当前位置:文档之家› fluent燃烧简介

fluent燃烧简介

fluent燃烧简介
fluent燃烧简介

FLUENT燃烧简介

FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。

1.1 FLUENT燃烧模拟方法概要

燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之?。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT

图1 FLUENT模拟过程中所需的物理模型

1.1.1气相燃烧模型

?般的有限速率形式(MagnUSSen模型)

守恒标量的PDF模型(单或二组分混合分数)

层流火焰面模型(Laminar Aamelet model)

ZimOUnt 模型

1.1.2离散相模型

煤燃烧与喷雾燃烧

1.1.3热辐射模型

DTRMt P-I, ROSSeIand 和DiSCrete OrdinateS 模型

1.1.4污染物模型

NOX模型,烟(S m OOt)模型

2.1气相燃烧模型

?在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本, 如

下:

有限速率燃烧模型…预混、部分侦混和扩散燃烧

扩散燃烧)…模型和非平衡化学的层流火焰面模型PDF平衡化学的(混合分数方法. 反应进度方法(Zi m Ont模型)…预混燃烧

混合物分数和反应进度方法的结合…部分侦混燃烧

2.2.1有限速率模型

化学反应过程?般采用总包机理(即简化化学反应,如单步反应)进行描述。

求解积分的输运方程,得到每种组分的时均质量分数值,如下:

鲁(Px) + V ? (ρ∏?) = - V ? Λ + Λ< + ?

——(1)

其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:

——⑶

计算所需参数包括:1、组分及其热力学参数值:2、反应及其速率常数值。

有限速率模型的有缺点:

优点:适用于预混、部分预混和扩散燃烧,简单直观:

缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题, 难以预测反应的中间组分,模型常数具有不确定性。

这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。

应用领域:该模型可以模拟人多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。

2.2.2守恒标量的PDF模型

守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)O 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。

务力)+▽询)扩?(訂7)+弘+ S

——⑷

£(Pr) -I- V ? {pυΓ)= V ?(益▽产)??μt(V27)C tt PIr卜SAr

其中…一(6)

——(7) 混合分数定义.

其中Zk 代农元素k 的元素质量分数,下标F 和O 分别代农燃料和氧化剂的进口值。对于简 单的燃料/氧化剂体系,每-计算单元内的混合物分数代农了该单元内的燃料质量分数,由于混 合物分数是守恒标量,因此在求解输运方程时不再考虑反应源项。

在该方法中,化学反应认为足够快,体系中的组分立刻达到平衡状态。化学平衡组分在混合物空 间的分布可示恿如下:

02

C02 H20 N2 CO H2

化学反应和湍流之间的相互作用采用概率密度函数(PDF)的方法处理:

V

>

,介:‘?…丿?忙M ?卄 ______

■ ? -??

p(V>ΛV -Iim ^Yr,

7 g / a ~

因此在混合物分数空间,f 标量的时均值可由下式计算:

守恒标?PDF 模型的优缺点:

优点:可以预测中间组分的浓度,可以考虑流动中的耗散现象,可以考虑化学反应与湍流之间的 相互作用,该方法不需要求解人量的组分和能量的输运方程,因此可以缩短计算时间。

缺点:研究的流动体系必须接近于局部化学平衡状态,且不能用于非湍流流动,同时亦不能处理 预混

/ =/-7

上图代农了概率密度函数P(V)的定义,

CHENlIC< ξQ ∪U ∣6fl ∣UN

IHn5FCCIE5 COH jk CCniQN

W>r yg ∏ UicaLx

燃烧问题。

该模型不妥求用户显式地定义反应机理,而是通过火焰而方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。

应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环固体火箭发动机中的复杂燃烧问题。/形燃烧室中的燃烧问题及液体.

2.2.3层流火焰面模型

层流火焰而模型的基本思想是把湍流扩散火焰看作是层流对撞扩散火焰而的系统。该方法可以看作是守恒标量PDF模型的?个扩展,它可用于处理非化学平衡状态的体系,即可以利用化学反应动力学的方法处理反应流。

不同于守恒标量的PDF模型,标量是混合物分数和标量耗散率的函数,而非混合物分数的函数:

——⑻

指定混合物分数f的PDF符合β函数分布,标量耗散率X的PDF符合狄拉克-δ函数分布,因此,时均标量值可以通过在f和X空间求标量的统计平均来得到(即,考虑化学反应与湍流的相互作用):

I if

层流火焰闻模型的计算过程如下:

1、计算不同标量耗散率下,标量在混合物分数f空间的分布,即求解火焰Ifri方程,组分方程为:

OY i 1 n l?Y i \ 1 SLe l I

P ar = 2^Si^dr ?fix^^r?

——(10) 能量方程为:

+A惨+*如劄鈴三[4叫畑(CF

——(11)

从而得到标量随混合物分数和标量耗散率的变化关系,即式(8),并以火焰面数据库文件的形式保存结果。

2、火焰面数据库文件也可由其它软件生成,若得到的库文件为单标量耗散率,则需计算不同标虽耗散库的库文件,最后将它们合并。

3、利用(9)式计算火焰面的PDF库,从而得到时均标量随平均混合物分数和平均混合物方差的变化关系。

4、利用求解平均混合物分数及其平均方差的输运方程的方法,在流场中计算这两个量,然后再利用

得到的PDF库査找时均标量值。

2.2.4预混燃烧的ZimOnt模型

进行衣征,如下:(PrOgreSS VariabIe),c.湍流预混燃烧的化学反应采用反应进度.

C=Zmd

P P

——(12)

其中YP和Yp(ad)分别代农当前和完全绝热燃烧后燃烧产物的质量分数,其取值范围在0到1之间,0代农未燃混合物,I代农已燃混合物。

若用反应进度C代农其平均值,则其输运方程可农达如下:

Q

毎(PC) + V ? (∕wc) = V ?

——(13)

上式中平均反应速率项如下求解:

叹=內UwCl

——(14)

PV代农未燃物密度,Ut代表湍流火焰传播速度。

湍流侦混燃烧的关键在于求解湍流火焰传播速度(位于湍流火焰农而的法线方向),该速度受两方面馆因素的影响:?是层流火焰传播速度,即决定于燃料和氧化剂的浓度、初始温度、组分的扩散特性以及化学反应动力学特性:二是有人涡褶皱和拉伸以及由小涡决定的火焰农面厚度。根据上述讨论,FLUENTZ中的湍流火焰传播速度可农达为:

r.

——(15)

式中,A模型常数,u'速度均方值,UI层流火焰传播速度,α=k∕pCp未燃物的分/导热系"£ 湍流长度尺度,Tt为湍流时间尺度,TC为化学反应时间尺度。I=CdU数,为考虑火焰拉伸所导致的吹熄现象,在反应速率源项中可乘以?个拉伸因f G,它代农了拉伸所导致火焰不熄火的概率。

G=X{-石卜(严)+自}

——(16)

2.2.5部分预混燃烧模型

部分预混燃烧系统是指这样?种预混火焰,其燃料/氧化剂之比不唯-O FLUENT中的部分预混模型是非预混模型和预混模型的结合。预混燃烧的反应进度,C,决定了火焰前锋的位置,在火焰前锋的后Iftl(C=I),混合物已燃,使用守恒标量PDF或层流火焰而模型的解;在火焰前锋的前而(C=O),组分质虽分数,温度和密度由混合但未燃烧混合物分数来计算。在火焰内部,未燃和已燃混合物的线性结合的方法彼使用。

部分预混模型求解平均反应进度C,平均混合物分数f和混合物分数方差f2的输运方程。平均标量可由如下的f和C的PDF来计算:

→17)

在火焰很薄的假设下,由于存在未燃的反应物和已燃的产物,则平均标量可如下计算:

Φ = c∣?(MJ)4f 订¢. (Mf)W

(18)

具体煤粉燃烧算例

K建立求解模型:连续相(气体)

只有在非耦合求解时非预混燃烧模型才是可用的。

Define■一InOdelS■一SOIVe r.?.

2、打开RNGkY湍流模型

Define■一models■一viscous..?

3、打开非预混燃烧模型

Define一?models■一species..?

a、在Model 卜选择NOn-PremiXed COlnbUStiOnO

当点OK时,FLUENT将打开?个对话框,要求输入在模拟中要用到的PDF文件。

b、在选择文件对话框中,选择并读入非绝热的PDF文件(coal.pdf)

当FLUENT读入非绝热PDF文件时,它会自动激活能量求解方程,所以你可以不用打开能量Ifri 板激活传热方程。

以激括辐射模型。P-I、选择3.

Define…MOdelS…Radiation....

Pl模型是能求解气体和颗粒间辐射传热的模型之-O

2、建立求解模型:离散相

FLlENT会用离散相模型来模拟煤粉的流动。这模型会预示出单个煤粒的轨迹,每?个都代衣煤的连续流,在交替计算离散相的轨迹和气相连续方程时,煤粒与气相间热虽、动虽、质量的传递都将包含其中。

1、耦合离散相与连续相流动预报。

Define…MOdelS…DiSCrete PhaSe..…

a、在InteraCtiOn 选中InteraCtiOn With COntinUOUS PhaSe 选项。

这选项将激活耦合求解,在求解中,离散相的轨迹将会对气相产生影响,如果不选中这选项,你仍可以看到煤粒的轨迹,但上述参数对连续和的流动将没有任何影

响。.

b、定义耦合参数,设定NUlnber Of COntinOUS PhaSe interations Per DPM interation 为200:

在?些有若高质量粒(和较人网格尺寸的问题中,应该给这参数设定高?点的值,这对低频率轨迹是很有好处的,为了更完全地聚合气和方程,应先对轨迹进行反复的计算。

c、在TraCking Paramete 下,为MAX NUmber Of StePS 输入500OOO a

d、打开SPeCify Length SCaIe ,保持Lenth SCale 的默认值为0.0ImO

Length SCaIe控制离散相轨迹综合中用到的每?次步数的人小。这儿用到的值0.01m 味着IOm 长的-?段轨迹要计算1000步左右。

e、在OPtiOnS 下,选择PartiCIe RadiatiOn InteratiOnO

2、创建离散相煤的射入轨迹。

煤粉流用初始条件定几这初始条件认为煤是进入到气体中。在颗粒的运动方程的每?次综合中,FLUENT将用这些初始条件作为计算的开始点。

在这里,煤的总质量流的比率为2.4653kg∕s,在10-160微米直径方向上,假设颗粒是服从RoSin-Rammler尺寸分布的。其他的初始条件以及适当的输入程序将在下面做详细说明。Define——InjeCtiOnS??…

在InjeCtiOnS面板中点击Creat按钮。

bx InjeCtiOnTyPe 向下列衣中选择SUrfaCeC

CX 在PartiCIe TyPe 下,选择COmbUSting o

通过CombUStiOn ,可以激活煤液化作用和煤燃尽的了?模型。类似地,如果选择DrOPIet将会激活小液滴蒸发和沸腾的子模型。

d、在Material向下列衷中选择Coal-mv0

数据库中的燃烧颗粒物质。你可以在列衣中选择?种适当的FLUENT列衣包含了Materkll

煤,然后在MaterialS [ft]板中对其进行修改。

e、在Diameter DiStribUStiOn 向下列农中选择rosin-rammlero

煤粒的尺寸分布是不均匀的,其直径大小从10微米到160微米,这些尺寸分布是与rosin-rammler 方程

相适应的。

f、OXidiZing SPeCieS 向下列农中选择02。

g、在POint PnPertieS下指定初始条件。

Tcmpcraiurc IkJ

VeIocMyMagnitugte (ιn∕s]

2173

TOtal FloW Rate (kg∕s)

2J∣653

1ZI

h、定义湍流差量。

点击TUrbUlent DiSOerSiOn ,血板将示出相关的输入数据。

在StOChaStiC TraCking 下,打开StOChaStiC MOdekO

随机跟踪可以模拟湍流颗粒轨迹的作用,在模拟实际颗粒的分散,将随机跟踪包含其中是很重耍的。

3、物质:连续相

当需要用到非预混燃烧模型时,PrePDF化学数据库的热力学数据包括密度,比热和成分的焙将被用到,这些性质将作为pre-mixture物质被转换到FLUENT中去,这其中只有可以传输性质,如粘性和导热系数才需要定义。.

Define ----- MateriaIS??…

1、设定Thermal COndUCtiVity 为X。

2、设定ViSCOSity

3、在AbsorptionCoefFicient的向下列农中选择WSggm-CeI1-based o这个模型指定J Z?个随着成分变化而变化的吸热系数。

4、点击Change/Create 按钮。

4、物质:离散相。

Define ----- MateriaIS

1、从MateriaIS TyPe 列衣中选择COmbUStiOn-PartiCle O

2、在COmbUStiOn PartiCle MaterialS 列农中,保持当前的选择(COaI-mv)o你可以点击Database...

按钮来査看可用的COmbUStiOn-PartiCle物质。

设置下列常量的参数值。COaI-mv、为物质

3、

FLUENT将用到下列输入值:

DenSity将影响颗粒的惯性和质量力。

CP决定了颗粒温度变化所需要的热量。

Latent Heat是挥发份蒸发所需要的热量。当在煤燃烧中用非预混燃烧模型的时侯,这值通常设为0。如果为了节省燃料的热量,而选中挥发份成份的话,那么潜热也会包含在其中(但是,如果水彼作为气相的水蒸汽而含在挥发分中的话,你就应该用非0的潜热值)。

VaPOriZatiOn TemPeratUre是煤开始液化时的温度。它应该与PrePDF中用到的燃料入口温度相等。VOlatile COmPOnent FraCtiOn确定了液化的每?煤粒的质虽。

Binary DiffU S iVity颗粒农面的氧化剂的扩散率,用在有扩散率限制的煤燃如率方面。

PartiCIe EmiSSiVity颗粒的辐射系数。在计算辐射到颗粒上的热量的时侯会用到。

PartiCIe SCattering FaCtor 颗粒的散射系数。

SWelIing CoeffiCient确定了煤在液化的过程中直径的变化。膨胀系数为2就意味着在挥发份的挥发过程中颗粒尺寸会变为原来的两倍。

BUrnOUt StOiChiometriC Ratio用在有扩散控制的燃烬率的计算力?面。另外,在用非预混燃烧模型时,这参数将没有用。当采用有限速率化学的时候,化学计量比定义了需要单位质量碳的氧化剂的质量。默认值为将C⑸氧化成CO2的所需量。

CombUStibIe FraCtiOn是煤粒中碳的质虽分数。它决定了被碳燃烬(模型消耗的每一煤粒的质量。

4 .为DeVOl.atilization MOdeI 选扌荼SingIe Rate DeVOlatilization MOdel O

选项。SingIe-rate 向卜歹U 衣中选择DmVOlatiliNa 七ion MOdeI 在(a)? DeVOIatiIiZatiOn MOdel 面板。

(b)保持【tri 板中默认的液化模型参数。

5?为 COmbUStiOn MOdel ?选择 kinetics/diffUsion-Iimitedo (a)在 COinbUStiOn MOdeI 向卜列农中选择 kinetic/diffUsion-Iimited 选项。

这将扌丁开 KinetiCS/Dif fusion Limited COmbUStiOn MOdeI 面板。

(b)保持默认值不变。

6?点击 Change/Create? 并关Rl MateriaIS Γft ∣板O

5、边界条件

起 BourKlary COnditiOnS

TyPe

D 1195

S3??? I

CQW ?

? I ClDSe I HelP

>速度边界条件

1.

ZOnC NamC

∣a-h-ιr ∣3

这将打开SingIe Rate

Define

BoUndary COnditiOnS

Zone

a-h-db

a-h-ml a h-m2

a?h -rn3

hφz1 a -lτ?p22 a -h-zb a-h-εd a?h -zc2 ah-zjl a-∣rzj?

inlet-Vent int8ke4an in tcrfocc rτιaε^-floγr -inlct OUtiIDW OUtlCtVCnt

PrCSSUre-far-field pressure inlet pressures Utlet Wyrnnnehy

VCIOCiyinICI

IWdlI

MomCntUm Therlnal R^diatiOn ∣ SPeCIee ∣ DPM MUhiPIlaSe UDS

VCloCit y SPCCifiCatiOn MCth叫MQg II ilUdS NOnnal to UoUndary

ReferenCe Frame IJXhSOIlftr

VrlOCity MagnitUde [m∕s) ∣27?3

constant

Turbulence

SPeCrfiCatian HethDd Int C nSrty and HydraUllC DiamCtCr

TUrbUlent IntenSity (%) Ilg

HydraUHC Diameter Im) ∣0.377

OK CanCel ∣ Help ∣

注恿:在这儿将根据其强度和水力直径来定义湍流参数。对于助燃空气流来说10%的湍流强度是很具有象征性的。水力直径的值为计算值。

在非预混燃烧计算中,需要定义进口的Mean MiXtUre FraCtiOn和MiXtUre

FraCtiOn Varianae C在煤燃烧中,所有的燃料都是离散相的,所以进口处的混合分数的值为0。

所以,保持默认的0值不变。

2、为Wall区域设定条件(炉壁)。

Fiow

TilftIolence PnlliMant no POIlIrtant hcι tnergy PI P

Prcssurc-Vclody COUPling

ISiMPLE T]

OK I DCfadtl CaneCl HCIP ∣

2、初始化流场

SOlVe-―InitialiZe ——InitialiZe

Eoπψulc Froln

ReferenGe Frame

I

▼] 「? 口R ∣ative tα Cell

ZOne

Absolute

Initial Values

GaLIge PreSSlJle [卩ascal] ∣Q

XVeIoeity (π√s 屮 YVCkCity (π√βψ ZVClOeity (π√s) IgI

Inlt ReSet APPIy ∣ CIOSe ∣ HelP

点击Init 按钮初始化流场,并关闭闻板。

PRESTO! ■

QUICK

■ SeCOBd Order UPWind J Second OrdCr UPWlnd

d

lr?ιι∣>cfΛ∣∣∣rr ∕gμ IHImInfI Eι?rfv?Ivity ..°

WanTMC??eβ^(m! jo

Mjlcdal MaiBK*

IICet UcRCrebon HoU IWjn‰)) H

OIn st?πl

6>求解

1、设置松弛因子 SOIVe-―COntrOlS-■一

EqUaliQm

主旧 Undcr-Rclaxaton Factor5

OiSerCti7Λtion

JJ

Znnn Knmr IUJlI

CCllZOBe

Mrtamrn*aιm ThCrnV?l ∣ i ln4i ∣tKnn j !!prcirn j Dl ,M Mdlliphaur IJI)S TtIefMBl CMditiOM

亠 IIenlllIlX β

Iem^rrnlwrr Cθ?wdi?n RedMion C MlXC?

ShrIl (?<κ?rii(>?ι

Pressure ~Q ~^

BCdyFOrCCS MUlMCIIlUIIl U.,

Prcot ∣ur c

TurbuIcM DiasipaGcn Hole

MonlentUm

TUrbUlmlt KindiC EnCrgy

3、激沾在求解过程中剩余的显示。 Define ---- MOnitOrS --- ReSidUal

Residual

ChCCk

MOnitOrCOnVerge AbSoIUle ICe Criteria

ICOntinUity

W

∣Θ.Θ61

∣×-uelocity (7 K7 ∣β.ofii -

∣y-u(?IOCit

P P '0.0RI

IZ-UeIOCit 17 P ∣0.OM

IIenergJI

17

P

IIe-O6

OK

PlOt Renorm ∣ CanCel ∣ HelP

4、 保存文件。

5、 开始计算。 SOIVe -- Iterate....

里血?很详细的。帮助,FLUENT 具体计算过程见为后处理计算,的形成,NO 污染物:补充.

OPtianS P Pflnt "PIOt

StOrage

her?tior?s H aoo

厂 NDrmaIiZe 0

SCale

COnYergenCC Criterion

absolute

WindOWIo

Λκes... CiiFVffS.

I MOnrtorS

PIOtting

fluent燃烧简介

FLUENT燃烧简介 FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。 1.1 FLUENT燃烧模拟方法概要 燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示: 图 1 FLUENT模拟过程中所需的物理模型 1.1.1 气相燃烧模型 一般的有限速率形式(Magnussen模型) 守恒标量的PDF模型(单或二组分混合分数) 层流火焰面模型(Laminar flamelet model) Zimount 模型 1.1.2 离散相模型 煤燃烧与喷雾燃烧 1.1.3 热辐射模型 DTRM,P-1,Rosseland 和Discrete Ordinates 模型 1.1.4 污染物模型 NOx模型,烟(Smoot)模型 2.1气相燃烧模型 ·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: 有限速率燃烧模型---预混、部分预混和扩散燃烧 混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧

反应进度方法(Zimont模型)---预混燃烧 混合物分数和反应进度方法的结合---部分预混燃烧 2.2.1 有限速率模型 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。 求解积分的输运方程,得到每种组分的时均质量分数值,如下: -----(1) 其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率: -----(2) -----(3) 计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。 有限速率模型的有缺点: 优点:适用于预混、部分预混和扩散燃烧,简单直观; 缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 2.2.2守恒标量的PDF模型 守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。 -----(4) -----(5) 其中-----(6) 混合分数定义-----(7)

第六章 FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟 6.1 燃烧模拟的重要性 ●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等) ●面向实际现象(如点火、熄火、燃烧污染物生成等) 6.2 FLUENT燃烧模拟方法概要 ●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。然而,需要注意的是:你必须 保证你所使用的物理模型要适合你所研究的问题。FLUENT在燃烧模拟中的应用可如下图所示: ●气相燃烧模型 一般的有限速率形式(Magnussen 模型) 守恒标量的PDF模型(单或二组分混合物分数) 层流火焰面模型(Laminar flamelet model) Zimont 模型 ●离散相模型 煤燃烧与喷雾燃烧 ●热辐射模型 DTRM, P-1, Rosseland 和Discrete Ordinates模型 ●污染物模型 NO x 模型,烟(Soot)模型

6.3 气相燃烧模型 6.3.1 燃烧的化学动力学模拟 实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间 的反应时间尺度相差很大(10- 9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。 在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: ● 有限速率燃烧模型——>预混、部分预混和扩散燃烧 ● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃 烧 ● 反应进度方法(Zimont 模型)——>预混燃烧 ● 混合物分数和反应进度方法的结合——>部分预混燃烧 6.3.2一般的有限速率模型 ● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下: 6-1 其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率: 6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。在混合(mixing )速率方法中,混合速率和涡的时间尺度, k /ε.有关,其物理意义为化学反应受限于湍流导致的组分和热量的混合速率。J i 表达如下: 6-3 ● 计算所需参数包括:(i )组分及其热力学参数值;(ii )反应及其速率常数值。其中,FLUENT 提供了一个混合物组分的数据库可供查找选用,另外也提供了一个化学反应机理以及组分热力学性质的数据库可供查找选用。 ● 有限速率模型的优缺点: 优点:适用于预混、部分预混和扩散燃烧;简单直观 缺点:当混合时间尺度和反应时间尺度相当时(即Da>>1)缺乏真实性;难以解决化学 反应与湍流的耦合问题;难以预测反应的中间组分;模型常数具有不确定性 6.3.3 守恒标量的PDF 模型 ∑=k jk j R R

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

fluent经典问题整理

网格质量与那些因素有关? 网格质量本身与具体问题的具体几何特性、流动特性及流场求解算法有关。因此,网格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算网格有一些一般性的要求,例如光滑性、正交性、网格单元的正则性以及在流动变化剧烈的区域分布足够多的网格点等。对于复杂几何外形的网格生成,这些要求往往并不可能同时完全满足。例如,给定边界网格点分布,采用Laplace 方程生成的网格是最光滑的,但是最光滑的网格不一定满足物面边界正交性条件,其网格点分布也很有可能不能捕捉流动特征,因此,最光滑的网格不一定是最好的网格。对计算网格的一个最基本的要求当然是所有网格点的Jacobian必须为正值,即网格体积必须为正,其他一些最常用的网格质量度量参数包括扭角(skew angle)、纵横比(aspect ratio、Laplacian)、以及弧长(arc length)等。通过计算、检查这些参数,可以定性的甚至从某种程度上定量的对网格质量进行评判。Parmley等给出了更多的基于网格元素和网格节点的网格质量度量参数。有限元素法关于插值逼近误差估计的理论,实际上也对网格单元的品质给出了基本的规定:即每个单元的内切球半径与外切球半径之,应该是一个适当的,与网格疏密无关的常数。 实体与虚体的区别 在建模中,经常会遇到实体、实面与虚体、虚面,虚体的计算域也可以进行计算并得到所需的结果。那么它们的区别是什么呢? 对于求解是没有任何区别的,只要你能在虚体或者实体上划分你需要的网格。关键是看你网格生成的质量如何,与实体虚体无关。 gambit的实体和虚体在生成网格和计算的时候对于结果没有任何影响,实体和虚体的主要区别有以下几点: 1.实体可以进行布尔运算但是虚体不能,虽然不能进行布尔运算,但是虚体存在merge,split 等功能。 2.实体运算在很多cad软件里面都有,但是虚体是gambit的一大特色,有了虚体以后,gambit 的建模和网格生成的灵活性增加了很多。 3.在网格生成的过程中,如果有几个相对比较平坦的面,你可以把它们通过merge合成一个,这样,作网格的时候,可以节省步骤,对于曲率比较大的面,可能生成的网格质量不好,这时候,你可以采取用split的方式把它划分成几个小面以提高网格质量。 在Fluent中进行非稳态(unsteady)计算时如何设置步长?

Fluent多相流模型选择

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则 1、基本原则

1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相 模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴 和粒子负载流动,采用混合模型或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣 的流动特种,选择合适的流动模型。此时由于模型只是对部分流动特 征采用了较好的模拟,其精度必然低于只包含单个模式的流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混 合模型,反之使用欧拉模型。 2)如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间 曳力规律不明确,最好选用混合模型。 3)如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部 分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。 但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收 敛困难。

Fluent动网格----layering个一个简单实例(作者Snow)

Fluent动网格----layering个一个简单实例我这几天看了点动网格技术方面的东西,在学习过程中发现这方面的例子很少,自己也走了一些弯路。现在还好,弄明白了一些,能够应付现在我的工作。为了让更多学习者快速了解动网格,我打算尽量把我学习心得在这里和大家分享,这里给出一个layering的一个简单例子。 1.Gambit画网格 本例很简单,在Gambit里画一个10*10的矩形,网格间隔为1,也就是有100个网格,具体见下图。都学动网格的人了,不至于这个不会做! 这里需要注意一个问题:设置边界条件的时候,一定要把要移动的边单独设定,本例中一右边界作为移动的边,设成wall就可以,这里再后面需要制定。 2.编写UDF #include "udf.h" #include "unsteady.h" #include "stdio.h" #include "stdlib.h" /************************************************************/ real current_time = 0.0 ; Domain * domain ; Thread * thread ; real NV_VEC( origin ),NV_VEC( force ),NV_VEC( moment ) ; /************************************************************/ DEFINE_CG_MOTION(throttle,dt,vel,omega,time,dtime) { current_time = CURRENT_TIME ; vel[0] = 30; Message("time=%f omega=%f\n",current_time) ; }

FLUENT基础知识总结

======== FLUENT基础知识总结 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit 对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent 做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的

fluent全攻略(探索阶段)

GAMBIT使用说明 GAMBIT是使用FLUENT进行计算的第一个步骤。在GAMBIT 中我们将完成对计算模型的基本定义和初始化,并输出初始化结果供FLUENT的计算需要。以下是使用GAMBIT的基本步骤。 1.1定义模型的基本几何形状 如左图所示的按钮就是用于构造模型的基本几何形状的。当按下这个按钮时,将出现 如下5个按钮,它们分别是用以定义点、线、面、体的几何形状的。 值得注意的是我们定义这些基本的几何元素的一般是依照以下的顺序: 点——线(两点确定一线)——面(3线以上确定一面)——体(3面以上确定体)对各种几何元素的操作基本方式是:首先选中所要进行的操作,再定义完成操作所要的其他元素,作后点“APPL Y”按钮完成操作。以下不一一重复。 下面我们分别介绍各个几何元素的确定方法: 1.1.1点的操作 对点的操作在按下点操作按钮后进行(其他几何元素的操作也是这样)。点有以下几种主要操作 定义点的位置按钮,按下后出现下面对话框 Coordinate Sys.:用以选择已有坐标系中进行当前操 作的坐标系 Type:可以选择3种相对坐标系为当前坐标系:笛卡 儿坐标、柱坐标、球坐标。 以下通过在Global 中直接输入点的x、y、z值定义点, 注意这里的坐标值是绝对坐标值,而Local中输入的是相 对坐标值,一般我们使用绝对坐标值。 Label:为所定义的点命名。 在完成以上定义后就可以通过进行这个点 的定义,同时屏幕左半部的绘图区中将出现被定义的点。 用关闭此对话框。 查看所有点的几何参数按钮(在以后的操作中也可以查看其他元素的几何参数) 在Vertices栏中选择被查询的点,有两种选择方式(其他几 何元素的选择与此类似): ①按住shift键的同时用鼠标左键取点

Fluent经典问题及答疑2

Fluent经典问题及答疑2 51 对于出口有回流的问题,在出口应该选用什么样的边界条件(压力出口边界条件、质量出口边界条件等)计算效果会更好?(#42) 52 对于不同求解器,离散格式的选择应注意哪些细节?实际计算中一阶迎风差分与二阶迎风差分有什么异同?(#69) 53 对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant 数对计算结果有何影响?(#43) 54 在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同?(#44) 55 对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求? (#60) 56 计算流体力学中在设定初始条件和边界条件的时候总是要先选择一组湍流参数,并给出其初值。如何选择并给出这些初值呢?有什么经验公式或者别的好的办法吗?(#73) 57 讨论在数值模拟过程中采用四面体网格计算效果好,还是采用六面体网格更妙呢?(#70) 58 如何将自己用C语言编辑的程序导入到FLUENT中?在利用UDF编写程序时需注意哪些问题?(#157) 59 在UDF中compiled型的执行方式和interpreted型的执行方式有什么不同?(#72) 60 在用gambit的时候,导入pro/e的stp文件后,在消去最短边的时候,有些最短边不能消去,其是空间线段,用面merge的方法和连接点的方法都不行,请问该怎么消去这类短边?(#144) 61 FLUENT help和GAMBIT help能教会我们(特别是刚入门的新手)学习什么基本知识?(#126) 62 FLUENT如何做汽车外流场计算的模拟?并且怎么可以得到汽车的阻力系数和升力系数?(#170) 63 FLUENT模拟飞行器外部流场,最高MA多少时就不准确了?MA达到一定的程度做模拟需注意哪些问题?(#125) 64 在用gambit建模,保存成*.msh文件时总是出现No entity的错误:Continuum Entity fluid does not contain any valid entity and is not written! Boundary Entity wall does not contain any validentity and is not written! 不知道是什么问题?产生的原因是什么?如何解决?(#150) 65 在做燃烧模拟的时候,入口燃料温度定义为蒸发/离解开始时的温度(也就是,为离散相材料指定的蒸发温度“Vaporization Temperature”),这是指水分蒸发温度吗?一般是多少?(#196) 66 在计算煤粉燃烧时遇到这样的问题: Warning: volatile + combustible fraction for lignite is greater than 1.0shell conduction zones 如何解决? 67 FLUENT控制方程是无因次的还是有因次的?如果是无因次的,怎么无因次的? 68 做飞机设计时,经常计算一些翼型,可是经常出现计算出来的阻力是负值,出现负值究竟是什么原因,是网格的问题还是计算参数设置的问题?(#71) 69 FLUENT中的Turbulent intensify是如何定义的?该值应该是小于等于100%,可是我的计算中该值达到400%,不知为何? 70 边界条件中湍流强度怎么设置:入口边界条件中的湍流强度和出口边界条件中的回流湍流强度怎么设置?是取默认值10%吗?(#135) 71 关于Injection中的Total Flow rate:injection 选surface,此时选了好几个面(面积不一定完全相同,但颗粒的入口速度相同),那Total Flow Rate 是指几个面的总流量还是某一个面的啊?只能处理完全相同的面吗?(#160) 72 FLUENT中能不能做插值:在ansys中的模型节点坐标和FLUENT中模型的节点坐标不一致,能

FLUENT菜鸟入门-不可不知的50个经典问题

Fluent必知的一些基本概念! 连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事 这和Fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。 你可以试验SIMPLEC方法,应该会收敛快些。 湍流与黏性有什么关系? 湍流和粘性都是客观存在的流动性质。 湍流的形成需要一定的条件,粘性是一切流动都具有的。 流体流动方程本身就是具非线性的。 NS方程中的粘性项就是非线性项,当然无粘的欧拉方程也是非线性的。 粘性是分子无规则运动引起的,湍流相对于层流的特性是由涡体混掺运动引起的。 湍流粘性是基于湍流体的parcel湍流混掺是类比于层流体中的分子无规则运动,只是分子无规则运动遥远弱些吧了。不过,这只是类比于,要注意他们可是具有不同的属性。粘性是耗散的根源,实际流体总是有耗散的。 而粘性是制约湍流的。 LANDAU说,粘性的存在制约了湍流的自由度。 湍流粘性系数和层流的是不一样的,层流的粘性系数基本可认为是常数,可湍流中层流底层中粘性系数很小,远小于层流时的粘性系数;而在过渡区,与之相当,在一个数量级;在充分发展的湍流区,又远大于层流时的粘性系数.这是鮑辛内斯克1987年提出的。 1 FLUENT的初始化面板中有一项是设置从哪个地方开始计算(compute from),选择从不同的边界开始计算有很大的区别吗?该怎样根据具体问题选择从哪里计算呢?比如有两个速度入口A和B,还有压力出口等等,是选速度入口还是压力出口?如果选速度入口,有两个,该选哪个呀?有没有什么原则标准之类的东西? 一般是选取ALL ZONE,即所有区域的平均处理,通常也可选择有代表性的进口(如多个进口时)进行初始化。对于一般流动问题,初始值的设定并不重要,因为计算容易收敛。但当几何条件复杂,而且流动速度高变化快(如音速流动),初始条件要仔细选择。如果不收敛,还应试验不同的初始条件,甚至逐次改变边界条件最后达到所要求的条件。 2 要判断自己模拟的结果是否是正确的,似乎解的收敛性要比那些初始条件和边界条件更重要,可以这样理解吗?也就是说,对于一个具体的问题,初始条件和边界条件的设定并不是唯一的,为了使解收敛,需要不断调整初始条件和边界条件直到解收敛为止,是吗?如果解收敛了,是不是就可以基本确定模拟的结果是正确的呢? 对于一个具体的问题,边界条件的设定当然是唯一的,只不过初始化时可以选择不同的初始条件(指定常流),为了使解的收敛比较好,我一般是逐渐的调节边界条件到额定值("额定值"是指你题目中要求的入口或出口条件,例如计算一个管内流动,要求入口压力和温度为10MPa和3000K,那么我开始叠代时选择入口压力和温度为1MPa和500K(假设,这看你自己问题了),等流场计算的初具规模、收敛的较好了,再逐渐调高压力和温度,经过好几次调节后最终到达额定值10MPa和3000K,这样比一开始就设为10MPa和3000K收敛的要好些)这样每次叠代可以比较容易收敛,每次调节后不用再初始化即自动调用上次的解为这次的初始解,然后继续叠代。即使解收敛了,这并

FLUENT中两相流、多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相; 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等; 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道” 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model) 混合模型(Mixture Model) 欧拉模型(Eulerian Model) 模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型; 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动; 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流; 缺点:界面特性包括不全,扩散和脉动特性难于处理。 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型; 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;

GAMBIT实例教程4_燃烧室模型的建立.

4. 燃烧室模型的建立(3-D ) 在这份指导书中,你可以通过运GAMBIT 中的top-down 几何结构法来为燃烧室生成几何模型(用实体来生成容积)。你可以通过非结构化六面体网格法来为画出的燃烧室几何体划分网格。 在这份指导书中你可以学习到如何去: ● 移动一个体积; ● 从一个体积中扣除另一个; ● 把一个体积阴影化; ● 交叉两个体积; ● 混合一个体积的边; ● 通过对面进行扫描来生成体积; ● 为读入FLUENT/UNS来准备网格。 4.1 前提 这份指导书假定读者已经掌握了指导书1并且已对GAMBIT 界面相当熟悉。 4.2 问题描述 这个问题在图4-1中以图解的形式表示出来。此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,在这个指导书中由于几何结构对称你可以仅作出燃烧室几何体的1/4模型。喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。 4.3 策略

在这份指导书中,你可以运用top-down 几何结构法来生成燃烧室几何体,你可以生成体积(在本例中为方体和圆体)并用布尔运算把它们结合起来,交叉、扣除这些体积以生成基本体积,最后,通过“融和”命令,你可以舍掉一些边界以完成几何体生成。 在这个模型例子中,简单的选择捡起几何体并用六面体单元对整个区域进行网格划分是不可能的,由于Cooper 工具(在本向导中要应用)需要两组面,一组平行于扫描路径,另一组垂直于扫描路径,不管怎样,融和边界不适合于任一组。对cooper 工具更详细的描述见GAMBIT Modeling Guide 。你需要把几何体分成许能用cooper 来划分网格的部分。在GAMBIT 中有许多分解几何体的方法。在这个例子中,你可以采用把那些挨着弯面的体积部分从主体积中分开的方法。对这个燃烧室进行分解的详细步骤在下面给出。 注意到几何体中有许多面,其默认的网格划分方案是pave 方案。这些面中的大部分与Z 方向垂直。在Z 方向有许多几何突起,因此在cooper 网格方案中应被选为主方向。为使其可能,X 、Y 方向的铺砌面(图4-2中的两个对称面)必须改变以去用Submap 或Map 网格划分方案。 默认的,GAMBIT 对这两个面选择Pave 网格划分方案,是因为它们每一个都在融合处都有一个圆边。如果你把每个面圆角分裂出来并通过一个体积把它们连接

Ansys Workbench Fluid Flow(FLUENT)经典问题

1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢? 学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT 的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。 https://www.doczj.com/doc/3a13088053.html,/dvbbs/viewFile.asp?BoardID=61&ID=1411 A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid): 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。 B.牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid): 日常生活和工程实践中最常遇到的流体其切应力与剪切变形速率符合下式的线性关系,称为牛顿流体。而切应力与变形速率不成线性关系者称为非牛顿流体。图2-1(a)中绘出了切应力与变形速率的关系曲线。其中符合上式的线性关系者为牛顿流体。其他为非牛顿流体,非牛顿流体中又因其切应力与变形速率关系特点分为膨胀性流体(Dilalant),拟塑性流体(Pseudoplastic),具有屈服应力的理想宾厄流体(Ideal Bingham Fluid)和塑性流体(Plastic Fluid)等。通常油脂、油漆、牛奶、牙膏、血液、泥浆等均为非牛顿流体。非牛顿流体的研究在化纤、塑料、石油、化工、食品及很多轻工业中有着广泛的应用。图2-1(b)还显示出对于有些非牛顿流体,其粘滞特性具有时间效应,即剪切应力不仅与变形速率有关而且与作用时间有关。当变形速率保持常量,切应力随时间增大,这种非牛顿流体称为震凝性流体(Rheopectic Fluid)。当变形速率保持常量而切应力随时间减小的非牛顿流体则称为触变性流体(Thixotropic Fluid)。 C.可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid):

Fluent经典问题及答疑

Fluent经典问题及答疑 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT 是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼) 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28)

Fluent软件的燃烧模型介绍

FLUENT软件的燃烧模型介绍 Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍: 一、气相燃烧模型 ·有限速率模型 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 ?PDF模型 该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。 应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。 ?非平衡反应模型 层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。 应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。

?预混燃烧模型 该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。 应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。 二、分散相燃烧模型 除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型: ?在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等)在瞬态和稳态下的运动轨迹 ?多种球形和非球形粒子的曳力规律 ?线性分布或Rosin-Rammler方程的粒子大小分布 ?连续相的湍流效应对粒子传播的影响 ?分散相的加热/冷却 ?液滴的汽化和蒸发 ?燃烧粒子,包括油滴的挥发过程和焦碳的燃烧 ?连续相与分散相的耦合 模拟油滴在湍流的影响而产生的扩散效应时,FLUENT可以采用粒子云模型和随机轨道模型。 ?随机轨道模型 该模型利用离散的随机跟踪法模拟瞬态湍流速度脉动对粒子轨迹的影响。 ?粒子云模型 该模型追踪粒子平均轨道的粒子云的形成和演化的统计过程。粒子云浓度通过粒子平均轨迹的概率密度函数来表示。

相关主题
文本预览
相关文档 最新文档