当前位置:文档之家› 实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器
实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器

一、 实验目的

1.掌握振荡条件和稳幅措施。

2.研究文氏桥网络的选频特性和传输特性。 3. 学习文氏桥振荡器的调试与测试技术。

二、 实验原理

1. 振荡器的振荡条件

振荡过程是一个正反馈过程,振荡常常是一个微扰引起的,如果这个微扰经过反馈,弱于原输入的讯号,循环一次减弱一次,直至消亡,即为负反馈或环增益小于1, 无法起振。如果经过反馈后的信号强于原来的输入讯号,循环一次增强一次,振幅越来越大,直至晶体管的非线性或外部稳幅系统限制了它的振幅为止。我们把这个放大与反馈的过程表达为

?

?

F

A ,即称为环路增益,简称环增益。电压放大倍数?A 与反馈系数?

F

都是复数:

A

F

j j e

A A e

F F φφ?

?

?

?

==

7-1

??F A =)

(F A j e

F A φφ+?

?

7-2

A

A =?

, F F =?

,因此

起振条件有两个:

振幅条件: 1>AF (6-3) 相位条件:2 n=0,1,2A F n φφπ+= (6-4)

起振以后,振幅逐渐增大,但由于晶体管的非线性或稳幅系统起控,A 逐渐变小,达到一个平衡状态,此时1=AF ,所以振荡器的振幅平衡条件为:

1=AF

(6-5)

A 与F 都是频率的函数,在某个频率上,这两个条件都满足了,这个频率便是振荡器的

振荡频率。

2. 文氏桥正弦振荡器

文氏桥振荡器是低频振荡器中最常见的一种电路。它使用的元件只需电阻、电容,而不需要难于制作的电感元件,且波形比较好,故得到广泛应用。文氏桥原是电学中的交流电桥,用来测量电容的容量,以及交流电频率的电桥。原名是维恩电桥(Wien Bridge ),我国简称为文氏桥。

这个电桥的电路如图7-1(a )所示

图7-1 文氏电桥

如果电桥的R 1=R 2=R ,C 1=C 2=C ,R 4=2R 3,那么从A 、C 两端输入一个频率为:12f R C

π=的正弦波电压,B 、D 两端的电压便为零。

我们可以将这个桥路分解为图7-1(b )与7-1(c )两个网络。网络(b )具有以下的传输函数F b (j ω):

)

1

(11

)(2

1121

22

1R C R C j C C R R V V j F F i

o

b c ???-

+++=

=

=?

?

?

(6-6)

上式仅在2112

1

0C R C R ωω-

=时,F(j ω)才能成为实数,此时的ω0为:

021012

1

C R C R ωω=

2

01212

1

C C R R ω=

(6-7)

如果选R 1=R 2=R ,C 1=C 2=C ,(6-7)式可以简化为:

01R C

ω=

或RC f π210=

(6-8)

此时的F b 为极大值: 3

1)(==o b bm F F ? (6-9)

由于虚部为零,故此时的相位为

Φ= (6-10)

注意:(6-8)与(6-9)仅在网络(b )负载为 ∞ 时才成立。如果这个条件不满足,将略有偏离。而网络(c )则具有以下的传输函数F c :

c i

c F R R R V V F =+=

=

?

?

?

4

330

(6-11)

集成运放有两个输入端可以分别进行正反馈与负反馈,网络(b )是决定振荡器频率的网络,它在1R C

ω=

时相移πφ2=F ,适宜于在同相输入端作正反馈网络,但是从网络的输入到

输出,信号衰减为1/3,如果不从放大器得到补充,就产生不了振荡,放大器应大于3倍的电压增益,而且在正好3倍的时候,满足了振荡器的振幅平衡条件。根据运放同相放大器增益公式: 1

1R R A F vf +

=。

假如用网络(c )的R 4作为R f ,而R 3作为R 1,因此要求:

3113

43

4

3=+

=+==

R R R R R F A c

43

2R R =

(6-12)

所以如果选432R R =,便能满足稳定振荡的条件。于是文氏桥振荡器接成图7-2的形式。

图7-2 文氏桥振荡电路

为了方便调试我们将R 3换成一个可变电阻,接好电路以后,调节R 3,发现34/2R R >时,输出为零,不起振。而当34/2R R <时,波形严重失真。34/2R R =时,可以出现很好的正弦波,但是很不稳定,稍有一些干扰,波形就失真了。为了克服这种不稳定现象,我们希望起

振时AF>1,而当幅度达到一定时振荡器能自动调整增益使AF=1以满足振幅平衡条件。故可在R4两边并联一个双向基准稳压管(±6V)和一个电阻的串联支路,以稳定输出幅度。如图7-3所示。由于目前市场上不易买到这种双向基准稳压管(2DW7C),故可由以稳压二极管为负载的硅整流桥并串一电阻代之。如图7-4所示,它的作用与使用双向基准稳压管相

同。如何起了稳定振幅的作用,请同学们自己分析。

图7-3 稳定的文氏桥振荡电路

三、实验电路

实验电路如图7-4(a)、(b)所示。

(a)文氏桥选频网络

(b)文氏桥振荡器实验电路

图7-4文氏桥振荡器实验电路

四、实验内容

1.测量文氏桥选频网络的衰减比F b

按图7-4(a)插接电路;输入100mV信号,用示波器X,Y输入通道监测输入和输出信号,改变输入信号频率。当V i、V o相位差为0时,说明在此频率(ω0=2 f0)下电路发生谐振。用mV表测量V i、V0,计算网络的衰减比F bm=V o/V i(此时F bm≈1/3)。将数据填入表7-1。

表7-1文氏桥选频网络衰减比的测量数据

2.测量振荡器输出正弦波的频率和最大峰峰值(输出不失真条件下)

按图2插接电路;调节R P(10K多圈电位器),使电路起振;进一步调节R P,使输出振幅最大且不失真,用示波器和交流mV表两种方法测量V oP-P;并用三种方法(数字频率计法、示波器测周期法、李萨茹图法)测量文氏桥振荡器输出的正弦波频率f0;记录测量数据,并将其填入表7-2中。

表7-2文氏桥振荡器指标测试数据表

五、思考题

1.试比较选频网络的谐振频率f0(表7-1中)和文氏桥振荡器实测频率f0(表7-2中)的大小,并解释原因。

注意:回答思考题1(因没有讲到略),下次做实验十二。

实验六 RC桥式正弦波振荡器

实验六RC桥式正弦波振荡器 一、实验目的 1.研究RC桥式振荡器中RC串、并联网络的选频特性。 2.研究负反馈网络中稳幅环节的稳幅功能。 3.掌握RC桥式振荡器的工作原理及调测技术。 二、实验原理 RC桥式振荡器的实验电路如图1所示。 图(b)Multisim仿真电路图 图1 RC桥式振荡器 该电路由三部分组成:作为基本放大器的运放;具有选频功能的正反馈网络;具有稳幅功能的负反馈网络。 1.RC串并联正反馈网络的选频特性。 电路结构如图2所示。一般取两电阻值和两电容值分别相等。由分压关系可得正反馈网络的反馈系数表达式: 1

2 RC j R C j R RC j R C j R C j R C j R Z Z Z V V F i F ωωωωωω++ ++=++=+==1111//11// 212 ()()RC j RC j RC j RC RC j RC j RC j RC j RC j RC j R C j RC j RC j R ωωωωωωωωωωωωω++=+-+=++=++++=131 2111112 2 令RC 10= ω,则上式为? ?? ? ??-+=ωωωω0031j F 由上式可得RC 串并联正反馈网络的幅频特性和相频特性的表达式和相应曲线(如图 3和图4所示)。 2 002 31 ? ?? ? ??-+=ωωωωF 3 arctg 0ω ωωωφ--=?F 图4 相频特性曲线 图3 幅频特性曲线

3 I I D1D1图5 由特性曲线图可知,当ω=ω0时,正反馈系数达最大值为1/3,且反馈信号与输入信号同相位,即φF =0,满足振荡条件中的相位平衡条件,此时电路产生谐振ω=ω0=1/RC 为振荡电路的输出正弦波的角频率,即谐振频率f o 为 RC f o π21 = 当输入信号i V 的角频率低于ω0时,反馈信号的相位超前,相位差φF 为正值;而当输入信号的角频率高于ω0时,反馈信号的相位滞后,相位差φF 为负值。 2、带稳幅环节的负反馈支路 由上分析可知,正反馈选频网络在满足相位平衡的条件下,其反馈量为最大,是三分之一。因此为满足幅值平衡条件,这样与负反馈网络组成的负反馈放大器的放大倍数应为三倍。为起振方便应略大于三倍。由于放大器接成同相比例放大器,放大倍数需满足 VF A =1+31 ≥R R f ,故1 R R f ≥2。为此,线路中设置电位器进行调节。 为了输出波形不失真且起振容易,在负反馈支路中接入非线性器件来自动调节负反馈量,是非常必要的。方法可以有很多种。有接热敏电阻的,有接场效应管的(压控器件),本实验是利用二极管的非线性特性来实现稳幅的。其稳幅原理可从二极管的伏安特性曲线得到解答。如图5所示。 在二极管伏安特性曲线的弯曲部分,具有非线性特性。从图中可以看出,在Q 2点,PN 结的等效动态电阻为22Q di dv r D D d =;而在Q 1 点,PN 结的等效动态电阻为1 1Q di dv r D D d =;显然, 1d r >2d r ;也就是说,当振荡器的输出电压幅度增 大时,二极管的等效电阻减少,负反馈量增大,从而抑制输出正弦波幅度的增大,达到稳幅的目的。 通过R p 调节负反馈量,将振荡器输出正弦波控 制在较小幅度,正弦波的失真度很小,振荡频率接近估算值;反之则失真度增大,且振荡

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1A F > 写成模与相角的形式:.. ||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

稳幅文氏电桥正弦波发生器说课讲解

* 课程设计报告 题目:文氏电桥正弦波振荡 学生姓名:** 学生学号:*** 系别:电气信息工程学院专业:通信工程 届别:2014届 指导教师:** 电气信息工程学院制 2013年5月

文氏电桥正弦波振荡 学生:** 指导教师:** 电气信息工程学院通信工程专业 1 课程设计的任务与要求 1.1 课程设计的任务 1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 1.2 课程设计的要求 (1)熟悉multisim的使用方法,掌握文氏电桥正弦波振荡原理,以此为基础在软件中画出电路图。 (2)绘制出文氏电桥正弦波振荡的波形,观察其波形,通过对分析结果来加强对其原理的理解。 (3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。 1.3 课程设计的研究基础(设计所用的基础理论) 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交

实验14 RC正弦波振荡器

实验十四 RC 正弦波振荡器 一. 实验目的 1.掌握RC 正弦波振荡器的电路结构及其工作原理。 2.熟悉正弦波振荡器的测试方法。 3.观察RC 参数对振荡器的影响,学习振荡器频率的测定方法。 二. 实验仪器 双踪示波器 低频信号发生器 频率计 毫伏表 直流电源 三. 实验原理 正弦振荡电路一般包括两部分,放大电路A 和反馈网络F ,如图5-14-1所示。 由于振荡电路不需要外接输入信号,因此,通过反馈网络输出的反馈信号f X 就是基本放大电路的输入信号id X 。该信号经基本放大电路放大后,输出为0X ,若能使f X 和id X 大小相等,极性相同,构成正反馈电路,那么这个电路就能维持稳定的输出。因而,f X =id X 可引出正弦振荡条件。由方框图5-14-1可知: 0id X AX = 而0f X AX =当f id X X =时,则有 AF=1 上述条件可写成|AF|=1,称幅值平衡条件。 即放大倍数A 与反馈系数F 乘积的模为1,表明振荡电路已经达到稳幅振荡,但若要求电路能够自行振荡,开始时必须要求|AF|>1的起振条件。 由f X 与id X 极性相同,可得:1A B φφ+= 称相位平衡条件 即放大电路的相角和反馈网络的相角之和为2n π,其中n 为整数。 要使振荡电路输出确定频率的正弦波信号,电路还应包含选频网络和稳幅电路两部分。选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。 RC 正弦振荡电路也称为文氏桥振荡电路。它的主要特点是利用RC 串并联网络作为选频和反馈网络。如图5-14-2所示:

文氏桥振荡电路

文氏桥振荡电路 一、问题背景 将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。 RC串并联选频网络接在运算放大器的输出端和同相输入端 之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。正反馈电路和负反馈电路构成一文氏电桥电桥。 文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。 二、问题简介 由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。(1)若取R1=15kΩ,试分析该振荡电路的起振条件(R f的取值);(2)仿真观察R f取不同值时,运放同相输入端和输出端的电压波形; 图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图

(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2取不同值时,运放同相输入端和输出端的电压波形。也可同时改变R f和R2的值。 图2 加入非线性环节的正弦波发生器的电路原理图 三、理论分析 (1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。 图3 文氏选频网络

图中o U 是运放的输出量,f U 是反馈量。为了能够使电路振荡起 来,就必须通过选定参数即确定频率,使得在某一频率下o U 和 f U 同 相。 那么,当信号频率很低时,有 1R C ω>> 故将会有f U 的相位超前o U 的相位,当频率接近0时,相位超前接近于 90度。相反地,当信号频率很高以至于趋于无穷大时,可以得出 f U 的 相位滞后o U 的相位几乎-90度。 所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。下面就具体来求解此振荡频率。 由反馈系数 1//11//f o R U j C F U R R j C j C ωωω==++ 整理可得 1 13()F j CR CR ωω=+- 若电路的信号频率为f ,令特征频率 01 2f RC π= 代入F 的表达式,可以得到 001 3()F f f j f f =+-。

高频电子线路实验正弦波振荡器

. 太原理工大学现代科技学院 高频电子线路课程实验报告 专业班级信息13-1 学号2013101269 姓名 指导教师孙颖

实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 姓名 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。 正弦波振荡器在电子领域中有着广泛的应用。在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。 振荡器的种类很多。从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。我们只讨论反馈式振荡器。根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。我们只介绍正弦波振荡器。 常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。 一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到 ……………………………………装………………………………………订…………………………………………线………………………………………

实验五RC正弦波振荡器

实验五RC正弦波振荡器 一.实验目的 1.学习文氏桥振荡器的电路结构和工作原理。 2.学习振荡电路的调整与测量振荡频率的方法。 二.电路原理简述 从电路结构上看,正弦波振荡器实质上是一个没有输入信号,但带有选频网络的正反馈放大器。它由选频网络和放大器两部分组成,选频网络由R、C串并联组成,故振荡电路称为RC振荡器,它可产生lHz--1MHz的低频信号。根据RC 电路的不同,可分为RC移项、RC串并联网络、双T选频网络等振荡器。 RC串并联网络(文氏桥)振荡器电路形式如图5—1所示。其原理为:图中的RC选频电路,若把Ui看成输入电压,把Uo看成输出电压,则只有当f=fo=1/2∏RC,Uo和Ui才能同相位。且在有效值上Uo=3Ui,对该振荡器电路而言.当电路满足振荡频率f=fo=1/2∏RC,且放大电路的放大倍数︳Au ︳>3时,就能产生一个稳定的正弦波电压Uo。 图5—1 RC串并联网络振荡器原理图 本实验采用两极共射极带负反馈放大器组成RC正弦波振荡器,实验电路如图5-2。 电路特点:改变RC则可很方便的改变振荡频率,由于采用两级放大及引入负反馈电路,所以能很容易得到较好的正弦波振荡波形。

其中:R F1=1kΩ,R W=150kΩ,增加Rf3=1kΩ,C2=C3=0.47μF,C7=C8=0.01μF,C1=10μF/25V,C E1= C E2=47μF/25V,R E1’=R E2’=10Ω,R F2=51Ω,R C1’=R E1”=120Ω,R C2=R S= R E2”=470 Ω,R B22=1kΩ,R B21=1.5kΩ,R B1=10kΩ,T1=T2=9013,外接电阻R=2kΩ,电容C=0.01μF, 三.实验设备 名称数量型号 1.直流稳压电源 1台 0~30V可调 2.低频信号发生器1台 3.示波器 1台 4.晶体管毫伏表 1只 5.万用表 1只 6.反馈放大电路模块 1块 ST2002 四. 实验内容与步骤 1. RC振荡电路的调整 1)按照图5-2电路原理,选用“ST2002反馈放大电路”模块,熟悉元件安装位置,开始接线,此电路中D和0V两点不要连接,检查连接的实验电路确保无误后,在稳压电源输出为12V的前提下对实验电路供电。 2)在A,B断开(无负反馈)情况下,调整放大器静态工作点,使其Vc1=8V左右,工作点调好后断开电源然后将A,B短接(引入负反馈),按照电路原理图接上R、C电阻和电容(选频网络),连接F,I两点,组成文氏振荡器。 3)用示波器观察输出波形,若无振荡波形可调节R F1,直至输出为稳定不失真的正弦波为止。 文氏振荡器的振荡频率f,满足下式fo =1/2∏RC 2.测量振荡频率及输出电压 ,在在E端用示波器观察输出的正弦波波形。然后用交流毫伏表测出输出电压V O 示波器上读出振荡频率的周期填入表5—1中,并与计算值相比较。 3.测量负反馈放大电路的放大倍数A vf。

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路(2007-05-22 09:33:33) (这是一个很基本也很简单的电路,但很多细节的东西还值得去仔细研究,那次小组会面对老师的提问我没能讲清楚,没有被批评的够惨,但我的确认识到了自己的不足,下来后我好好把这个电路研究了一下,总结出了这些知识。希望所有的同行在做一个项目的时候,不能为了完成任务而去做,有的东西有必要把细节的东西好好研究一下,多问几个为什么,这样才能真正的学到东西,积累经验,在掌握好基础知识的基础上再研究新问题,那才是真正意义上的科研。可能下面的总结会有遗漏之处,欢迎大家提出问题,共同学习。) 文氏电桥正弦波振荡电路 (2007.4.27总结) 一、振荡原理 如上图所示,信号Xi经过一个放大环节A放大后得到放大信号Xo=A*Xi。 如果在上图中加一个反馈环节,如下图所示: Xo经过反馈环节F后得到反馈信号Xf=A*F*Xi。当反馈信号Xf与输入信号Xi幅值和相位都相同时,即以Xf作为输入Xi,则可以在输出端维持原有的信号Xo,也就是自激。所以,要使得上图中的系统平衡,则应有A*F=1。 即|A*F|=1(幅度平衡条件) 且Ψa+Ψf=2*n*PI (n为整数)Ψa和Ψf分别为A、F的幅角,此式说明反馈环节F 是一个正反馈。

A*F=1是振荡平衡的条件,也就是可维持等幅振荡输出;如果A*F<1,则电路的振荡输出将越来越小,直到停止振荡;如果A*F>1,振荡电路的输出将越来越大,直到电路中器件达到饱和或者截止。所以电路维持等幅振荡的唯一条件是A*F=1。 二、振荡的建立和稳定 前面讨论的自激振荡条件,是假设先给振荡电路的放大环节有一个外加的输入信号。但实际振荡电路一般不会外加激励信号。 对于一个正弦波振荡器来说,有一个选频网络,所以振荡电路只可能在某一个频率f0下满足相位平衡的条件(在后面的内容中将会对此做详细的叙述)。放大电路中存在噪声或干扰(例如接通直流电源时电路中就会产生电压或者电流的瞬变过程),它的频谱范围很广,必然包括振荡频率的分量。这些噪声和干扰经过选频网络选频后,只有f0这一频率分量满足相位平衡条件,只要此时A*F>1则可以增幅振荡,将此信号放大,建立起振荡。而除了 f0之外的其他频率的分量则衰减。 所以电路起振的条件为A*F>1且Ψa+Ψf=2*n*PI(n为整数)。除了要求电路的相位满足条件之外还要满足|A*F|>1。 从A*F>1到A*F=1:接通电源后,频率为f0的分量将逐渐增大,当幅值达到一定程度后,放大环节的非线性期间就会接近甚至进入非线性工作区(饱和区或者截止区),这时候放大增益A将逐渐下降,输出波形产生失真,所以经过选频网络后其输入也将随之下降。形成失真振荡。所以为了避免失真振荡,应尽量避免放大器件进入非线性工作区。解决办法是在放大器件在没有进入非线性工作期前加稳幅环节,使A*F从大于1逐渐减小到1,从而达到稳幅振荡的目的。 三、文氏电桥振荡电路

实验2正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

RC文氏电桥振荡电路知识分享

R C文氏电桥振荡电路

RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。 C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。 图1 RC文氏电桥振荡器 RC串并联选频网络的选频特性 RC串并联网络的电路如图2所示。RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。 图2 RC串并联网络 RC串并联网络的传递函数为

式(1) 当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。令式(1)的虚部为0,即可求出谐振频率。 谐振频率 对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率: 频率特性幅频特性 相频特性 文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。

(a) 幅频特性曲线 (b) 相频特性曲线 图3 RC串并联网络的频率响应特性曲线 反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 此时反馈系数 与频率f0的大小无关,此时的相角 jF=0°。文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。 根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有 振荡的建立和幅度的稳定 振荡的建立 所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。由于噪声的随机性,有时正有时负,有时大一些有时小一些。为了保证这种微弱的信号,经过放大通过正反馈的选频网络,使输出幅度愈来愈大,振荡电路在起振时应有比振荡稳定时更大一些的电压增益,即丨AF丨>1,所以Au f>3,丨AF丨>1称为起振条件。 通过热敏元件稳定输出幅度 加入R3、R4支路,电路是串联电压负反馈,其放大倍数

正弦波振荡器实验报告(高频) (2)

高频电子线路实验 随堂实验报告 学院计算机与电子信息学院 专业电子信息工程班级电信11-2 姓名梁景友学号 11034030223 指导教师谢胜 实验报告评分:_______

正弦波振荡器仿真实验 实验目的: 1、进一步熟悉正弦波振荡器的组成原理; 2、观察输出波形,分析影响振荡器起振、稳定的条件; 3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。 实验内容: 实验电路1:西勒振荡器 (1)设置各元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率f0,并作好记录。 (2)改变电容C7的容量,分别为最大或最小(100%或0%)时,观察振荡频率变化,并作好记录。 (3)改变电容C4的容量,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏(与C4为0.033μF时进行比较),并分析原因。 (4)将C4恢复为0.033μF,分别调节R P为最大和最小时,观察输出波形振幅的变化,并说明原因。 实验分析: 1、电路的直流电路图和交流电路图分别如下: (1):直流通路图 (2)交流通路图

2、改变电容C 7的值时所测得的频率f 的值如下: (1)、当C4=0.033uF 时: C6=270pF 时,f=1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZ C6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ (2)、当C4=0.33uF 时: C6=270pF 时,f=1/T=1000000/30.5280=32756.8H C6=470uF 时,f=1/T=1000000/30.5921=32688.2HZ C6=670uF 时,f=1/T=1000000/30.4744=32814.4HZ

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

rc正弦波振荡器测量数据试验报告

rc正弦波振荡器测量数据试验报告 一、实验目的 1、学习RC正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。 1、RC移相振荡器:电路如右图1所示,选择R>>Ri。 起振条件:放大器A的电压放大倍数|A|>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几赫~数十千赫。 2、RC串并联网络(文氏桥)振荡器: 本实验电路图如下面的图2所示。

电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 3、双T选频网络振荡器:本实验电路如下图3所示: 电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。 三、实验器材 1、+12V直流电源; 2、函数信号发生器;

3、双踪示波器; 4、频率计; 5、直流电压表; 6、数字万用表; 7、15K电阻2个、103电容4个、10电位器1个。 四、实验内容 1、RC串并联选频网络振荡器: (1)按图2连接线路。 (2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。 (3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数 A(3.2倍,要断开RC串并联网络测量)。 (4)用频率表测量振荡频率(893HZ),并与计算值进行比较。 (5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。 2、双T选频网络振荡器: (1)按图3组接线路。其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。 (2)断开双T网络(即电路图A处断开),调Rw2使T2静态工作

实验六 RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试 一、实验目的 1、进一步学习RC 正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。 1、RC 移相振荡器 电路型式如图8.1所示,选择R >>R i 。 振荡频率:O f =起振条件:放大电路A 的电压放大倍数|A |>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几Hz ~数十kHz 。 2、RC 串并联网络(文氏桥)振荡器 电路型式如图8.2所示。 振荡频率:12O f RC p = 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 三、实验条件 1、12V 直流电源 2、函数信号发生器 3、双踪示波器 图8.1 RC 移相振荡器原理图 图8.2 RC 串并联网络振荡器原理图

4、频率计 5、直流电压表 6、3DG12×2或9013×2,电阻、电容、电位器等 四、实验内容 1、RC串并联选频网络振荡器 2、双T选频网络振荡器 3、RC移相式振荡器的组装与调试 五、实验步骤 1、RC串并联选频网络振 荡器 (1)按图8.4组接线路; (2)接通12V电源,调节 电阻,使得Vce1=7-8V, Vce2=4V左右。用示波器观察 图8.4 RC串并联选频网络振荡器有无振荡输出。若无输出或振 荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。并测量电压放大倍数及电路静态工作点。 (3)观察负反馈强弱对振荡器输出波形的影响。 逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到 的波形变化情况及相应的Rf值。 (4)改变R(10KΩ)值,观察振荡频率变化情况; (5)RC串并联网络幅频特性的观察。 将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC

实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器 一、 实验目的 1.掌握振荡条件和稳幅措施。 2.研究文氏桥网络的选频特性和传输特性。 3. 学习文氏桥振荡器的调试与测试技术。 二、 实验原理 1. 振荡器的振荡条件 振荡过程是一个正反馈过程,振荡常常是一个微扰引起的,如果这个微扰经过反馈,弱于原输入的讯号,循环一次减弱一次,直至消亡,即为负反馈或环增益小于1, 无法起振。如果经过反馈后的信号强于原来的输入讯号,循环一次增强一次,振幅越来越大,直至晶体管的非线性或外部稳幅系统限制了它的振幅为止。我们把这个放大与反馈的过程表达为 ? ? F A ,即称为环路增益,简称环增益。电压放大倍数?A 与反馈系数? F 都是复数: A F j j e A A e F F φφ? ? ? ? == 7-1 ??F A =) (F A j e F A φφ+? ? 7-2 令 A A =? , F F =? ,因此 起振条件有两个: 振幅条件: 1>AF (6-3) 相位条件:2 n=0,1,2A F n φφπ+= (6-4) 起振以后,振幅逐渐增大,但由于晶体管的非线性或稳幅系统起控,A 逐渐变小,达到一个平衡状态,此时1=AF ,所以振荡器的振幅平衡条件为: 1=AF (6-5) A 与F 都是频率的函数,在某个频率上,这两个条件都满足了,这个频率便是振荡器的

振荡频率。 2. 文氏桥正弦振荡器 文氏桥振荡器是低频振荡器中最常见的一种电路。它使用的元件只需电阻、电容,而不需要难于制作的电感元件,且波形比较好,故得到广泛应用。文氏桥原是电学中的交流电桥,用来测量电容的容量,以及交流电频率的电桥。原名是维恩电桥(Wien Bridge ),我国简称为文氏桥。 这个电桥的电路如图7-1(a )所示 图7-1 文氏电桥 如果电桥的R 1=R 2=R ,C 1=C 2=C ,R 4=2R 3,那么从A 、C 两端输入一个频率为:12f R C π=的正弦波电压,B 、D 两端的电压便为零。 我们可以将这个桥路分解为图7-1(b )与7-1(c )两个网络。网络(b )具有以下的传输函数F b (j ω): ) 1 (11 )(2 1121 22 1R C R C j C C R R V V j F F i o b c ???- +++= = =? ? ? (6-6) 上式仅在2112 1 0C R C R ωω- =时,F(j ω)才能成为实数,此时的ω0为: 021012 1 C R C R ωω= 有 2 01212 1 C C R R ω= (6-7) 如果选R 1=R 2=R ,C 1=C 2=C ,(6-7)式可以简化为: 01R C ω= 或RC f π210= (6-8) 此时的F b 为极大值: 3 1)(==o b bm F F ? (6-9) 由于虚部为零,故此时的相位为

实验五-三点正弦振荡电路

三点式正弦波振荡器 一、实验目的 1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、熟悉振荡器模块各元件及其作用。 2、进行LC振荡器波段工作研究。 3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、测试LC振荡器的频率稳定度。 三、实验仪器 1、模块3 1块 2、频率计模块1块 3、双踪示波器1台 4、万用表1块 四、基本原理 将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz(计算振荡频率可调范围) 振荡电路反馈系数 振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。 五、实验步骤 1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。 2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。 表5-1 分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频 六、实验报告

文氏桥振荡电路(multisim仿真)

高频电子线路课程设计 题目: 院(系、部): 学生姓名: 指导教师: 年月日 河北科技师范学院教务处制

摘要 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。文氏桥振荡电路由两部分组成:即放大电路和选频网络。由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。 关键词:正弦波;振荡器;文氏电桥

目录 摘要.................................................... 错误!未定义书签。1设计任务及要求. (9) 1.1.................................................................................................... 错误!未定义书签。 1.2 ***............................................................................................ 错误!未定义书签。 2 方案论证 (10) 3 单元电路设计 (11) 4 电路原理图及PCB版图 (11) 5 总结................................................... 错误!未定义书签。附录及参考文献........................................... 错误!未定义书签。

模电实验_RC正弦波振荡器

实验六——正弦波振荡器发生器实验报告 一,实验目的 (1)学习运算放大器在对信号处理,变换和产生等方面的应用,为综合应用奠定基础。 (2)学习用集成运算放大器组成波形发生器的工作原理。 二,实验原理 波形的产生是集成运算放大器的非线性应用之一。常见的波形发生器有正弦波发生器、方波发生器、三角波发生器和锯齿波发生器,每一种波形的产生方法都不是唯一的。 RC正弦波振荡器。 RC桥式震荡电路由两部分组成,即放大电路和选频网络。电路如图所示,选频网络由R,C元件组成,一般用来产生1Hz~1MHz的低频信号,在放大电路中引入正反馈时,会产生自激,从而产生持续振荡,由直流电变为交流电。 若图中R1=R2=R,C1=C2=C,则电路的振荡频率为f0=1/2πRC。为使电路起振要求电压放大倍数Av满足Av=1+(RP+R4)/R3>3→Rp+R4>2R3。 三,实验内容 (1)用示波器观察Vo、Vc处的波形,记录波形并比较他们之间的相位关系。(2)用示波器测量Vo,Vc处波形的幅值和频率

(3)调节可变电阻Rp,用示波器观察输出电压Vp的变化情况。 (4)当T1=T2时,测量电阻Rp的大小,将理论值与实测值进行比较。 四,实验器材 (1)双路直流稳压电源一台 (2)函数信号发生器一台 (3)示波器一台 (4)万用表一台 (5)集成运算放大器两片 (6)电阻,电容,二极管,稳压管若干。 (7)模拟电路试验箱一台。 五,实验步骤 RC正弦波振荡器。 1)按图示连接号电路,检查无误后,接通±12V直流电源。 2)用示波器观察有无正弦波输出。 3)调节可变电阻Rp,使输出波形从无到有直至失真,绘制输出波形Vo,记录临界起振、正弦波输出及出现失真情况下的Rp值。 4)调节可变电阻Rp,分别测量以上三种情况下,输出电压vo和反馈电压vf的值并将结果记录到表3.4.2中,分析负反馈强弱对起振条件和输出波形的影响。 5)测量当R1=R2=10kΩ,C1=C2=0.01μF和R1=R2=10kΩ,C1=C2=0.02μF 两种情况下。输出波形的幅值和频率,计入表3.4.3中,并与理论值比较。 6)断开二极管D1,D2,重复步骤3)的内容,并将结果与步骤3)的结果进行比较。 六,实验数据及结果分析 RC正弦波振荡器 1)正弦波输出如图

正弦波振荡器实验指导书

正弦波振荡器实验 一、实验目的 1、深入了解电容三点式、电感三点式和晶体振荡器的工作原理和性能特点; 2、掌握振荡器的频率稳定度、相位噪声等参数的意义及测量方法; 3、学习数字频率计的工作原理及使用方法; 4、学习频谱分析仪的工作原理及使用方法。 二、实验仪器 1、数字示波器 TDS210 0~60MHz 1台 2、数字频率计E312B1 0~1GHz 1台 3、频谱分析仪 GSP-827 0~2.7GHz 1台 4、直流稳压电源SS3323 0~30V 1台 5、实验电路板自制1块 三、实验电路 振荡器是通信及其他电子系统中不可或缺的一部分,其性能的好坏直接影响整个系统的性能。正弦波振荡器的电路形式比较多,各具特点,应用在不同的场合,本次实验选用三种典型的振荡电路:电容三点式、电感三点式和晶体振荡器。 1、电容三点式振荡器 电容三点式振荡器是一种常用的振荡器,它能够振荡的振荡频率高,甚至可达上千兆;震荡时的反馈信号取自电容两端而谐波小,使振荡波形较好;由于回路电容有两个,想通过改变电容来改变振荡频率不太方便。 电容三点式振荡器的电路原理图如图1所示,晶体管采用了共基极的接法,在相同条件下具有较好的频率特性,使振荡器能振荡在较高的频率上和具有较好的频率稳定度。 在对振荡器测量时,仪器的输入电阻和电容就会接入到振荡回路中,一般射频仪器还要求达到50Ω阻抗匹配,这些都会对振荡器产生影响,使振荡器的振荡频率和幅度在测量时发生改变甚至停振,无法准确测量。为了减小这种影响,在振荡电路后设计了射极跟随器,起到隔离和阻抗变换的作用,并且跟随器在与振荡器连接时接到带负载能力较强的发射极。

相关主题
文本预览
相关文档 最新文档