当前位置:文档之家› 双曲线二级结论大全

双曲线二级结论大全

双曲线二级结论大全
双曲线二级结论大全

精双曲线中常见结论

双曲线中常见结论: 1、离心率e=a c =21)(a b 2、焦半径 3、通径及通径长a b 2 2 4、焦点到准线的距离c b 2,中心到准线的距离c a 2

8、双曲线λ=-2222b y a x (λ≠0)和122 22=-b y a x 有相同的渐近线和相同的离心率。 9、P 为双曲线上一点,则21F PF ?的面积为S= θsin b 2 121212线的离心率为e= α ββαsin sin sin -+) (

例(湖南卷)已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线 交于点A ,△OAF 的面积为2 2 a (O 为原点),则两条渐近线的夹角为 (D ) A .30o B .45o C .60o D .90o 例双曲线)(0122≠=-m n n y m x 的离心率为2,则n m 的值为( ) A .3 B . 3 1 C .3或 3 1 D .以上都不对

椭圆的几何性质 一、教学目标 (一)知识教学点 通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用. (二)能力训练点 通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力. (三)学科渗透点 使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等. 二、教材分析 1.重点:椭圆的几何性质及初步运用. (解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.) 2.难点:椭圆离心率的概念的理解. (解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.) 3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变. (解决办法:利用方程分析椭圆性质之前就先给学生说明.) 三、活动设计 提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结. 四、教学过程 (一)复习提问 1.椭圆的定义是什么?

椭圆与双曲线的必背的经典结论

椭圆与双曲线的必背的经典结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 , 则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆 22 22 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.

圆锥曲线常见结论

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个 端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形 的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双 曲线的焦点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相 应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M , A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 0202y a x b K K AB OM =?,即020 2y a x b K AB =。 12. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-. 13. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-.

高中高考数学所有二级结论

高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2 倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆2 22)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+-- ②过椭圆)0,0(122 22>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ③过双曲线)0,0(122 22>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x

双曲线二级结论大全

双曲线 1.122PF PF a -= 2.标准方程22 221x y a b -= 3.11 1PF e d => 4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相交. 7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切. 8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点. 9.双曲线22 221x y a b -=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线 交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b +=. 10.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 00221x x y y a b -=. 11.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切 点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b -=. 12.AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的 中点,则2 2OM AB b k k a ?=. 13.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b -=-. 14.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b -=-. 15.若PQ 是双曲线22 221x y a b -=(b >a >0)上对中心张直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22 221x y a b -=(b >a >0)上中心张直角的弦L 所在直线方程为 1Ax By +=(0)AB ≠,则(1) 22 2211A B a b -=+ ;(2) L =

圆锥曲线二级结论(1)

一、焦点三角形周长 【知识讲解】 1、椭圆焦点三角形 直线l 过左焦点1F 与椭圆交于A 、B 两点,则2ABF ?的周长为a 4。 2、双曲线焦点三角形 直线l 过左焦点1F 与双曲线左支交于A 、B 两点,则a AB B F A F 422=-+。 【典型例题】 1.设椭圆19 252 2=+y x 的左、右焦点分别为1F 、2F ,P 是椭圆上任意一点,则21F PF ?的周长为()。 2.过双曲线19 162 2=-y x 的左焦点1F 的弦AB 长为6,则2ABF ?的周长是()。【变式训练】 1.已知1F 、2F 是椭圆112 162 2=+y x 的左右焦点,直线l 过点2F 与椭圆交于A 、B 两点,且7||=AB ,则1ABF ?的周长是( )。2.若1F 、2F 是双曲线18 2 2=-y x 的两个焦点,点P 在该双曲线上,且21F PF ?是等腰三角形,则21F PF ?的周长为( )。 二、通径公式 【知识讲解】

1、椭圆通径:过焦点且与长轴垂直的弦,通径长为a b 2 2。2、双曲线通径:过焦点且与实轴垂直的弦,通径长为a b 22。【典型例题】 1.设椭圆)0(122 22>>=+b a b y a x 的左右焦点分别是21,F F ,P 是椭圆上的点,且满足212F F PF ⊥,?=∠3021F PF ,则椭圆的离心率为( )。2.过双曲线18 2 2=-y x 的右焦点作x 轴的垂线交双曲线于A ,B 两点,则|AB|=()。【变式训练】 1.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若2ABF ?为等边三角形,则这个椭圆的离心率是( )。2.过双曲线18 2 2=-y x 的右焦点作x 轴的垂线交双曲线于A ,B 两点,若|AB|=16,则这样的直线有()条。 三、焦半径公式 1、椭圆焦半径公式(1) 0201,ex a PF ex a PF -=+=,其中e 为离心率,0x 为P 点横坐标。 2、双曲线焦半径公式(1) |||,|0201ex a PF ex a PF -=+=,其中e 为离心率,0x 为P 点横坐标。 【典型例题】 1.已知椭圆)0(122 22>>=+b a b y a x 的左右焦点分别是21,F F ,若椭圆上存在一点P 使得||23||21PF e PF =,则该椭圆离心率的取值范围是()。 2.已知双曲线112 42 2=-y x 上一点M ,其横坐标为3,则M 到右焦点的距离是()。 【变式训练】

双曲线中常见结论

双曲线中常见结论: 1、离心率e=a c =21)(a b 2、焦半径 3、通径及通径长a b 2 2 4、焦点到准线得距离c b 2,中心到准线得距离c a 2 12

8、双曲线λ=-2222b y a x (λ≠0)与122 22=-b y a x 有相同得渐近线与相同得离心率。 9、P 为双曲线上一点,则21F PF ?得面积为S=θ θ cos sin b -12

离心率为e= α ββαsin sin sin -+) ( 例(湖南卷)已知双曲线22a x -22 b y =1(a >0,b >0)得右焦点为F,右准线与一条渐近线交于点A, △OAF 得面积为2 2 a (O 为原点),则两条渐近线得夹角为 (D )

A.30o B.45o C.60o D.90o 例双曲线)(0122≠=-m n n y m x 得离心率为2,则n m 得值为( ) A.3 B. 3 1 C.3或 3 1 D.以上都不对 椭圆得几何性质 一、教学目标 (一)知识教学点 通过椭圆标准方程得讨论,使学生掌握椭圆得几何性质,能正确地画出椭圆得图形,并了解椭圆得一些实际应用. (二)能力训练点 通过对椭圆得几何性质得教学,培养学生分析问题与解决实际问题得能力. (三)学科渗透点 使学生掌握利用方程研究曲线性质得基本方法,加深对直角坐标系中曲线与方程得关系概念得理解,这样才能解决随之而来得一些问题,如弦、最值问题等. 二、教材分析 1.重点:椭圆得几何性质及初步运用. (解决办法:引导学生利用方程研究曲线得性质,最后进行归纳小结.) 2.难点:椭圆离心率得概念得理解. (解决办法:先介绍椭圆离心率得定义,再分析离心率得大小对椭圆形状得影 响,最后通过椭圆得第二定义讲清离心率e 得几何意义.) 3.疑点:椭圆得几何性质就是椭圆自身所具有得性质,与坐标系选择无关,即不 随坐标系得改变而改变. (解决办法:利用方程分析椭圆性质之前就先给学生说明.) 三、活动设计 提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结. 四、教学过程

椭圆与双曲线二级结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴 为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

高考中圆锥曲线常见结论

高考中解析几何有用的经典结论 一、椭 圆 1. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 2. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 3. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 4. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 5. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 6. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 7. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 8. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 二、双曲线 1. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程 是00221x x y y a b -=. 2. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线

第二讲 双曲线中常用的结论及解法技巧(学生版)

第二讲 双曲线中常用的结论及解法技巧 【知识要点】 一.双曲线三大定义 定义 1.到两定点距离之差的绝对值(小于两定点距离)为定值的点的轨迹是双曲线. 几何性质:双曲线上任一点到两焦点的距离之差的绝对值为定值. 定义 2.到一个定点的距离与到一条定直线的距离之比为定值(大于1)的点的轨迹是双曲线. 几何性质:双曲线上任一点到左(右)焦点的距离与到左(右)准线的距离之比为离心率e . 定义 3.到两个定点的斜率之积为定值(大于0)的点的轨迹是双曲线. 几何性质:双曲线上任一点到左右(上下)两顶点的斜率之积为22 a b . 二.双曲线经典结论汇总 1.AB 是双曲线()0,0122 22>>=-b a b y a x 的不平行于对称轴的弦,),(00y x M 为AB 的中点, 则22a b k k AB OM =?,即 0 20 2y a x b k AB =. 等价形式:21,A A 是双曲线()0,0122 22>>=-b a b y a x 上关于原点对称的任意两点,B 是双曲 线上其它任意一点,直线B A B A 21,的斜率存在,则22 21a b k k B A B A =?. 2.双曲线()0,0122 22>>=-b a b y a x 的左右焦点分别为21,F F ,点P 为双曲线上异于实轴端点 的任意一点θ=∠21PF F 则(1)2 122||||1cos b PF PF θ =-;(2)双曲线的焦点角形的面积为 2 tan 221θb S PF F = ?. 3.过双曲线()0,0122 22>>=-b a b y a x 上任一点),(00y x A 任意作两条倾斜角互补的直线交双 曲线于C B ,两点,则直线BC 有定向且0 20 2y a x b k BC -= (常数). 4.P 为双曲线()0,0122 22>>=-b a b y a x 上任一点,21,F F 为二焦点,A 为双曲线内一定点, 则||||2||12PF PA a AF +≤-,当且仅当P F A ,,2三点共线且P 和2,F A 在y 轴同侧时,等号成立. 5.已知双曲线()0,0122 22>>=-b a b y a x ,O 为坐标原点,Q P ,为双曲线上两动点,且

圆锥曲线二级结论(2)

四、焦点弦 【知识讲解】 1.1椭圆焦半径公式(2) 已知直线l 过左焦点1F 与椭圆交于B A ,两点,设α=∠21F AF ,则焦半径 αcos ||2?-=c a b AF ,αcos ||2?+=c a b BF ,22||1||1b a BF AF =+1.2椭圆焦点弦长公式:α 2222 cos 2||||||?-=+=c a ab BF AF AB ,最长焦点弦为长轴,最短焦点弦为通径。 2.1双曲线焦半径公式(2) 已知直线l 过左焦点1F 与双曲线交于B A ,两点,设α=∠21F AF ,则焦半径 αcos ||2?-=c a b AF ,αcos ||2?+=c a b BF ,22||1||1b a BF AF =+2.2双曲线焦点弦长公式:α 2222 cos 2||||||?-=+=c a ab BF AF AB 3焦点弦定理 已知焦点在x 轴上的椭圆或双曲线,经过其焦点F 的直线交曲线于B A ,两点,直线AB 的倾斜角为θ,FB AF λ=,则曲线的离心率满足等式:|1 1| |cos |+-=λλθe 【典型例题】1.已知椭圆13 42 2=+y x ,直线01:1=-+y x l ,01:2=++y x l 与椭圆分别交于B A ,和

D C ,,则||||CD AB +的值为()。 2.已知椭圆)0(122 22>>=+b a b y a x 的离心率为23,过右焦点F 且斜率为k )0(>k 的直线与椭圆交于B A ,两点。若3=,则k 的值为( )。 【变式训练】1.已知双曲线)0,0(122 22>>=-b a b y a x 的右焦点为F ,过F 且斜率为3的直线交双曲线于B A ,两点,若4=,则双曲线的离心率为()。 2.设椭圆)0(122 22>>=+b a b y a x 的右焦点为F ,过点F 的直线l 与椭圆相交于B A ,两点,直线l 的倾斜角为?60,FB AF 2=。 (1)求椭圆的离心率; (2)如果4 15||=AB ,求椭圆的方程。五、椭圆的第三定义 【知识讲解】 1.B A ,为椭圆)0(122 22>>=+b a b y a x 上关于原点对称的两点,椭圆上任意一点P (不同于B A ,两点)与椭圆上B A ,两点连线的斜率之积为定值:22 a b -。

高中数学双曲线二级结论大全

双曲线二级结论大全 1.122PF PF a -= 2.标准方程22 221x y a b -= 3.11 1PF e d => 4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相交. 7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切. 8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点. 9.双曲线22 221x y a b -=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、 P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b +=. 10.若000(,)P x y 在双曲线22 22 1x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 11.若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则 切点弦P 1P 2的直线方程是00221x x y y a b -=. 12.AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=. 13.若000(,)P x y 在双曲线22 2 21x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b -=-. 14.若000(,)P x y 在双曲线 22 22 1x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002 222x x y y x y a b a b -=-. 15.若PQ 是双曲线22 221x y a b -=(b > a >0)上对中心张直角的弦,则 122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22 221x y a b -=(b >a >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 22 2211A B a b -=+ ;(2) 2222||L a A b B =-. 17.给定双曲线1C :22 2 2 22 b x a y a b -=(a >b >0), 2C :22 2 2 2 2 22 2 ()a b b x a y ab a b +-=-,则(i)对1C 上任意

椭圆与双曲线的必背的经典结论

椭圆与双曲线的必背的经典结论 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班

第02篇 相关拓展公式、圆锥曲线常用的二级结论

专题十三 相关知识点、公式的拓展 1、立方差(和)公式 ))((2 2 3 3 b ab a b a b a +-+=+; ))((2 2 3 3 b ab a b a b a ++-=-; 2、中线定理(阿波罗尼斯定理):)(22 2 2 2 CD AD AC AB +=+ 3、中垂三角形:两条中线互相垂直的三角形称为“中垂三角形”,如图,△ABC 为中垂三角形,则AB 2+AC 2=5BC 2 4、角平分线性质:△ABC 中,若AD 平分∠BAC ,则 DC BD AC AB = 5、三角形张角定理: 如图,在△ABC 为中,D 为BC 边的一点,连接AD ,设AD =l ,∠BAD =α,∠CAD =β,则一定有 ()c b l β αβαsin sin sin + =+ 推导:∵S △ABC =S △ABD +S △ACD ∴ ()βαβαsin 2 1 sin 21sin 21bl cl bc +=+ 两边同时除以lbc 21,得:()c b l β αβαsin sin sin + =+ 推论1:(角平分线张角定理)当α=β时,?? ? ??+= c b l 1121cos α 推论2:(角平分线面积问题)()ααtan sin 2 1 2l c b AD S ABC ≥+=? 6、角平分线之斯库顿定理: 如图,AD ,是△ABC 的角平分线,则BC BD AC AB AD ..2 -=(就其所处图中的位置关系而言,可记忆为:中方=上积—下积) A D C B A D C B A D C B E A D C B

推导:作△ABC 的外接圆,延长AD 交圆于E ,连接BE ,如图 ∵∠E =∠C 、∠1=∠2 ∴△ABE ∽△ADC ∴ AC AE AD AB = ,即AC AB AE AD ..= ∴AC AB DE AD AD .).(=+ ∴AC AB DE AD AD ..2 =+ 由相交弦定理得:BD ·DC =AD ·DE ∴AD 2+BD ·DC =AB ·AC 注意:角平分线张角定理强调的是角度,斯库顿定理强调的是长度,斯库顿定理可以绕过求张角而直接求出三角形的各边长,通常和内角平分线定理合在一起出考题. 7、倍角三角形: A B c a a b 2)(2=?+= B C a b b c 2)(2=?+= C A b c c a 2)(2=?+= 8.若G 是△ABC 的重心,则GA →+GB →+GC → =0. 9.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. A D C B A D C B E

双曲线中常见结论

双曲线中常见结论: 1 离心率e=C= '1 +(b)2 a . a 2、焦半径 3、通径及通径长 b 2 2 4、焦点到准线的距离—,中心到准线的距离— c c

2 2 2 2 8、双曲线笃一驚=、(入工0)和笃_笃 /有相同的渐近线和相同的离心率。 a2b2a2b2 也PF F2的面积为S=b2 sin8

1 - cosO 的离心率为sin (一:」宀) 9、P为双曲线上一点,则

2 2 例双曲线 ?丄 =1(mn = 0的离心率为2,则m 的值为( m n n 1 1 A. 3 B . C. 3 或 3 3 2 2 例(湖南卷)已知双曲线 § —与=1 (a >0, b >0)的右焦点为F ,右准线与一条渐近线 a 2 b 2 2 交于点A ,A OAF 的面积为 —(0为原点),则两条渐近线的夹角为 2 (D ) A. 30o B . 450 C. 600 D. 900 ) D.以上都不对

椭圆的几何性质 一、教学目标 (一)知识教学点 通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用. (二)能力训练点 通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力. (三)学科渗透点 使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等. 二、教材分析1.重点:椭圆的几何性质及初步运用. (解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.) 2.难点:椭圆离心率的概念的理解. (解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.) 3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变. (解决办法:利用方程分析椭圆性质之前就先给学生说明.) 三、活动设计 提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结. 四、教学过程 (一)复习提问 1.椭圆的定义是什么? 2 ?椭圆的标准方程是什么? 学生口述,教师板书.

双曲线中常见结论

双曲线中常见结论: 1、离心率e=a c =2 1)(a b 2、焦半径 3、通径及通径长a b 2 2 4、焦点到准线的距离c b 2,中心到准线的距离c a 2 5、焦点到渐近线的距离为b ,垂足恰好在准线上。

6、P为双曲线上任一点,三角形PF 1F 2 的内切圆圆心在直线x=a或x=-a上。 7、P为双曲线上任一点,以PF 1 直径的圆和x2+y2=a2相切。

8、双曲线λ=-2222b y a x (λ≠0)和122 22=-b y a x 有相同的渐近线和相同的离心 率。 9、P 为双曲线上一点,则21F PF ?的面积为S= θ sin b 2 10、F 1,F 2是双曲线的两个焦点,P 为双曲线上任一点,∠PF 1F 2=α ,∠PF 1F 2=β。则双曲线的离心率为e=α ββαsin sin sin -+) ( 设PF 1=m ,PF 2=n 。 则 ) (βααβαβ+=--==sin c sin sin n m sin n sin m 2 α ββαβααβsin sin sin e sin c sin sin a -+=?+=-) ()(22

例(湖南卷)已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准 线与一条渐近线交于点A ,△OAF 的面积为2 2 a (O 为原点),则两条渐近线 的夹角为 (D ) A .30o B .45o C .60o D .90o 例双曲线)(0122≠=-m n n y m x 的离心率为2,则n m 的值为( ) A .3 B .3 1 C .3或3 1 D .以上都不对

最新圆锥曲线部分二级结论的应用-(学生版)

圆锥曲线部分二级结论的应用 一、单选题 1.已知抛物线2 :4 C y x =,点()() 2,0,4,0, D E M是抛物线C异于原点O的动点,连接ME并延长交抛物线C于点N,连接, MD ND并分别延长交拋物线C于点,P Q,连接PQ,若直线, MN PQ的斜率存在且分别为 12 ,k k,则2 1 k k =() A. 4 B. 3 C. 2 D. 1 2.如图,设椭圆 22 22 :1 x y E a b +=(0 a b >>)的右顶点为A,右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC于M,则椭圆E的离心率是() A. 1 2 B. 1 3 C. 2 3 D. 1 4 3.已知 12 F F 、是双曲线 22 22 1(0,0) x y a b a b -=>>的左右焦点,以 12 F F为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M N 、均在第一象限,当直 线 1 // MF ON时,双曲线的离心率为e,若函数()22 2, f x x x x =+-,则() f e=()A. 1 B. 3 C. 2 D. 5 4.已知椭圆和双曲线有共同焦点 12 , F F,P是它们的一个交点,且 123 F PF π ∠=,记 椭圆和双曲线的离心率分别为 12 ,e e,则 12 1 e e 的最大值是()

A. B. C. 2 D. 3 5.已知抛物线2 :4C x y =,直线:1l y =-, ,PA PB 为抛物线C 的两条切线,切点分别为,A B ,则“点P 在l 上”是“PA PB ⊥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 6.已知,A B 分别为双曲线22 22:1x y C a b -=(0a >, 0b >)的左、右顶点,点P 为 双曲线C 在第一象限图形上的任意一点,点O 为坐标原点,若双曲线C 的离心率为2, ,,PA PB PO 的斜率分别为123,,k k k ,则123k k k 的取值范围为( ) A. 0, 9? ?? B. ( C. ( D. ()0,8 7.设抛物线2 2y x =的焦点为F ,过点) M 的直线与抛物线相交于,A B 两点, 与抛物线的准线相较于点C , 2BF =,则BCF ?与ACF ?的面积之 BCF ACF S S ??=( ) A. 23 B. 45 C. 47 D. 12 8.设双曲线C 的中心为点O ,若直线1l 和2l 相交于点O ,直线1l 交双曲线于11A B 、,直线2l 交双曲线于22A B 、,且使1122A B A B =则称1l 和2l 为“WW 直线对”.现有所成的角为60°的“WW 直线对”只有2对,且在右支上存在一点P ,使122PF PF =,则该双曲线的离心率的取值范围是( ) A. ()1,2 B. [ )3,9 C. 3,32?? ??? D. (]2,3 9.设点P 为双曲线22 221x y a b -=(0a >, 0b >)上一点, 12,F F 分别是左右焦点, I 是12PF F ?的内心,若1IPF ?, 2IPF ?, 12IF F ?的面积123,,S S S 满足

相关主题
文本预览
相关文档 最新文档