当前位置:文档之家› 实验十三基于Multisim的场效应管放大器电路设计

实验十三基于Multisim的场效应管放大器电路设计

实验十三基于Multisim的场效应管放大器电路设计
实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告

学生姓名:学号:专业班级:生医091

实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计

一、实验目的:

1、场效应管电路模型、工作点、参数调整、行为特征观察方法

2、研究场效应放大电路的放大特性及元件参数的计算

3、进一步熟悉放大器性能指标的测量方法

二、实验原理:

1.场效应管的特点

场效应管与双极型晶体管比较有如下特点:

(1)场效应管为电压控制型元件;

(2)输入阻抗高(尤其是MOS场效应管);

(3)噪声系数小;

(4)温度稳定性好,抗辐射能力强;

(5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。

和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。

2.偏置电路和静态工作点的确定

与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。

场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。

三、实验内容及步骤

1.场效应管共源放大器的调试

(1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地)

(2)测量静态工作点

调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。

表2.4.1静态工作点

将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av

(4)测量输入及输出阻抗

用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题:

(1)由于场效应管放大器Ri高,测量时会引人干扰;

(2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以

R i=V O2/(V O1-V O2)R

输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则

R0=(V0 / V0L -1)R L

四、实验仪器

Multisim虚拟仪器库中的示波器、交流电源、N沟道耗尽型MOS管BSS129、直流电源、电阻、电容、开关等。

五、实验总结:

1、实验原理图如下图1

2、仿真结果下如图2

3、实验数据如下表

图2

场效应管放大电路13912

场效应管放大电路 一、选择填空(只填①、②…字样) 1.晶体管是依靠 ⑤ 导电来工作的 ⑦ 器件;场效应管是依靠 ① 导电来工作的 ⑥ 器件(①多数载流子,②少数载流子,③电子,④空穴,⑤多数载流子和少数载流子,⑥单极型,⑦双极型,⑧无极型)。 2.晶体管是 ② ;场效应管是 ① (①电压控制器件;②电流控制器件) 3.晶体管的输入电阻比场效应管的输入电阻 ③ (①大得多;②差不多;③小得多)。 4.晶体管的集电极电流 ② ;场效应管的漏极电流 ① (①穿过一个PN 结,② 穿过两个PN 结,③不穿过PN 结) 5.放大电路中的晶体管应工作在 ② ;场效应管应工作在 ① (①饱和区,②放大区,③截止区,④夹断区,⑤可变电阻区)。 6.绝缘栅型场效应管是利用改变 栅源两极 的大小来改变 沟道电阻 的大小,从而 达到控制 漏极电流 的目的;根据 栅源两极电压为零 时,有无 漏极电流 的差别,MOS 管可分为 耗尽 型和 增强 型两种类型。 7.NMOS 管最大的优点是 输入电阻较大 ;其栅—源电压的极性 为负 ,漏—源电压的极性 为正 ;对于增强型NMOS 管,这两种电压的极性 为正 ,对增强型PMOS 管这两种电压的极性为 负 。 8.耗尽型场效应管在恒流区的转移特性方程为()D GS DS i f u u ==常数,它们都是反映 栅源两端电 压 对 漏极电流 控制特性的。 9、当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将 。 A.增大 B.不变 C.减小 答案:A 二、解答题 2.已知场效应管的输出特性曲线如图P1.22所示,画出它在恒流区的转移特性曲线。 图P1.22 解:在场效应管的恒流区作横坐标的垂线〔如解图P1.22(a )所示〕,读出其与各条曲线交点的纵坐标值及U GS 值,建立i D =f (u GS )坐标系,描点,连线,即可得到转移特性曲线,如解图P1.22(b )所示。

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有 B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 A 、R i和R o。(1)利用图解法求解Q点;(2)利用等效电路法求解 u 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off)GS D m DS =-=??=I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u & 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A &。 图P3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

Multisim三相电路仿真实验

实验六 三相电路仿真实验 一、实验目的 1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真; 2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结; 3、 加深对三相四线制供电系统中性线作用的理解。 4、 掌握示波器的连接及仿真使用方法。 5、 进一步提高分析、判断和查找故障的能力。 二、实验仪器 1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求 1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。 3.仿真分析三相电路的相关内容。 4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明 1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。这种联接方式的 特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。 2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。 3、电流、电压的“线量”与“相量”关系 测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。画仿真图时要注意。 负载对称星形联接时,线量与相量的关系为: (1) P L U U 3= (2)P L I I = 负载对称三角形联接时,线量与相量的关系为: (1)P L U U = (2)P L I I 3= 4、星形联接时中性线的作用 三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。 五、实验内容及参考实验步骤 (一)、建立三相测试电路如下: 图1 三相负载星形联接实验电路图 1.接入示波器:测量ABC三相电压波形。并在下表中绘出图形。 Timebase:_________/DIV 三相电压相位差:φ=__________。 (二)、三相对称星形负载的电压、电流测量 (1)使用Multisim软件绘制电路图1,图中相电压有效值为220V。 (2)正确接入电压表和电流表,J1打开,J2 、J3闭合,测量对称星形负载在三相四线制(有中性线)时各线电压、相电压、相(线)电流和中性线电流、中性点位移电压。记入表1中。 (3)打开开关J2,测量对称星形负载在三相三线制(无中性线)时电压、相电压、相(线)电流、中性线电流和中性点位移电压,记入表1中。 表1 三相对称星形负载的电压、电流 (4)根据测量数据分析三相对称星形负载联接时电压、电流“线量”与“相量”的关系。 结论: (三)、三相不对称星形负载的电压、电流测量 (1)正确接入电压表和电流表,J1闭合,J2 、J3闭合,测量不对称星形负载在三相

利用场效应管实现放大电路

利用场效应管实现放大电路 一、设计题目 设计一个场效应管放大器,要求电压增益大于40,输出阻抗小与500欧姆,电源电压15V,输出信号峰峰值不小于8 V,非线性失真度小于10%。 二、技术参数要求 1, 要求电压增益大于40 2,输出阻抗小与500欧姆 3,电源电压15V 4,输出信号峰峰值不小于8 V 5,非线性失真度小于10% 三、所用设备、仪器及清单 示波器一个、信号发生器一个、直流稳压电源一个、数字万用表一个、3DJ6F场效应管三个、47μF电容五个、面包板一个、电阻若干。 四、电路图 五、原理介绍

(1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。 (2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;

(实验六)结型场效应管放大电路

实验六 结型场效应管放大电路 一.实验摘要 通过对实验箱上结型场效应管的测试,认识N 沟道JFET 场效应管的电压放大特性和开关特性。给MOS 管放大电路加输入信号为:正弦波,Vpp=200mV-500mV ,f=2Khz 。测量输入电阻时,输入端的参考电阻Rs=680K 。 二.实验主要仪器 三极管,万用表,示波器,信号源及其他电子元件。 三.实验原理 场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图所示。 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 V S i i i V 02A U R R R U A U += = 由此可以求出 R U U U R 02 O102 i -=

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

场效应管及其放大电路例题解析

第3章 场效应管及其放大电路例题解析 例3.1 试将场效应管栅极和漏极电压对电流的控制机理,与双极型晶体管基极和集电极电压对电流的控制机理作一比较。 场效应管栅极电压是通过改变场效应管导电沟道的几何尺寸来控制电流。漏极电压则改变导电沟道几何尺寸和加速载流子运动。双极型三极管基极电压是通过改变发射结势垒高度来控制电流,集电极电压(在放大区)是通过改变基区宽度,从而改变基区少子密度梯度来控制电流。 例3.2 N 沟道JFET 的转移特性如图3.1所示。试确定其饱和漏电流I DSS 和夹断电压V P 。 解 由图3.1可至知,此JFET 的饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V 。 例3.3 N 沟道JFET 的输出特性如图3.2所示。漏源电压的V DS =15V ,试确定其饱和漏电流I DSS 和夹断电压V P 。并计算V GS =-2V 时的跨导g m 。 解 由图3.2可得:饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V ,V GS =-2V 时,用作图法求得跨导近似为:ms g m 2.1) 2(14.16.2=----≈ 例3.4 在图3.3所示的放大电路中,已知V DD =20V ,R D =10k Ω,R S =10k Ω,R 1=200k Ω,R 2=51k Ω,R G =1M Ω,并将其输出端接一负载电阻R L =10 k Ω。所用的场效应管为N 沟道耗尽型,其参数I DSS =0.9mA ,V P =—4V ,g m =1.5mA /V 。试求:(1)静态值; (2)电压放大倍数。 解 (1) 画出其微变等效电路,如图3.4所示。其中考虑到rGS很大,可认为rGS开路,由电路图可知, V V V R R R V DD G 42010 )51200(105133 212=??+?=+= 并可列出 D D S G G S I I R V V 310104?-=-= 图3.1 图3. 2

实验6 结型场效应管共源放大电路实验

实验6 JFET-CS 放大电路测试报告 班级: _______ 姓名: ________________ 实验目的: 学习了解场效应晶体管放大电路的基本结构、原理、测试过程。通过实验、 仿 真,了解JFET 主要参数的获取、电路的静态工作点、增益等参数的计算和测 试方法。 实验设备及器件: 笔记本电脑(软件环境: Multisim13.0、WaveForms201) AD2 口袋仪器 电容:0.1卩F (独石或瓷片等无极性电容) 10卩F (电解电容) 电阻:300 Q 、1k Q 、10k Q 、100k Q FET: 2SK30A (或其他 JFET ,封装为 TO-92) 面包板、杜邦线 实验内容: 电路如图6.1所示。 1. 测量FET 的主要参数(V off 、I DSS ) 鉴于FET 参数非常分散,例如2SK30A 其后缀为GR (2SK30AG 漏极饱和电流 R 3 o +5V 图6.1实验电路

I DSS 的范围是2.6 — 6.5mA 截止电压 V 的范围为-0.4 ? -5V (具体手册参数见附 件)。因此本实验需要先行测试元件的主要参数,所实际测得的参数用于计算电 路静态工作点及增益等,也用于修改仿真软件模型参数,以便获得相对准确的仿 真结果。 在面包板上搭建图6.2( a )电路(栅源为0偏压,即:V GS =0),测试此时源 极电阻的电压,进而得到源极(也是漏极)电流,该电流就是漏极饱和电流I DS ? 再通过图6.2 (b )电路(静态自给偏压偏置电路)测源极电阻两端电压,从而 得到此时的栅源电压及漏极电流,也就是得到一个栅源的负偏压值 Ma s 及漏极电 流I D ,利用这两个值并通过漏极电流公式计算出 V off 。填入表6-1 0 图6.2 FET 参数测试电路 公式: 表6-1 实测FET 主要参数 参数 1 DSS (测试得出) V Off (计算得出) 数值 3.3mA -2.527v 2. 用得到的参数I DSS V f 修改仿真模型:在仿真软件中结型场效应晶体管的模 型是Shichman-Hodges 模型,需要根据测得的参数修改Multisim 模型中的两 个参数:截止电压 VT0及跨导系数BETA ( B )。修改后的模型用于仿真(注 意:跨导系数不是理论教学中的跨导 g m )o 3. 3. 搭建图6.1电路,计算、仿真及测试静态工作点,并填入表 6-2 : (1)通过理论计算计算I DQ Va se 并填入表6-2 0 (2) 使用新建的模型仿真静态工作点并填入表 6-2 0 (3) 通过测试源极电阻直流电压,获取静态工作点并填入表 6-2 2SK30A +5V (b)

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

实验4场效应管放大器资料

实验四场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图4-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图4-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表4-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图4-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图4-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

场效应管放大电路.(DOC)

第三章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 (一)主要内容: ?结型场效应管的结构及工作原理 ?金属-氧化物-半导体场效应管的结构及工作原理 ?场效应管放大电路的静态及动态性能分析 (二)教学要点: ?了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 ?掌握用公式法和小信号模型分析法分析其放大电路的静态及动态性能 ?了解三极管及场效应管放大电路的特点 (三)基本要求: 介绍结型场效应管和MOS管的工作原理、特性曲线,重点介绍用公式法和小信号模型分析法分析其放大电路静态及动态性能。

3.1 结型场效应管 3.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对 应关系: 栅极g—基极b;源极s—发射极e;漏极d —集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的 结构示意图和它在电路中的代表符号 如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS -V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。

Multisim实验报告

实验一 单级放大电路 一、实验目得 1、 熟悉mul tisim 软件得使用方法 2、 掌握放大器静态工作点得仿真方法及其对放大器性能得影响 3、 学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻得仿真方法,了解共射极电 路得特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、 静态数据仿真 电路图如下: 当滑动变阻器阻值为最大值得10%时,万用表示数为2。204V。 R151kΩ R25.1kΩR320kΩ R41.8kΩ R5 100kΩ Key=A 10 % R61.5kΩ V110mVrms 1000 Hz 0° C110μF C210μF C347μF 2Q1 2N2222A 3 R7 100Ω8 1 5 64XMM1 7

仿真得到三处节点电压如下 : 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V(3) 集电极V(6) 发射级V(7) V be Vc e Rp 2。83387 6、12673 2.20436 0。6295 1 3、92237 10K Ω 5、 动态仿真一 (1)单击仪器表工具栏中得第四个(即示波器Oscillos cope),放置如图所示,并且连接电路、 (注意:示波器分为两个通道,每个通道有+与—,连接时只需要连接+即可,示波器默认得地已经接好、观察波形图时会出现不知道哪个波形就是哪个通道得,解决方法就是更改连接得导线颜色,即:右键单击导线,弹出,单击wir e colo r,可以更改颜色,同时示波器中波形颜色也随之改变) R151kΩ R25.1kΩR3 20kΩ R41.8kΩ R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 746R61.5kΩ 5

相关主题
文本预览
相关文档 最新文档