当前位置:文档之家› 在双曲线中有关中点弦存在性问题的探索

在双曲线中有关中点弦存在性问题的探索

在双曲线中有关中点弦存在性问题的探索
在双曲线中有关中点弦存在性问题的探索

维普资讯 https://www.doczj.com/doc/3917192372.html,

维普资讯 https://www.doczj.com/doc/3917192372.html,

1. 中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题;④圆锥曲线的相关最值(范围)问题;⑤求曲线的方程问题;⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题------点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策略:具有斜率的弦中点问题,常用设而不求法(点差法):若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 02020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 一、求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x

圆锥曲线经典中点弦问题

.. . … 中点弦问题专题练习 一.选择题(共8小题) 1.已知椭圆,以及椭圆一点P(4,2),则以P为中点的弦所在直线的斜率为()A.B.C.2D.﹣2 2.已知A(1,2)为椭圆一点,则以A为中点的椭圆的弦所在的直线方程为() A.x+2y+4=0 B.x+2y﹣4=0 C.2x+y+4=0 D.2x+y﹣4=0 3.AB是椭圆(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K AB?K OM的值为() A.e﹣1 B.1﹣e C. e2﹣1 D. 1﹣e2 4.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为() A.3x+2y﹣12=0 B.2x+3y﹣12=0 C.4x+9y﹣144=0 D.9x+4y﹣144=0 5.若椭圆的弦中点(4,2),则此弦所在直线的斜率是() A.2B.﹣2 C.D. 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率是()A.B.C.D. 7.直线y=x+1被椭圆x2+2y2=4所截得的弦的中点坐标是() A.()B.(﹣,)C.(,﹣)D.(﹣,) 8.以椭圆一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 B.x﹣4y+3=0 C.4x+y﹣5=0 D.x+4y﹣5=0 二.填空题(共9小题) 9.过椭圆一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是_________ .

10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为:_________ . 11.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的斜率为_________ ,直线方程为_________ . 12.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为_________ . 13.过椭圆=1一定点(1,0)作弦,则弦中点的轨迹方程为_________ . 14.设AB是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则k AB?k OM= _________ . 15.以椭圆的点M(1,1)为中点的弦所在直线方程为_________ . 16.在椭圆+=1以点P(﹣2,1)为中点的弦所在的直线方程为_________ . 17.直线y=x+2被椭圆x2+2y2=4截得的线段的中点坐标是_________ . 三.解答题(共13小题) 18.求以坐标轴为对称轴,一焦点为且截直线y=3x﹣2所得弦的中点的横坐标为的椭圆方程.19.已知M(4,2)是直线l被椭圆x2+4y2=36所截的弦AB的中点,其直线l的方程. 20.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.21.已知椭圆,求以点P(2,﹣1)为中点的弦AB所在的直线方程. 22.已知椭圆与双曲线2x2﹣2y2=1共焦点,且过() (1)求椭圆的标准方程. (2)求斜率为2的一组平行弦的中点轨迹方程. 23.直线l:x﹣2y﹣4=0与椭圆x2+my2=16相交于A、B两点,弦AB的中点为P(2,﹣1).(1)求m的值;(2)设椭圆的中心为O,求△AOB的面积.

圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4) 2(82 221+-=+k k k x x , 又M 为AB 的中点,所以21 4) 2(422 221=+-=+k k k x x , 解得2 1 -=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x , 两式相减得0)(4)(2 22 12 22 1=-+-y y x x , 所以 21)(421212121-=++-=--y y x x x x y y ,即21 -=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642 222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆 136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。 解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点弦问题中的妙用 广西南宁外国语学校 隆光诚(邮政编码 530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它 的一般方法联立直线和圆锥曲线的方程,借助于一兀二次方程的根的判别式、根与系数的关中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式 作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法 为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗 浅的探讨,以飨读者。 P(x 0,y °)是弦MN 的中点,弦MN 所在的直线I 的斜率为k MN ,则k M 典题妙解 例1已知双曲线C : y 2 1,过点P(2,1)作直线I 交双曲线C 于 定理 在双曲线 2 x ~2 a 2 ■y 2 1 ( a > 0, b > 0)中,若直线l 与双曲线相交于 M 、N 两点,点 b 2 b 2 ~ . a 证明:设M 、 N 两点的坐标分别为 (x i ,yj 、(X 2, y 2),则有 2 X 1 -2~ a 2 X 2 ~2 a 2 y 1 2 y 2 1, 1. (1) 2 X 1 (1) (2),得丄 2 X 2 ~2 a 2 2 y 1 y 2 0. y 2 y 1 X 2 X 1 y 2 y 1 X 2 X 1 b 2 2 . a 又 k|MN y y 1 X 2 X 1 X 1 X 2 2 y 2X 0 y 。 X 0 k MN X b 2 2 . a 同理可证,在双曲线 2 y 2 a (a > 0, b > 0)中,若直线I 与双曲线相交于 M 、N 两点, 点P(X 0, y °)是弦MN 的中点,弦 MN 所在的直线I 的斜率为k MN , 则 k MN y X 0 2 a_ 衣.

双曲线中点弦 存在

双曲线中的中点弦 一道课后作业题的教学所思 绵阳南山中学 青树国 在双曲线的教学过程中,经常会遇到对中点弦所在直线的存在性的探究。题目有时解是存在的,有时虽然计算出来直线方程但经检验又必须舍去,而且有时检验的计算量又很大。这部分的技巧学生掌握起来难度较大,题目丢分现象比较普遍。在此我通过对课后习题的讲解和反思总结情况形成了一个猜想,用来判断双曲线弦的中点位置,能迅速帮助学生判断中点所在的位置是否合理,在此和大家一起分享与交流。 一、课本习题再现 普通高中课程标准实验教科书,数学选修2-1(人民教育出版社 A 版)第二章第三节课后习题 B 组第4题:已知双曲线12 2 2 =-y x ,过 点)1,1(P 能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?这是一探索性问题,通过对作业的批改,绝大多数学生有对探索性问题的解决办法即:假设——推理——验证——下结论。具体来说普遍采用了以下两法。 法一:(设而不求)假设能作这样的直线l ,通过作图可知:直线 l 的斜率显然,设其为k ,从而直线的方程为:)1(1-=-x k y 即: 1+-=k kx y ,联立直线和双曲线的方程并消去未知数y 可得 032)1(2)2(222=-+--+-k k x k k x k 。(*)设),(11y x A 、),(22y x B 由题意可知1x 、2x 是方程 (*)的两个根。故022≠-k 且0)32)(2(4)1(42222>+--+-=?k k k k k ,

由题意可知:22) 1(22 21=--- =+k k k x x ,解之得2=k ,带入判别式知0

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

高中数学椭圆与双曲线中点弦斜率公式及推广

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每 椭圆与双曲线中点弦斜率公式及其推论 圆锥曲线中点弦问题是问题在高考中的一个常见的考点.其解题方法一般是利用点差法和韦达定理,设而不求.但一般来说解题过程是相当繁琐的.若能巧妙地利用下面的定理则可以方便快捷地解决问题. 定理1(椭圆中点弦的斜率公式):设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不 平行y 轴)的中点,则有:2 2AB OM b k k a ?=- 证明:设11(,)A x y ,22(,)B x y ,则有 1212 AB y y k x x -=-,22 1122 22 2222 11x y a b x y a b ?+=????+=?? 两式相减得:2222 1212 22 0x x y y a b --+=整理得:22 2 1222 212y y b x x a -=--,即2 121221212()()()()y y y y b x x x x a +-=-+-,因为00(,)M x y 是弦AB 的中点,所以 0012 001222OM y x y y k x y x x +===+,所以22AB OM b k k a ?=- 定理2(双曲线中点弦的斜率公式):设00(,)M x y 为双曲线22 221x y a b -=弦AB

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每 (AB 不平行y 轴)的中点,则有2 2AB OM b k k a ?= 证明:设11(,)A x y ,22(,)B x y ,则有1212 AB y y k x x -=-,22 1122 22 2222 11x y a b x y a b ?-=????-=?? 两式相减得:22221212220x x y y a b ---=整理得:22 2 1222 212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a +-=+-,因为00(,)M x y 是弦AB 的中点,所以0012 001222OM y x y y k x y x x +===+,所以22AB OM b k k a ?= 例1、已知椭圆22 221x y a b -=,的一条弦所在的直线方程是30x y -+=,弦的中 点坐标是2,1M -(),则椭圆的离心率是( ) A 、 1 2 B 、2 C 、分析:本题中弦的斜率 1AB k =且1 2 OM k =-,根据定理有2212b a =,即 222 2112 a c e a -=-= ,解得e =,所以B 答案正确. 例2、过椭圆22 1164 x y + =内的一点(2,1)M 引一条弦,使弦被M 点平分,求这条弦所在的直线方程. 解:设弦所在的直线为AB ,根据椭圆中点弦的斜率公式知1 4 AB OM k k ?=-,显 然12OM k =,所以12AB k =-,故所求的直线方程为1 1(2)2y x -=--,即 240x y +-=.

点差法求解中点弦问题

点差法求解中点弦问题 【定理1】 在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N 两点的坐标分别为、,则有,得又 【定理2】 在双曲线(>0,>0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又 【定理3】 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN 的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又、、注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在、 一、椭圆 1、过椭圆+=1内一点P(2,1)作一条直线交椭圆于 A、B两点,使线段AB被P点平分,求此直线的方程. 【解】 法一:如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,(*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x

1、x2是(*)方程的两个根,∴x1+x2=、∵P为弦AB的中点,∴2==、解得k=-,∴所求直线的方程为x+2y-4=0、 法二:设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB 的中点,∴x1+x2=4,y1+y2=2、又∵ A、B在椭圆上,∴x+4y=16,x+4y= 16、两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0、∴==-,即kAB=-、∴所求直线方程为y-1=-(x-2),即x+2y-4=0、 2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程. 【解答】 解:设P(x,y),A(x1,y1),B(x2,y2).∵P为弦AB 的中点,∴x1+x2=2x,y1+y2=2y.则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为: x+y=0.(﹣<x<)∴点P的轨迹方程为:x+y=0(﹣<x<); 3、(xx秋?启东市校级月考)中心在原点,焦点坐标为(0,5)的椭圆被直线3x﹣y﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 . 【解答】 解:设椭圆=1(a>b>0),则a2﹣b2=50①又设直线3x﹣y ﹣2=0与椭圆交点为A(x1,y1),B(x2,y2),弦AB中点 (x0,y0)∵x0=,∴代入直线方程得y0=﹣2=﹣,由,得,∴AB

秒杀题型09 圆锥曲线中的中点弦(解析版)

秒杀题型:玩转压轴题之中点弦问题: 秒杀题型一:圆、椭圆、双曲线的中点弦问题: 注:方程:2 2 1mx ny +=,①当0,>n m 且n m ≠时,表示椭圆; ②当0,>n m 且n m =时,表示圆; ③当n m ,异号时,表示双曲线。 秒杀策略:点差法:简答题模板:step1:设直线与曲线 :设直线:l y kx t =+与曲线:2 2 1mx ny +=交于 两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B , Step2:代入点坐标:即1122y kx t y kx t =+??=+?;22 1122 22 1 (1) 1 (2) mx ny mx ny ?+=??+=??, Step3:作差得出结论:(1)-(2)得:..AB AB OP y m k k k x n =-=中中。(作为公式记住,在小题中直接用。) 题型一:求值 : 〖母题1〗已知椭圆 22 1164 x y +=,求以点P(2,-1)为中点的弦所在的直线方程. 【解析】:由结论可得: 16421-=?-k ,得2 1 -=k ,直线方程为:240x y --=。 1.(2013年新课标全国卷I10)已知椭圆22 22:1(0)x y G a b a b +=>>的右焦点为()0,3F ,过点F 的直线交椭圆 于B A ,两点.若AB 的中点坐标为()11-, ,则E 的方程为 ( ) A. 1364522=+y x B.1273622=+y x C.1182722=+y x D.19182 2=+y x 【解析】:由结论可得: 22 2111a b -=?-,得222b a =,3= c ,选D 。 2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于 ,A B 两点,且AB 的中点为()12,15N --,则E 的方程为 ( )

圆锥曲线经典中点弦问题

中点弦问题专题练习 一.选择题(共8小题) .已知椭圆,以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为(1) 2 C.D.B.A.﹣2 2.已知A(1,2)为椭圆内一点,则以A为中点的椭圆的弦所在的直线方程为() 2x+y+4=0 x+2y+4=0 C.D.2x+y﹣4=0 B.x+2yA.﹣4=0 (a>b>0)的任意一条与x轴不垂直的弦,O3.AB是椭圆是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K?K的值为()OMAB22D.﹣1e C.A.e﹣1 B.﹣ee﹣1 122)P的弦恰好以P为中点,那么这弦所在直线的方程为(+9y=144内有一点P(3,2)过点4.椭圆4x 144=0 ﹣.9x+4yD12=0 C.4x+9y﹣144=0 12=0 A.3x+2y ﹣B.2x+3y﹣)),则此弦所在直线的斜率是(5.若椭圆的弦中点(4,2 2..A.D.B ﹣2 C 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率 是() B.CA..D.

227.直线y=x+1被椭圆x+2y=4所截得的弦的中点坐标是() A.B.C.D.(﹣,))()(﹣,)(,﹣8.以椭圆内一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 x C.4x+y﹣5=0 D.+4y﹣5=0 4y+3=0 B.x﹣ 二.填空题(共9小题) 9.过椭圆内一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是 _________. 10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为: _________. 22,_________那么这弦所在直线的斜率为PP),(内有一点+9y椭圆11.4x=144P32过点的弦恰好以为中点,._________直线方程为 22 _________.的弦恰好以P为中点,那么这弦所在直线的方程为(4x+9y=144内有一点P3,2)过点P12.椭圆________.1,0)作弦,则弦中点的轨迹方程为 1.过椭圆=1内一定点(是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则ABk?k=_________.14.设OMAB .以椭圆内的点M(1,1)为中点的弦所在直线方程为 15_________. +=1内以点P(﹣2,161.在椭圆)为中点的弦所在的直线方程为_________. 2217.直线y=x+2被椭圆x+2y=4截得的线段的中点坐标是_________. 三.解答题(共13小题) 所得弦的中点的横坐标为的椭圆方程.2 且截直线y=3x18﹣.求以坐标轴为对称轴,一焦点为22的方程.的中点,其直线ll19.已知M(4,2)是直线被椭圆x+4y=36所截的弦AB

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点 弦问题中的妙用 Prepared on 22 November 2020

点差法公式在双曲线中点弦问题中的妙用 广西南宁外国语学校 隆光诚(邮政编码530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两 点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2 2 00a b x y k MN = ?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=---b y y a x x 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--=

同理可证,在双曲线122 22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于 M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则 22 00b a x y k MN =?. 典题妙解 例1 已知双曲线13 :2 2 =-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹; (2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上. 设点M 的坐标为),(y x ,由22b a x y k AB =?得:3 1 21=?--x y x y , 整理得:.032322=+--y x y x ∴所求的轨迹方程为.032322=+--y x y x (2) P 恰为弦AB 的中点, ∴由2200b a x y k AB =?得:,3121=?AB k 即.32 =AB k ∴直线l 的方程为)2(3 2 1-= -x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P (1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P (3)试判断以)1,1(Q 为中点的弦是否存在. 解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=

圆锥曲线中点弦公式

圆锥曲线中点弦公式 中点弦抛物线中点弦公式 抛物线C:x^2(这里x^2表示x的平方,下同)=2py上,过给定点P=(α,β)的中点弦所在直线方程为:py-αx=pβ-α^2。 中点弦存在的条件:2pβ>α^2(点P在抛物线开口内)。 中点弦椭圆中点弦公式 椭圆C:x^2/a^2+y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为: αx/a^2+βy/b^2=α^2/a^2+β^2/b^2。 中点弦存在的条件:α^2/a^2+β^2/b^2<1(点P在椭圆内)。 中点弦双曲线中点弦公式 双曲线C:x^2/a^2-y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为: αx/a^2-βy/b^2=α^2/a^2-β^2/b^2。 中点弦存在的条件:(α^2/a^2-β^2/b^2)(α^2/a^2-β^2/b^2-1)>0(点P不在双曲线、渐近线上以及它们所围成的区域内)。 中点弦二次曲线中点弦性质与蝴蝶定理 蝴蝶定理是二次曲线一个著名定理,它充分体现了蝴蝶生态美与“数学美”的一致性.不少中数专著或杂志至今还频繁讨论.本文揭示了它与中点弦性质的紧密联系,并给出统一而简明的证明,指出了一种有用的特殊情形和一种推广形式. 引理:设两条不同的二次曲线 S:F(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0 有A、B、C、D四个公共点,其中无三点共线,则过A、B、C、D四点的任意一条二次曲线S2必可唯一地表示成: (证明略)

定理1 设三条不同的二次曲线(S、S1、S2)有A、B、C、D四个公共点,其中无三点共线;又直线L0被S、S1、S2各截得一弦.若其中两弦中点重合,则第三弦中点亦重合.证设S、S1的方程为(1)、(2),则S2方程可表为(3).因直线L0(设斜率为k)关于二次曲线S、S1、S2的共轭直径分别为: L:(a11x+a12y+a13)+k(a12x+a22y+a23)=f(x,y)=0 因L、L1都通过L0被S与S1所截得的弦PQ与EF的共同中点O,显然L2也必通过点O,故O也是L0被S2所截得的弦GH的中点. 注两直线AB和CD或AD和CB或AC和BD都可看做二次曲线S1的特殊情形,甚至E和F重合于O.故本定理包括了蝴蝶定理众多情形. 定理2 设AB∥CD,S和S1是过A、B、C、D四点的任意两条二次曲线.若平行于AB的任意直线与S、S1各有两个交点,则夹在两曲线之间的两线段相等.证设AB、CD的中点分别为M、N,又AB∥CD,故直线MN就是AB关于S和S1的共轭直径,故若平行于AB的任意直线被S、S1所截的弦PQ、EF有共同中点O,故有PE=QF,命题得证. 注由于PQ可为AB与CD之间任意平行弦,皆有PE=QF,故夹在S和S1之间的两曲边区域△1和△2面积相等.[1]它酷似蝴蝶两翼,不过并非轴对称,而是沿AB方向共轭.如果世上真有这样的蝴蝶,飞行亦能平衡自如. 定理1还可推广得到更一般的结论. 定理3 若三条不同的二次曲线S、S1、S2有无三点共线的四个公共点,沿某一确定方向的任意直线L0被S、S1、S2各截得一弦PQ、EF、GH,则三弦中点O、O1、O2之间有向线段之比为常数. 证不妨取坐标系使确定方向为x轴.于是该方向(k=0)关于S、S1、S2的共轭直径分别为(参见定理1): L:a11x+a12y+a13=0 L1:b11x+b12y+b13=0 L2:(a11x+a12y+a13)+λ(b11x+b12y+b13)=0 设直线L0方程为y=y0,PQ、EF、GH的中点为O(x0,y0),O1(x1,y0),O2(x2,y0),于是由直径方程知: a11x0+a12y0+a13=0,b11x1+b12y0+b13=0 (a11x2+a12y0+a13)+λ(b11x2+b12y0+b13)=0 故a11(x2-x0)=λb11(x2-x1) (4) 即OO2/O2O1=α (a11≠0时) (5) 其中α=-λb11/a11是与y0无关的常数(由S、S1、S2三曲线确定.当a11=0时,L ∥L0可知L0与S无两个交点,故不在本命题讨论之列). (5)式意即:在指定顺序O、O2、O1之下,两有向线段之比不因L0平行移动而变化. 推论在定理3条件下,对任意直线L0所截的三弦中点中,任意两点总在第三点同侧或异侧.当O、O1、O2中有两点重合时,第三点也重合.“蝴蝶定理”虽然如自然界的蝴蝶种类一样千变万化,然而万变不离其宗,核心在于中点弦性质。

高中数学中点弦问题的解题方法

高中数学中点弦问题的解题方法 会泽县茚旺高级中学 顺武 解析几何中与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。“中点弦”问题是一类很典型、很重要的问题. 一、方法介绍(解圆锥曲线的中点弦问题的方法有): 第一种方法:联立消元法即联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 第二种方法:点差法即设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子, 可以大大减少运算量。我们称这种代点作差的方 法为“点差法”。 第三种方法:导数法即如果以圆、椭圆等图形的中心为中心,按比例缩小图形,则一定存在同类的圆、椭圆等与弦AB 中点M 相切(如下图)。此时缩小的曲线方程如()()()2 2 2 tR b x a x =-+-, () () 12 2 2 2 =± tb y ta x , 两边对x 求导,可发现并不改变原方程求导的结果。因此,利用导数法求中点弦的斜率,就是x y '在中点处的值。 二、题型示例 题型一 以定点为中点的弦所在直线的方程 例1、过椭圆 14 162 2=+y x 一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

解法一:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x 两式相减得0)(4)(222 12 22 1=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1 244)(421212121-=?-=++-=--y y x x x x y y 即21- =AB k ,故所求直线的方程为)2(2 1 1--=-x y ,即042=-+y x 。 法二:由题意知所求中点弦斜率一定存在,设为k ,则该弦方程为()21-=-x k y ()?????=+ -=-14 16212 2 y x x k y 消去y 得 例2.已知双曲线方程,求以A (2,1)为中点的双曲线的弦所在的直线方程; (2)过点B (1,1),能否作直线,使与所给双曲线交于P 、Q 两点,且点B 是弦PQ 的中点?这样的直线如果存在,求出它的方程;如果不存在,说明理由。 解:对两边求导,得 (1)以A (2,1)为中点的弦的斜率,所以所求中点弦所在直线方程为 (2)以B (1,1)为中点的弦的斜率,所以所求中点弦所在直线方程为 即。 但与双曲线方程联立消去y 得,无实根。因此直线与双曲线无交点,所以满足条件的直线不存在。 注意:(1)求出的方程只是满足了必要性,还必须验证其充分性,即所求直线与双曲线确实有两个交点。

圆锥曲线的中点弦公式

抛物线中点弦公式 抛物线C:x^2=2py上,过给定点P=(α,β)的中点弦所在直线方程为:py-αx=pβ-α^2。 中点弦存在的条件:2pβ>α^2(点P在抛物线开口内)。 椭圆中点弦公式 椭圆C:x^2/a^2+y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为: αx/a^2+βy/b^2=α^2/a^2+β^2/b^2。 中点弦存在的条件:α^2/a^2+β^2/b^2<1(点P在椭圆内)。 双曲线中点弦公式 双曲线C:x^2/a^2-y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为: αx/a^2-βy/b^2=α^2/a^2-β^2/b^2。 中点弦存在的条件:(α^2/a^2-β^2/b^2)(α^2/a^2-β^2/b^2-1)>0(点P不在双曲线、渐近线上以及它们所围成的区域内)。 二次曲线中点弦性质与蝴蝶定理 蝴蝶定理是二次曲线一个著名定理,它充分体现了蝴蝶生态美与“数学美”的一致性.不少中数专著或杂志至今还频繁讨论.本文揭示了它与中点弦性质的紧密联系,并给出统一而简明的证明,指出了一种有用的特殊情形和一种推广形式. 引理:设两条不同的二次曲线 S:F(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0 有A、B、C、D四个公共点,其中无三点共线,则过A、B、C、D四点的任意一条二次曲线S2必可唯一地表示成: (证明略) 定理1 设三条不同的二次曲线(S、S1、S2)有A、B、C、D四个公共点,其中无三点共线;又直线L0被S、S1、S2各截得一弦.若其中两弦中点重合,则第三弦中点亦重合. 证设S、S1的方程为(1)、(2),则S2方程可表为(3).因直线L0(设斜率为k)关于二次曲线S、S1、S2的共轭直径分别为: L:(a11x+a12y+a13)+k(a12x+a22y+a23)=f(x,y)=0 因L、L1都通过L0被S与S1所截得的弦PQ与EF的共同中点O,显然L2也必通过点O,故O也是L0被S2所截得的弦GH的中点.

解析几何之中点弦题型

第三讲.解析几何之中点弦题型 【教学目标】 1.掌握两点的中点坐标公式; 2.掌握韦达定理在解析几何中的应用; 3.会求解解析几何中相关的中点弦问题。 【知识、方法梳理】 1.若11(,)A x y ,22(,)B x y ,则AB 的中点坐标是1212(,)22 x x y y ++ 2.一元二次方程20ax bx c ++=,则有1212b x x a c x x a ?+=-????=?? 3.解析几何中遇到中点弦问题,基本解题思路是联立方程,利用韦达定理(注意判别式?) 【典例精讲】 例1.直线:1l y x =+与椭圆22 142 x y +=交于,A B 两点,求,A B 的中点坐标。 【解析】:将直线代入椭圆,得2 3420x x +-= 设1122(,),(,)A x y B x y ,中点00(,)x y 则1243x x +=-,1 20223x x x +==-,00113 y x =+= 所以中点21(,)33- 【点评】:看到中点,想到韦达定理

例2.设直线l 交椭圆2212x y +=于,A B 两点,且,A B 的中点为1(1,)2 M ,求直线l 的方程。 【解析】:直线l 斜率不存在的情况显然不可能,所以设直线1:(1)2 l y k x -=- 代入椭圆方程,整理得222113()2()0224 k x k k x k k +--+--= 设1122(,),(,)A x y B x y ,则12212()212 k k x x k -+=+,又因为1(1,)2M 所以1221()21122 k k x x k -+==+,解得1k =-,经检验此时0?> 所以3:2 l y x =-+ 【点评】:联立方程利用韦达定理是解决中点问题的基本方法 例3.已知双曲线2 2 12y x -=与点(1,2)P ,过P 点作直线l 与双曲线交于A B 、两点,若P 为AB 中点. (1)求直线AB 的方程; (2)若(1,1)Q ,证明不存在以Q 为中点的弦. 【解析】:(1)解:设过(1,2)P 点的直线AB 方程为2(1)y k x -=-, 代入双曲线方程得 2222(2)(24)(46)0k x k k x k k -+---+= 设1122(,),(,)A x y B x y , 则有2122 242k k x x k -+=-- 由已知1212 p x x x +== ∴22 2422k k k -=-.解得1k =. 又1k =时,160?=>,从而直线AB 方程为10x y -+=. (2)证明:按同样方法求得2k =,而当2k =时,0?<,所以这样的直线不存在. 【点评】:注意检验?的重要性,上题中中点在椭圆内部,检验?只是形式而已,而双曲线的情况较为复杂,检验的步骤必不可少,具体的情况我们以后会做分析。 例4.若抛物线2 1y ax =-上总存在关于直线0x y +=对称的两点,求a 的范围

相关主题
文本预览
相关文档 最新文档