平均时间是:(小时).∴该校全体学生每天参与户外互动所用的总时间:6000×1.18=7080(小时).19.(8分)某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈.【解答】解:(1)过A作AD⊥MN于点D,在Rt△ACD中,∵∠ACD=10°,AD=1m,且tan∠ACD=,∴CD===5.6(m),在Rt△ABD中,∵∠ABD=8°,AD=1m,且tan∠ABD=,∴BD===7(m),∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以的速度驾驶,最小安全距离为:(m),而大灯能照到的最远距离是BD=7m,∴该车大灯的设计不能满足最小安全距离的要求.20.(8分)如图,在平面直角坐标系中,直线l:y1=2x+4,与y轴交于点A,与x轴交于点B,反比例函数y2=与直线l交于点C,且AB=2AC.(1)求反比例函数的解析式;(2)根据函数图象,直接写出0<y1<y2的x的取值范围.【解答】解:(1)如图,过点C作CH⊥y轴,垂足为H.把x=0代入y1=2x+4得,y=4,把y=0,代入y1=2x+4得,x=﹣2,∴A点坐标为(0,4),B点坐标为(﹣2,0),∴OB=2,OA=4,∵OB∥CH,∴△ABO∽△ACH∴,即,解得AH=2,CH=1,∴OH=6∴点C坐标为(1,6)把点C作标代入反比例函数解析式,得k=6∴反比例函数的解析式为y=.(2)∵点C坐标(1,6),∴由图象可知,0<y1<y2解析时,0<x<1.21.(8分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发20分钟后与乙相遇,…,请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当15<y<25时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.【解答】解:(1)设线段BC所在直线的函数表达式为y=k1t+b1,将点B(,0),点C(2,30)代入函数解析式,得,解得:.故线段BC所在直线的函数表达式为y=45t﹣60(≤t≤2).设线段CD所在直线的函数表达式为y=k2t+b2,将点C(2,30),点D(4,0)代入函数解析式,得,解得:.故线段CD所在直线的函数表达式为y=﹣15t+60(2<t≤4).(2)乙骑车的速度为30÷(4﹣2)=15(km/h),∴线段OA所在直线的函数表达式为y=15t(0≤t≤1),∴点A的纵坐标为15.当15<y<25时,即15<45t﹣60<25或15<﹣15t+60<25,解得:<t<或<t<3.故当15<y<25时,t的取值范围为<t<或<t<3.(3)甲开车的速度15÷(﹣1)+15=60(km/h),∴S甲=60(t﹣1)=60t﹣60(1≤t≤2),S乙=15t(0≤t≤4).所画图形如图.五、(本大题共1小题,每小题10分,共10分)22.(10分)定义{a,b,c}为函数y=ax2+bx+c的“特征数”.(1)“特征数”为{﹣1,2,3}的函数解析式为y=﹣x2+2x+3,将“特征数”为{0,1,1}的函数向下平移两个单位以后得到的函数解析式为y=x﹣1;(2)我们把横、纵坐标均为整数的点称为“整点”,试问:在上述两空填写的函数图象围成的封闭图形(包含边界)内共有多少个整点?请给出详细的运算过程;(3)定义“特征数”的运算:①{a1,b1,c1}+{a2,b2,c2}={a1+a2,b1+b2,c1+c2};②λ•{a1,b1,c1}={λa1,λb1,λc1}(其中λ为任意常数).试问:“特征数”为{﹣1,2,3}+λ•{0,1,﹣1}的函数是否过定点?如果过定点,请计算出该定点坐标;如果不存在,请说明你的理由.【解答】解:(1)①根据定义,“特征数”为{﹣1,2,3},则可知a=﹣1,b=2,c=3,则函数解析式为:y=﹣x2+2x+3,②“特征数”为{0,1,1},则可知a=0,b=1,c=1,∴y=x+1,∴向下平移两个单位后得到的函数解析式为:y=x﹣1,故答案为:y=﹣x2+2x+3,y=x﹣1;(2)联立直线与二次函数方程解得:,估算﹣2<x A<﹣1,2<x B<3,横坐标为﹣1的整点有:(﹣1,0),(﹣1,﹣1),(﹣1,﹣2)三个;横坐标为0的整点有:(0,3),(0,2)(0,1),(0,0),(0,﹣1)五个;横坐标为1的整点有:(1,4),(1,3),(1,2),(1,1),(1,0)五个;横坐标为2的整点有:(2,3)(2,2)(2,1)三个;合计,共16个整点;(3)依据定义,{﹣1,2,3}+λ•{0,1,﹣1}={﹣1,2+λ,3﹣λ},∴该函数解析式为:y=﹣x2+(2+λ)x+3﹣λ=(﹣x2+2x+3)+λ(x﹣1),令x﹣1=0,即x=1,解得:y=4,∴该函数始终过定点(1,4).六、(本大题共1小题,每小题12分,共12分)23.(12分)如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.●探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);●延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;●应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.【解答】解:●探索发现PB⊥AK,PB=PK+AK;理由:如图2中,∵点P在MN上,根据对称性易得∠PBC=∠2且PB=PC,又∠ABK=∠CBK=45°,在△BKA和△BKC中,∴△ABK≌△CBK,∴∠2=∠3且AK=CK,∴∠PBC=∠3.又∠PBC+∠4=90°,∴∠3+∠4=90°,即PB⊥AK.∴PB=PC=PK+CK=PK+AK.●延伸拓展以上两个结论仍然成立,理由如下:如图1中,∵点P在MN上,根据对称性易得∠PBC=∠2且PB=PC,又∠ABK=∠CBK=45°,在△BKA和△BKC中,∴△ABK≌△CBK,∴∠2=∠3且AK=CK,∴∠PBC=∠3.又∠PBC+∠4=90°,∴∠3+∠4=90°,即PB⊥AK.∴PB=PC=PK+CK=PK+AK.●应用推广如图3中,过点B作AD的平行线交PK延长线与点C,连接CD.∵FD∥BD,∴△FDK∽△CBK.又DK:BK=1:3,∴FD:BC=1:3.∵FD:AD=1:3,∴BC=AD.∵BC∥AD且AB⊥AD且AB=AD,∴四边形ABCD为正方形.∵PB=PK+AK,即(PE+BE)=(PF+FK)+AK,又PE=PF,∴BE=FK+AK.在Rt△EAB中,∵AE=1,AB=3,∴BE==.∵AG⊥BE(上一问结论),∵Rt△AGE∽Rt△BGA,且相似比为1:3,设EG=t,AG=3t,BG=9t,∴BE=10t=,∴.∴四边形EFKG的周长=EF+FK+GK+EG=EF+(FK+AK)﹣AG+EG=EF+BE﹣AG+EG=1+10t﹣3t+t=1+8t=.过点K作AD垂线,垂足为H,∵HK∥AB且DK:DB=1:4,∴KH=AB=,∴S四边形EFGH=S△AFK﹣S△AEG=•AF•KH﹣•AG•EG=•2•﹣•3t•t=.。
2016年江西省中等学校招生考试数学模拟试卷(三)一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列计算中,结果是正数的是()A.1﹣3 B.(﹣1)×3 C.3﹣1D.(﹣1)32.(3分)下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=13.(3分)如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图 B.主视图和左视图C.主视图和俯视图 D.主视图、左视图和俯视图4.(3分)如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC5.(3分)如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高6.(3分)关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴二、填空题(共6小题,每小题3分,满分18分)7.(3分)若是一个正整数,满足条件的最小正整数n=.8.(3分)如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于度.9.(3分)给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是.10.(3分)如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是度.11.(3分)一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.12.(3分)如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O顺时针旋转a度(0<a<360),使点A落在双曲线上,则a=.三、解答题(共11小题,满分84分)13.(6分)化简:.14.(6分)解不等式组,并将解集在数轴上表示出来.15.(6分)已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.16.(6分)如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家(每条道路不能重复走,有的道路可以不走)(1)利用树形图描述出小明散步的路线情况;(2)求小明散步经过点E的概率P(E).17.(6分)如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.18.(8分)如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.19.(8分)在平面直角坐标系中,若横坐标、纵坐标均为整数点称为格点,若一个多边形的顶点都是格点,则称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.(1)利用图中条件求a,b的值;(2)若某格点多边形对应的n=20,l=15,求S的值;(3)在图中画出面积等于5的格点直角三角形PQR.20.(8分)根据如图所示的程序计算:(1)选取一个你喜欢的x的值,输入计算,试求输出的y值是多少?(2)求出这样的x的值,输入计算后输出的y值是9;(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.21.(8分)江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4位选手的短信支持率情况如图2,已知两次之间这4位选手的获得短信支持条数相同.(1)比较图1,图2的变化情况,写出2条结论;(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.22.(10分)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅时的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.23.(12分)如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是的中点,点N是的中点,按要求解答下列问题:(1)如图2,连接MN交AB于点E,交AC于点F.①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.(3)在图1中,①仅用直尺找出点P,使点P为的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.2016年江西省中等学校招生考试数学模拟试卷(三)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列计算中,结果是正数的是()A.1﹣3 B.(﹣1)×3 C.3﹣1D.(﹣1)3【解答】解:∵1﹣3=﹣2,(﹣1)×3=﹣3,3﹣1=,(﹣1)3=﹣1,∴3﹣1>0,故选C.2.(3分)下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=1【解答】解:A、a+a=2a,故本选项错误;B、a﹣a=0,故本选项正确;C、a•a=a2,故本选项正确;D、a÷a=1,故本选项正确.故选A.3.(3分)如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图 B.主视图和左视图C.主视图和俯视图 D.主视图、左视图和俯视图【解答】解:如图,根据圆柱的主视图、左视图和俯视图,得,圆柱的主视图和左视图是全等形;故选B.4.(3分)如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC【解答】解:∵Rt△ABC中,∠C=90°,∴AC2=AB2﹣BC2,又∵S圆环=S大圆﹣S小圆=π•AB2﹣π•BC2=π•(AB2﹣BC2)=π•AC2,∴只需测量线段AC的长度即可计算出圆环的面积.故选D.5.(3分)如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高【解答】解:由图象可以看出,30℃时两种固体物质的溶解度一样,故(A)正确;在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加,故(B)正确;在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10g,故(C)正确;在0℃﹣50℃之间,甲的溶解度比乙的溶解度高,故(D)错误,实际应改为30℃﹣50℃之间,甲的溶解度比乙的溶解度高.故选(D).6.(3分)关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴【解答】解:A、由二次函数y=x2﹣2x+1﹣a2得,a=1>0,开口向下;故本项错误;B、由二次函数y=x2﹣2x+1﹣a2得,对称轴是x=1;故本项错误;C、由二次函数y=x2﹣2x+1﹣a2可知,与y轴的交点坐标为(0,1﹣a2),1﹣a2无法求得符号,故本项正确;D、由二次函数y=x2﹣2x+1﹣a2可知﹣=﹣=2,所以与x轴的交点一定有一个在正半轴;故本项错误;故选C.二、填空题(共6小题,每小题3分,满分18分)7.(3分)若是一个正整数,满足条件的最小正整数n=3.【解答】解:∵,∴满足条件的最小正整数n=3,故答案为:3.8.(3分)如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于90度.【解答】解:如图,三个正方形中,∠4=∠5=∠6=90°,∵△ABC的外角和为360°,∴∠BAD+∠BCF+∠EBC=360°,∴∠1+∠2+∠3=360°﹣(∠4+∠5+∠6)=360°﹣90°﹣90°﹣90°=90°,故答案为:90.9.(3分)给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是3.【解答】解:这组数据的平均数是:×(1+2+2+3+3+3+4+4+4+4)=3.故答案为:3.10.(3分)如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是85度.【解答】解:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS),∴∠AED=∠BAC.∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=85°,∴∠AED=∠BAC=85°;故答案为:85.11.(3分)一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.【解答】解:在一次函数y=20+16x中,当x=0时,y=20;当y=0时,x=﹣;∴直线与坐标轴交于(0,20)和(﹣,0)两点,∴一次函数图象与两坐标轴围成的三角形的面积=×20×=.故答案为:12.(3分)如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O顺时针旋转a度(0<a<360),使点A落在双曲线上,则a=30°或180°或210°.【解答】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为30°或180°或210°.三、解答题(共11小题,满分84分)13.(6分)化简:.【解答】解:===2x﹣4.14.(6分)解不等式组,并将解集在数轴上表示出来.【解答】解:解不等式组,得:,∴原不等式组的解集是:﹣3≤x<2,解集在数轴上表示如右.15.(6分)已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.【解答】解:(1)分两种情况:①m=0时,原方程即为2x﹣1=0,为一元一次方程,必有实数根;②m≠0时,原方程为一元二次方程.△=22﹣4×m×(﹣1)=4+4m≥0,解得:m≥﹣1,即m≥﹣1且m≠0.综上可知m≥﹣1;(2)∵x1+x2=﹣,x1x2=﹣,∴+===2.16.(6分)如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家(每条道路不能重复走,有的道路可以不走)(1)利用树形图描述出小明散步的路线情况;(2)求小明散步经过点E的概率P(E).【解答】解:(1)画树状图得:则共有6种等可能的结果;(2)∵小明散步经过点E的有4种情况,∴小明散步经过点E的概率P(E)==.17.(6分)如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.【解答】解:过点B作BF⊥⊥l1,垂足为点F,如图所示.∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD.∵BF⊥l1,DE⊥l1,∴∠FAB+∠EAD=90°,∠FAB+∠FBA=90°,∠BFA=∠AED=90°.∴∠EAD=∠FBA.在△FAB和△EDA中,,∴△FAB≌△EDA(AAS),∴AE=BF=1.∵ED=2,∴AD==.18.(8分)如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.【解答】解:(1)如图,过点B作BH⊥AC,交AC的延长线于点H,∵∠CAB=120°,∴∠HAB=60°,∠ABH=30°,∵AB=3,∴AH=1.5,BH=1.5,则BC==7;(2)∵△BCH∽△ACD,∴=,即=,解得:AD=.19.(8分)在平面直角坐标系中,若横坐标、纵坐标均为整数点称为格点,若一个多边形的顶点都是格点,则称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.(1)利用图中条件求a,b的值;(2)若某格点多边形对应的n=20,l=15,求S的值;(3)在图中画出面积等于5的格点直角三角形PQR.【解答】解:(1)根据题意,可得:,解得:,∴S=n+l﹣1;(2)将n=20、l=15代入可得S=20+×15﹣1=26.5;(3)如图,.20.(8分)根据如图所示的程序计算:(1)选取一个你喜欢的x的值,输入计算,试求输出的y值是多少?(2)求出这样的x的值,输入计算后输出的y值是9;(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.【解答】解:(1)∵y=x2+2x﹣6,∴当x=5时,y=25+10﹣6=29;(2)根据题意得x2+2x﹣6=9,即x2+2x﹣15=0,解得:x=3或x=﹣5;(3)当y=x且y<0时,输入计算后始终在内循环计算而输不出y的值,此时x2+2x﹣6=x,解得:x=2>0(舍去)或x=﹣3<0,∴当x=﹣3时,输入计算后始终在内循环计算而输不出y的值.21.(8分)江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4位选手的短信支持率情况如图2,已知两次之间这4位选手的获得短信支持条数相同.(1)比较图1,图2的变化情况,写出2条结论;(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.【解答】解:(1)两次之间这4位选手的短信支持条数相同情况下,比较图1,图2的变化情况,可知:①短信支持率高于25%的会下降;②短信支持率等于25%的会不变;③短信支持率低于25%的会上升(2分);(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,它们等式关系为:b=2a.(4分)证明如下:∵两次之间这4位选手的短信支持条数相同∴25%b﹣25%a=22.5%b﹣20%a=30%b﹣35%a(7分)整理得:b=2a(8分).22.(10分)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅时的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.【解答】解:(1)由于抛物线C1、C2都过点A(﹣3,0)、B(3,0),可设它们的解析式为:y=a(x﹣3)(x+3);抛物线C1还经过D(0,﹣3),则有:﹣3=a(0﹣3)(0+3),解得:a=即:抛物线C1:y=x2﹣3(﹣3≤x≤3);抛物线C2还经过C(0,1),则有:1=a(0﹣3)(0+3),解得:a=﹣即:抛物线C2:y=﹣x2+1(﹣3≤x≤3).(2)当炒菜锅里的水位高度为1dm时,y=﹣2,即x2﹣3=﹣2,解得:x=±,∴此时水面的直径为2dm.(3)锅盖能正常盖上,理由如下:当x=时,抛物线C1:y=×()2﹣3=﹣,抛物线C2:y=﹣×()2+1=,而﹣(﹣)=3,∴锅盖能正常盖上.23.(12分)如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是的中点,点N是的中点,按要求解答下列问题:(1)如图2,连接MN交AB于点E,交AC于点F.①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.(3)在图1中,①仅用直尺找出点P,使点P为的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.【解答】解:(1)①证明:如图1,连接AM、AN,∵点M是的中点,点N是的中点,∴=,=,∴∠EMA=∠FAN,∠EAM=∠FNA,∴∠AEF=∠EMA+∠EAM=∠FAN+∠FNA=∠AFE,∴AE=AF;②由①可知△EMA∽△FA,∴=,∴AE2=AF2=ME•MF,又2ME•MF=EF2,∴AE2+AF2=EF2,∴∠BAC=90°;(2)∵CM=BN,∴有=或=,①当=时,则有=或,=,∴AB=AC,这与AB≠AC矛盾;②当=时,则有=,又=+=+,∴==+=⊙O,∴∠BOC=120°,∴∠BAC=60°;(3)①如图2,连接CM、BN交于点Q,连接AQ并延长,交⊙O于点P,∵点M是的中点,点N是的中点,∴CM、BN分别平分∠BCA和∠CBA,∴AP平分∠BAC,∴∠BPA=∠CPA,∴=,即P为的中点;②连接OA、OB、MO,如图3,∵点M是的中点,∴OM⊥AB,且OM=1,∴S=OM•AB=AB,同理可得S四边形OBPC=BC,S四边形OCNA=AC,四边形OAMB∴S=S四边形OAMB+S四边形OBPC+S四边形OCNA=AB+BC+AC=(AB+BC+CA)=六边形AMBPCN×4=2.。