当前位置:文档之家› 变刚度调平在大型储罐基础设计中的应用

变刚度调平在大型储罐基础设计中的应用

变刚度调平在大型储罐基础设计中的应用
变刚度调平在大型储罐基础设计中的应用

浙江建筑,第26卷,第5期,2009年5月Zhejiang Constructi on,Vol .26,No .5,May .2009

收稿日期:2008-12-03

作者简介:陈长林(1975—),男,安徽合肥人,工程师,从事建筑结构设计工作。

变刚度调平在大型储罐基础设计中的应用

Appli cati on of Sti ffness Var i a ti on Leveli n g i n Huge Storage Tank Desi gn

陈长林1

,樊诗兰

2

CHEN Chang 2lin,FAN Shi 2lan

(1.温州市工业设计院,浙江温州325003;2.温州市长城建设监理有限公司,浙江温州325003)

摘 要:建造在软土地基上的大型储罐基础,由于地基土的压缩变形会产生各种沉降变形,其中罐周不均匀沉降即沉降差对其影响最为不利。通过变刚度调平设计,可以大大降低储罐基础的不均匀沉降,工程实践证明这种方法是切实可行的。

关键词:变刚度调平设计;沉降差;大型储罐基础

中图分类号:T U473.1+3 文献标识码:B 文章编号:1008-3707(2009)05-0030-02

目前,钢储罐的容量不断增大,有的储罐直径甚至接近100m 。储罐大型化后,其基础荷载大,覆盖面积也较大,在储罐建设中经常会遇到不良土质、不均匀土层、沟壑暗滨等非理想土层作为储罐的地基。而建在这种软土地基上大型储罐不可避免地会产生各种沉降变形。储罐的主要沉降有:整体均匀沉降、整体平面倾斜沉降、罐周不均匀沉降、罐周局部沉降以及底板的碟形沉降和局部沉降,其中罐周不均匀沉降即沉降差对结构的影响最为不利

[1]

。从而需

要对之进行处理,但是地基处理是否得当直接关系到工程的质量、进度和经济,因此合理地选择处理方法是非常必要的。

几种常见的地基处理方法[2-3]

:

(1)加载预压:在储罐安装就位后,利用储罐内进水试漏的同时对地基进行预压;

(2)水泥搅拌:分湿法和干法两种,它利用深层搅拌机将水泥浆与地基土在原位拌和,形成柱状水泥体,可提高承载力,减小沉降量;

(3)CFG 桩:在碎石桩中掺和石屑、粉煤灰的低标号桩,它同褥垫层一起组成复合地基;

(4)强夯置换:采用高能量夯锤,原理是置换与挤淤;

(5)桩基础:该方法安全性高,适合于各类罐基础。

1 变刚度调平设计的基本原理

按传统基础的概念设计采用均匀布桩(相同桩

距、相同桩长)基础,初始竖向支承刚度是均匀分布的。设置于其上的刚度有限的基础(承台)受均布荷载作用时,由于土与土、桩与桩、土与桩的相互作用导致地基或桩群的竖向支承刚度分布发生内弱外强变化,会导致罐基础出现内大外小的蝶形沉降和内小外大的马鞍形反力分布。而这种变形与反力分布模式必然导致底板整体弯矩、冲切力和剪力增大,引发上部结构的过大次应力,降低使用寿命。为此本文提出了按照变刚度调平的原理进行大型储罐基础设计。

《建筑桩基技术规范(JGJ 9422008)》[4]

提出:“变刚度调平设计是考虑上部结构形式、荷载和地层分布以及相互作用效应,通过调整桩径、桩长、桩距等改变基桩支承刚度分布,以使建筑物沉降趋于均匀、承台内力降低的设计方法”。变刚度调平设计突破传统设计理念,是一种新的概念设计方法,旨在减小差异变形、降低承台内力和上部结构次内力,以节约资源,提高建筑物使用寿命,确保正常使用功能。其基本思路是通过调整地基和基桩的刚度分

布,使反力同荷载分布相协调,沉降变形趋向均匀,由此使基础所受整体弯矩、冲切力和剪力减至最小。具体做法是根据结构布局、荷载及地层条件,实施局部增强变刚度调平、主裙连体变刚度调平、桩基变刚度调平,并进行地基(桩土)—基础—上部结构共同作用计算分析。

1.1 局部增强变刚度调平

在采用天然地基时,突破纯天然地基的传统观念,对荷载集度高的区域如核心筒等实施局部增强处理,包括采用刚性桩复合地基或局部桩基,由此使支承刚度与荷载匹配,沉降趋向均匀,从而降低了基础内力和材耗。

1.2 桩基变刚度调平

对于需采用桩基的情况,根据结构与荷载分布、场地地质特点实施变刚度调平布桩。对于荷载显著不均匀的框筒、框剪结构,可采用变桩距、变桩径、变桩长布桩。对于荷载集度高的内部桩群区,应考虑相互作用适当增强;对于外围区应适当弱化,按复合桩基计算。

1.3 主裙连体变刚度调平

对于主裙连体建筑,应按增强主体(采用桩基、刚性桩复合地基)、弱化裙房(采用天然地基、疏短桩基、复合地基)的原则设计。

1.4 地基(桩土)—基础—上部结构共同作用分析

为使变刚度调平概念设计更趋向合理、可靠、实用,宜在概念设计的基础上进行地基(桩土)—基础—上部结构共同作用计算分析,进一步调整布桩,使差异变形降到最小,并计算确定基础、承台的内力与配筋。

因此对于荷载分布较均匀的大型油罐等构筑物,宜采用桩基变刚度调平即按变桩距、变桩长布桩以抵消因相互作用对中心区支承刚度的消弱效应[4],从而在一定程度上降低储罐的不均匀沉降。

储罐基础的不均匀沉降指标是用沿罐周相邻两测点的沉降差除以该两点间的罐周弧长来表示,即:

Δs

l^

≤δ

式中:Δs—罐周两点间的沉降差;

l^—该两点之间的罐周弧长。

目前国内外很多规范都采用该指标来判断不均匀沉降的严重程度,但取值并不一致,我国相关规范[5]对浮顶罐和固顶罐的规定中δ分别取0.25%和0.4%。

2 工程实例

2.1 工程概况

某10000m3固顶储罐,罐直径为28.5m,高度为15.85m,浮顶罐,储罐总重量为1988kN,冲水预压荷载为162k N/m2。

2.2 工程地质条件

罐区土的主要物理力学指标,见表1。

经勘察表明,拟建场地自上而下共分4层,第1层为黏土,厚度2.45m,可塑状态;第2层为淤泥,厚度33.7m,压缩性大;第3层为淤泥质粉质黏土,厚度9.3m;第4层为黏性土夹粉土,厚度18.5m。

表1 罐区土的主要物理力学指标

层号土名称土层厚度/m极限侧摩擦力/kPa压缩模量/MPa重度/(kN/m3)摩擦角/(°)粘聚力/kPa

1黏性土 2.4516 2.9918.711.911

2-1淤泥17.3 4.5 1.1615.910 4.9

2-2淤泥16.4 5.5 1.531611.8 5.8

3淤泥质粉质黏土9.312 2.618.213.810.1

4黏性土18.516517.711.37.7

2.3 基础设计

采用预制混凝土管桩,桩径600mm,均匀布桩见图1。首先根据承载力把桩长确定为38m,计算得沉降等值线图2,从图2可以看出罐区中间部位的沉降比较大,最大为185mm,向外边缘逐渐减小到143mm。这说明虽然均匀布桩的初始竖向支承刚度是均匀分布的,设置于其上的刚度有限的基础底板受均布荷载的作用。但是由于土与土、桩与桩、土与桩的相互作用导致桩群的竖向支承刚度分布发生内弱外强变化,沉降变形出现内大外小的蝶形分布,基底反力出现内小外大的马鞍形分布。

(下转第44页)

13

第5期陈长林等:变刚度调平在大型储罐基础设计中的应用

4 施工优点

无梁楼盖与普通肋梁板比较具有下列优点:

(1)施工速度快,省去了梁的支模工序,裙楼

11万m2主体结构仅施工7个月就结顶,缩短施工

工期3个月。

(2)减少模板裁损,节约模板。

(3)节约机械、周转材料的租用费而并未增加

其它成本。

(4)施工方便,节约劳动力。

(5)结构自重轻(毛容重为19~21k N/m3,普通

钢筋混凝土结构容重为25k N/m3)

,节约混凝土和

钢材。

(6)节省层高,顶棚无抹灰,便于装饰。

5 经济效益

现浇混凝土空心无梁楼盖综合经济效益高。与

一般楼盖系统钢筋、模板的用量计算比较,钢筋混凝

土造价低6%,模板损耗降低40%,装修费用低,此

结构楼板完全平整,无须吊顶。同时在相同净高条

件下层高可降低,减少了竖向的水电风电梯内外墙

装修等费用。

(上接第31页)

为了减小这种不均匀沉降,把从罐区中心向外5环的桩长增加到45m以抵消由于土与土、桩与桩、土与桩的相互作用而对中心区域竖向支承刚度的弱化效应。其计算的沉降等值线见图3,从图3可以看出,由于增加了中心区域的刚度,从而使沉降值由原来的185mm减小到158mm,沉降差有原来的0.29%减小到0.03%,满足规范要求。3 结 论

变刚度调平概念设计改变了传统地基基础设计中只重视满足总体承载力和沉降要求,忽略上部结构、承台、桩、土的共同工作特性。若采用均匀布桩,由此导致基础沉降呈蝶形分布、反力呈马鞍形分布,基础整体弯矩和核心区冲切力过大。不但基础板配筋较多,而且还会造成基础板和上部结构裂缝的出现乃至影响正常使用。文中通过增加罐区中心区域的桩长来抵消由于土与土、桩与桩、土与桩的相互作用而对中心区域竖向支承刚度的弱化效应,从而使沉降等值线的梯度减小,以免在使用中这种不均匀变形对储罐的破坏。实践证明了变刚度调平在大型储罐基础设计中可以起到调整不均匀沉降,进而达到优化设计的目的。

参考文献

[1] 陈凌志,赵 阳.不均匀沉降下的大型钢储罐结构[J].空间结

构,2003,9(3):50-54.

[2] 徐至钧,许朝铨,沈珠江.大型储罐基础设计与地基处理[M].

北京:中国石化出版社,1999:25-28.

[3] 中国建筑科学研究院.JGJ7922002J22022002建筑地基处理

技术规范[S].北京:中国建筑工业出版社,2002.

[4] 中国建筑科学研究院.JGJ9422008建筑桩基技术规范[S].北

京:中国建筑工业出版社,2008.

[5] 中国石化北京设计院.SH3068295石油化工企业钢储罐地基

与基础设计规范[S].北京:中国石化出版社,1995.

44 浙 江 建 筑2009年 第26卷

原油储罐基础工程施工组织设计方案

第一章编制依据 本施工组织设计是根据: 1.**15万方储油罐地基与基础工程施工招标文件。 2.**油库15万方原油储罐基础施工图纸。 3.现行国家有关施工及验收规范。 4.江苏省及扬州市地方政府有关法规、法令及文件规定。 5.本企业质量体系及企业内部工法。 6.中华人民共和国建设部令第15号《建设工程施工现场管理规定》 7.国家现行的安全生产操作规程及《炼油、化工施工安全规程》等安全方面的有关 规定。 8.踏勘工地现场和调查咨询资料。 9.其他有关规范及文献资料。 结合我司以往施工过同类工程(**工程)的施工经验进行编制的。

第二章工程概况 本工程为**集团管道储运公司工程处新建的15万方原油储罐基础,位于×××。主要工程内容包括:T1、T2两座原油储罐基础。 1原油罐基础设计情况 原油罐基础外径R=50.32m(半径),环墙厚度为800mm,高度为2300mm。T 1罐基础中心施工标高30.525m,环墙施工顶标高29.77m,油罐底由中心坡向四周 =0.015;T2罐基础中心施工标高30.665,环墙施工顶标高29.91m,油罐底由中心坡向四周 =0.015。 地基采用振冲碎石桩复合地基,罐基础为800mm厚C25钢筋砼环墙,罐基中间各层从上到下依次为:油罐底板→150mm厚沥青砂绝缘层→400mm厚砂垫层→450mm厚素土夯实并找坡→碎石垫层→复合地基; 环墙基础环向钢筋接头采用焊接或机械连接,钢筋净保护层厚度35mm。 2工程特点 2.1本工程土石方工程量大,工期紧迫。 2.2在大型储罐中,环墙质量的好坏对罐的建造质量至关重要。因环墙为薄壁超 长结构,极易受温度与收缩应力等因素的影响而出现裂缝,施工难度大。 3施工建议 3.1为克服环墙因温度及收缩应力可能出现的裂缝,我司建议在混凝土中掺入PPT -

大型原油储罐设计中主要安全问题及对策

大型原油储罐设计中主要安全问题及对策 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985 年从日本引进。发达国家建造、使用大型储罐已有近30 年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进 行分析,并提出对策,为工程设计提供参考。 1 大型原油储罐工程危险性分析 1.1 原油危险性分析 原油为甲B 类易燃液体,具有易燃性;爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2 火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。 泄漏的原油暴露在空气中,即构成可燃物。原油泄漏,在储运中发生较为频繁,主要有冒罐跑油,脱水跑油,设备、管线、阀件损坏跑油,以及密封不良造成油气挥发,另外还存在着罐底开焊破裂、浮盘沉底等特大型泄漏事故的可能性。 腐蚀是发生泄漏的重要因素之一。国内外曾发生多起因油罐底部腐蚀造成的漏油事故。对原油储罐内腐蚀情况初步调查的结果表明,罐底腐蚀情况严重,大多为溃疡状的坑点腐蚀,主要发生在焊接热影响区、凹陷 及变形处,罐顶腐蚀次之,为伴有孔蚀的不均匀全面腐蚀,罐壁腐蚀较轻,为均匀点蚀,主要发生在油水界面,油与空气界面处。相对而言,储罐底部的外腐蚀更为严重,主要发生在边缘板与环梁基础接触的一面。 浮盘沉底事故是浮顶油罐生产作业时非常忌讳的严重恶性设备事故之一。该类事故的发生,一方面反映了设计、施工、管理等方面的严重缺陷,另一方面又将造成大量原油泄漏,严重影响生产、污染环境并构成火灾隐患。 2 大型原油储罐设计中的主要安全问题及其对策 2.1 储罐地基和基础 储罐工程地基勘察和罐基础设计是确保大型储罐安全运营最根本的保证。根据石化行业标准规定,必须在工程选址过程中进行工程地质勘察,针对一般地基、软土地基、山区地基和特殊土地基,分别探明情况,提出相应的地基处理方法,同时还应作场地和地基的地震效应评价,避免建在软硬不一的地基上或活动性地质断裂带的影响范围内。 常见的罐基础形式有环墙(梁)式、外环墙(梁)式和护坡式。应根据地质条件进行选型。罐基础必须具 有足够的整体稳定性、均匀性和足够的平面抗弯刚度,罐壁正下方基础构造的刚度应予加强,支持底板的基床应富于柔性以吸收焊接变形,宜设防水隔油层和漏油信号管,地下水位与基础顶面之间的距离不得小于毛细水所能达到的高度(一般为 2m )。

柱脚做法及变刚度调平

一、柱脚一般有哪几种类型,柱脚设计时应符合哪些要求? 钢支承结构与基础的连接应牢固可靠。其柱脚可采用能保证传递柱身承载力的埋入式、插入式或外包式柱脚。6、7 度时,也可采用外露式刚接柱脚。柱脚设计应符合下列要求: 1. 采用埋入式、插入式柱脚时,钢柱的埋入深度不得小于单肢截面高度(或外径)的3 倍; 2. 采用外包式柱脚时,实腹H 形截面柱的钢筋混凝土外包高度不宜小于2.5 倍的钢柱截面高度,箱型截面柱或圆管截面柱的钢筋混凝土外包高度不宜小于 3.0 倍的钢柱截面高度或圆管截面直径; 3. 当采用外露式柱脚时,柱脚锚栓不得用来承受在地震作用下产生的柱底水平剪力,柱底剪力应由钢底板与基础间的摩擦力或设置抗剪键承担。柱脚直埋锚栓应设置弯勾(或以锚板代替弯勾),其埋置深度不应小于式(16.3.5)的要求,且当采用Q235 钢材时,其埋置深度不得小于20D;当采用Q345 钢材时,不得小于25D。 二、变刚调平设计原则总体思路,以往做过的工程中有哪些采用过变刚调平设计? 建筑桩基技术规范P221 根据上部结构布局、荷载和地质特征,考虑相互作用效应,采取增强与弱化结合,减沉增沉结合,整体平整,实现差异沉降最小化,基础内力最小化和资源消耗最小化。 1. 根据建筑物体型、结构、荷载和地质条件,选择桩基、复合桩基、刚性桩复合地基,合理布局,调整桩土支承刚度,使之与荷载相匹配。 2. 为减小各区位应力场的相互重叠堆核心区有效刚度的削弱,桩土支承体布局宜做到竖向错位或水平向拉开距离。 3. 考虑桩土的相互作用效应,支承刚度的调整宜采用强化指数进行控制。核心区强化指数宜为1.05~1.30,外框区弱化指数宜为0.95~0.85。 4. 对于主裙连体建筑,应按增强主体,弱化裙房的原则进行设计。 5. 桩基的桩选型和桩端持力层的确定,应有利于应用后注浆技术,应确保单桩承载力有较大的调整空间。基桩宜集中布置于柱墙下,以降低承台内力,最大限度发挥承台底地基土分担荷载的作用,减小柱下桩基与核心筒桩基的相互作用。 6. 宜在概念设计的基础上进行上部结构-基础-桩土的共同作用分析,优化细部设计,差异沉降宜严于规范值,以提高耐久性可靠度。

储罐设计

毕 业 设 计 容器施工图设计—导热油储罐 完成日期 2014 年 6 月 10 日 院系名称: 化学工程学院 专业名称: 过程装备与控制工程 学生姓名: 陈培培 学 号: 2010032306 指导教师: 邓春 企业指导: 马程鹤、武彦巧

容器施工图设计—导热油储罐 摘要 导热油是用于间接传递热量的一类热稳定性较好的专用油品,属于烃类有机物,导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快等特性。钢制储罐作为重要的基础设施,广泛应用于石油化工行业,本毕业设计主要依据《钢制卧式容器》[1]进行导热油储罐的机械设计计算。计算部分包括:设备的选材和焊接的确定、强度及稳定性的设计计算和校核、支座和法兰的选用。最后,利用AutoCAD绘图软件绘制出满足机械强度设计计算要求的导热油储罐的设备总图。 关键词:导热油、储罐、机械设计

Design of h eat transfer oil storage tank Abstract Heat transfer oil is a type of special oil product with excellent thermal stability and is widely used indirect heat transfer .It belongs to the hydrocarbon organics . Heat transfer oil has good performance of thermal cracking and chemical oxidation , high heat transfer effect and fast heat dissipation .Steel storage tank as an important infrastructure ,is widely utilized in petrochemical industry .This paper aims to do the mechanical design of heat transfer oil storage tank on the basis of ―JB/T 4731-2005 Steel horizontal vessels on saddle supports ‖The design includes the selection of equipment material and determination of welding , design and examination of strength and stability ,selection of support and flange .Finally , software ,general drawing for the heat transfer oil storage tank is plotted via AutoCAD. Key words: h eat transfer oil . storage tank . mechanical design

储罐基础设计的合理性

储罐基础设计的合理性 随着国民经济的发展,人们物质生活的提高,对能源及化工用品的需求量增大,化工行业得到蓬勃发展,各种石油产品储罐以及化工行业的气罐、液体原料罐日益增多,成为设计人员经常碰到的课题。 罐基础设计的合理与否直接影响到储罐是否能安全,正常的工作,从事故发生的原因来看一般反应在以下几个方面。 基础的选型是设计是否能达到安全、经济、合理的关键,基础的选型应根据储罐的形式、容积、储存的介质,地质条件、业主所能提供的材料情况以及当地的施工技术条件。 1,当储罐直径小于等于6米时,可采用整板基础,采用此基础的优点是基础整体性好,沉降均匀,由于没有了环墙内夯土,所以施工进度快且质量易得到保证,缺点是混凝土和钢筋用量较大,施工时要采取减小大体积混凝土带来不利影响的措施 2,当储罐直径大于6米时可采用环墙基础,外环墙式和护坡式基础,优点是混凝土和钢筋用量较省,缺点是由于储罐底部夯土较深,施工时间较长且需采取冲水试压等措施,基础沉降量大,环墙的宽度必须和地基以及罐底压强相协调,否则会照成环墙和罐底沉降差过大,以致罐底钢板拉裂或顶破。 3,存储低温介质的钢储罐基础必须采用深基础,其罐底做架空板,板底与地面留有空隙(约800mm)以防止罐内低温介质作用于土壤,形成冻土。 4,存储高温介质钢储罐要根据介质温度的不同采用不同的隔热措施,当介质温度高于95度时,与罐底接触的罐基础表面应采取隔热措施,一般可采用平铺三层浸渍沥青砖,罐底面和砖顶面应刷冷底子油两遍。 5,存储剧毒,酸,碱腐蚀介质的钢储罐应做成实体架空基础(自地面300mm 以下做成整板基础,其上部做架空基础),目的是若罐内介质泄露,介质会顺着架空基础的槽内流出,容易被及时发现,且介质不会流入土壤中,对其产生腐蚀,影响地基承载力。 钢储罐基础应设置沉降观测点,具体要求详见《石油化工企业钢储罐地基与基础设计规范》SHT3068-2007.在基础施工完成后要进行充水试压,目的是对基础及储罐进行检测,同时对地基进行预压,充水预压时要注意控制充水速度及预压时间,以免认为的对基础和罐体照成破坏。 基础可以根据具体的地基情况而比较常见的采用环墙基础、筏板基础、桩基础和地基处理,地基处理在钢储罐基础设计中是经常遇见的,下面介绍一个工程实例:

变刚度调平在大型储罐基础设计中的应用

浙江建筑,第26卷,第5期,2009年5月Zhejiang Constructi on,Vol .26,No .5,May .2009 收稿日期:2008-12-03 作者简介:陈长林(1975—),男,安徽合肥人,工程师,从事建筑结构设计工作。 变刚度调平在大型储罐基础设计中的应用 Appli cati on of Sti ffness Var i a ti on Leveli n g i n Huge Storage Tank Desi gn 陈长林1 ,樊诗兰 2 CHEN Chang 2lin,FAN Shi 2lan (1.温州市工业设计院,浙江温州325003;2.温州市长城建设监理有限公司,浙江温州325003) 摘 要:建造在软土地基上的大型储罐基础,由于地基土的压缩变形会产生各种沉降变形,其中罐周不均匀沉降即沉降差对其影响最为不利。通过变刚度调平设计,可以大大降低储罐基础的不均匀沉降,工程实践证明这种方法是切实可行的。 关键词:变刚度调平设计;沉降差;大型储罐基础 中图分类号:T U473.1+3 文献标识码:B 文章编号:1008-3707(2009)05-0030-02 目前,钢储罐的容量不断增大,有的储罐直径甚至接近100m 。储罐大型化后,其基础荷载大,覆盖面积也较大,在储罐建设中经常会遇到不良土质、不均匀土层、沟壑暗滨等非理想土层作为储罐的地基。而建在这种软土地基上大型储罐不可避免地会产生各种沉降变形。储罐的主要沉降有:整体均匀沉降、整体平面倾斜沉降、罐周不均匀沉降、罐周局部沉降以及底板的碟形沉降和局部沉降,其中罐周不均匀沉降即沉降差对结构的影响最为不利 [1] 。从而需 要对之进行处理,但是地基处理是否得当直接关系到工程的质量、进度和经济,因此合理地选择处理方法是非常必要的。 几种常见的地基处理方法[2-3] : (1)加载预压:在储罐安装就位后,利用储罐内进水试漏的同时对地基进行预压; (2)水泥搅拌:分湿法和干法两种,它利用深层搅拌机将水泥浆与地基土在原位拌和,形成柱状水泥体,可提高承载力,减小沉降量; (3)CFG 桩:在碎石桩中掺和石屑、粉煤灰的低标号桩,它同褥垫层一起组成复合地基; (4)强夯置换:采用高能量夯锤,原理是置换与挤淤; (5)桩基础:该方法安全性高,适合于各类罐基础。 1 变刚度调平设计的基本原理 按传统基础的概念设计采用均匀布桩(相同桩 距、相同桩长)基础,初始竖向支承刚度是均匀分布的。设置于其上的刚度有限的基础(承台)受均布荷载作用时,由于土与土、桩与桩、土与桩的相互作用导致地基或桩群的竖向支承刚度分布发生内弱外强变化,会导致罐基础出现内大外小的蝶形沉降和内小外大的马鞍形反力分布。而这种变形与反力分布模式必然导致底板整体弯矩、冲切力和剪力增大,引发上部结构的过大次应力,降低使用寿命。为此本文提出了按照变刚度调平的原理进行大型储罐基础设计。 《建筑桩基技术规范(JGJ 9422008)》[4] 提出:“变刚度调平设计是考虑上部结构形式、荷载和地层分布以及相互作用效应,通过调整桩径、桩长、桩距等改变基桩支承刚度分布,以使建筑物沉降趋于均匀、承台内力降低的设计方法”。变刚度调平设计突破传统设计理念,是一种新的概念设计方法,旨在减小差异变形、降低承台内力和上部结构次内力,以节约资源,提高建筑物使用寿命,确保正常使用功能。其基本思路是通过调整地基和基桩的刚度分

桩基设计指导书讲解

土木工程专业桩基础课程设计指导书土木工程学院港航教研室

一、设计步骤及计算公式(按新《桩基规范》JGJ94-2008) (一)桩型选择与桩长确定,初选承台埋深(参见教材240页) 尽量使承台底面位于地下水位面以上且土质较好的土层内。 根据《建筑桩基技术规范》规定,桩进入液化层以下稳定土层中的长度(不包括桩尖部分)应按 计算确定。对于粘性土、粉土不宜小于2d(d 为桩径),砂土不易小于1.5d ,碎石类土不宜小于1d ,且对碎石土、砾、粗、中砂、密实粉土、坚硬粘性土尚不应小于0.5m ,对其他非岩类石土尚不应小于1.5m 。 对存在淤泥层等压缩性很大的土层时,宜考虑负摩阻力,如采用简化计算不考虑摩阻力时,不应 计入淤泥层及以上土层的摩阻力。此时,桩进入稳定土层的长度宜取大值,如5-8m 。 如各种条件许可,桩端全截面进入持力层的深度宜达到桩端阻力的临界深度,以使端阻力充分发 挥。嵌岩桩要求桩底下3d 范围内,应无软弱夹层、断裂带、洞穴和空隙分布。 桩顶嵌入长度:为保证群桩与承台之间连接的整体性,桩顶应嵌入承台一定长度,对大直径桩宜 ≥100㎜;对中等直径桩宜≥50㎜。 绘制桩长确定示意图。 (二)初定单桩竖向承载力特征值R a 1. 据双桥静力触探资料,确定混凝土预制桩单桩竖向极限承载力标准值: (参见教材222页公式8.14) https://www.doczj.com/doc/3913530483.html, c p p i i si Q q A l f αμβ=+∑ 对灌注桩参见教材222页公式8.17确定。 单桩竖向承载力特征值R a 取其极限承载力标准值Q uk 的一半。 2. 按桩身材料强度确定单桩承载力(由于此时尚未进行桩身结构设计,故近似按轴心受压素混凝土桩计算。参见教材219页公式8.10) c c p R f A ψ= 基桩成桩工艺系数ψc 应按下列规定取值: (1) 混凝土预制桩、预应力混凝土空心桩: ψc =0.85; (2) 干作业非挤土灌注桩: ψc =0.90; (3) 泥浆护壁和套管护壁非挤土灌注桩、部分挤土灌注桩、挤土灌注桩: ψc = 0.7 ~ 0.8 ; (4) 软土地区挤土灌注桩: ψc = 0.6 。 二者比较,取较小值。 (三)确定桩数及桩的平面布置 对边柱,取柱下独立承台;对中柱,因两柱间距较小,荷载较大,故将两中柱下做联合承台。 1. 桩数确定 先按中心受荷初估: ;(由于此时承台平面尺寸尚未确定,可按 初估,考虑偏心荷 载作用较大,将n 放大1.1~1.2倍后取整数。) 2. 确定承台平面尺寸(参见承台尺寸的构造要求见教材243页),绘制桩的平面布置图(参见教材242 a K K R G F n +≥K a F n R ≥

桩基变刚度调平设计研究成果综述

桩基变刚度调平设计研究成果综述 摘要:本文主要概述了桩基变刚度调平的设计原理、设计原则,并简要介绍了目前使用较多的几种桩基变刚度调平设计方法。 关键词:基坑桩基础变刚度调平 一.引言 随着我国经济建设步伐的加快,越来越多的高层建筑出现在城市中,其中有相当比例的上部结构为刚度相对较弱、荷载不均的框剪、框筒结构,基础多采用桩筏,桩箱基础,且采用均匀布桩或厚筏(或箱型承台)。由于地基是一个完整地三位体,作用在某点处的荷载在其余各点处也会产生位移,各点相互作用的结果,使得基础中间部分的沉降最大,而角点沉降相对较小,即碟形分布。同时桩顶的反力分布也是不均匀的,其呈现出内部桩的反力小于边桩反力,边桩反力小于角桩反力的特点,即桩顶反力呈马鞍形分布(图1)。

图1 框筒、框剪结构均匀布桩反力及沉降图 而由于碟形沉降而差生的沉降差,会导致基础自身以及上部结构出现附加弯矩、附加剪力乃至开裂;桩顶反力的马鞍形分布会导致基础整体弯矩增加。这些负面效应都对结构的安全和正常使用产生不利影响,并且增加了施工中的钢筋用量。 二.问题的研究与解决 在常规的桩基计算方法中,通常只考虑静力平衡条件,没有考虑接触面的变形协调,也没有考虑上部结构、基础、桩土的共同作用及群桩效应,是造成碟形沉降的主要因素。而沉降差是导致基础内力和上部结构次应力、板厚增加、配筋增多的根源。这主要是由于传统设计理念存在认识误差造成的,主要表现在: (1)设计中过分追求高层建筑基础利用天然地基;(2)桩筏设计中,忽视桩的选型和结构形式,荷载大小与分布相匹配;(3)桩筏设计中,忽视合理利用复合桩基调整刚度分布减小差异沉降的作用;(4)桩筏设计中对利用筏板刚度调整荷载.桩反力分布及减小差异沉降的期望值过高。 如何避免传统设计方法的缺陷,如何有效地控制沉降差的产生成为工程师们的一项重要研究课题。 由于对桩筏基础沉降,尤其是沉降差计算结果的可行性与合理性方面的运算困难,在过去相当长的时期,人们大多是被动地增加筏板厚度,这对相对较小的筏板有效;或增加筏底布桩的数量、几何尺度(桩长与桩径)、增大桩筏基础的整体刚度,通过降低沉降

空气储罐设计

设计要求 1、设计题目:空气储罐的机械设计 2、最高工作压力:0.8 MP a 3、工作温度:常温 4、工作介质:空气 5、全容积:163 m 设计参数的选择: 设计压力:取1.1倍的最高压力,0.88MP<1.6属于低压容器。 筒体几何尺寸确定:按长径比为3.6,确定长L=640000mm,D=1800mm 设计温度取50 因空气属于无毒无害气体,材料取Q345为低合金钢,合金元素含量较少,其强度,韧性耐腐蚀性,低温和高温性能均优于同含量的碳素钢,是压力容器专用钢板,主要用于制造低压容器和多层高压容器! 封头设计:椭圆形封头是由半个椭圆球面和短圆筒组成,球面与筒体间有直边段。直边段可以避免封头和和筒体的连接焊缝处出现经向曲率突变,以改善曲率变化平滑连续,故应力分布比较均匀;且椭圆形封头深度较半球形封头小得多,易冲压成型,在实际生产中多有模具,是目前中低压容器应用较多的封头。 因此选用以内径为基准的标准型椭圆形封头为了防止热应力和边缘应力的叠加,减少应力集中,在封头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。封头材料与筒体相同,选用头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。 选材和筒体一致Q345R

接管设计3.4 接管设计优质低碳钢的强度较低,塑性好,焊接性能好,因此在化工设备制造中常用作热交换器列管、设备接管、法兰的垫片包皮。优质中碳钢的强度较高,韧性较好,但焊接性能较差,不宜用作接管用钢。 由于接管要求焊接性能好且塑性好。故选择 20 号优质低碳钢的普通无缝钢管制作各型号接管 3.5 法兰设计法兰连接的强度和紧密性比较好,装拆也比较方便,因而在大多数场合比螺纹连接、承插式连接、铆焊连接等型式的可拆连接显得优越,从而获得广泛应用。 平焊法兰连接刚性较差,只能在低压,直径不太大,温度不高的情况下使用。由于Q345R 为碳素钢,设计温度 50℃ <300℃,且介质无毒无害,可以选用带颈平焊法兰,即 SO 型法兰。 储罐的设计压力较小要保证法兰连接面的紧密性,必须合适地选择压紧面的形状。 对于压力不高的场合,常用突台形压紧面。突面结构简单,加工方便,装卸容易,且便于进行防腐衬里。储罐由于设计压力为 0.88MPa,空气无毒无害,可选择突面(RF)压紧面。 由于法兰钢件的质量较大,需要承受大的冲击力作用,塑性、韧性和其他方面的力学性能也较高,所以不用铸钢件,可以采用锻钢件。接管材料为 20 号钢,法兰材料选用 20Ⅱ锻钢。 3.6接管与法兰分配 3.6.6 N1、N2空气进、出口公称尺寸 DN250,接管尺寸? 273 x6 。接管采用无缝钢管,材料为 20 号钢。伸出长度为 150mm 。 选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO300-2.5 RF3.6.2 N3排污口; 公称尺寸 DN40,接管采用 45 x3.5 无缝钢管,材料为 20 号钢,外伸长度为150mm。选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO40-1.6 RF 3.6.3 N4安全阀口公称尺寸 DN80,接管采用?89 x4 无缝钢管,材料为 20 号钢,外伸长度为 150mm。根据 GB12459-99,选用 90°弯头;弯头上方仍有一定

桩基础设计问题

桩基础设计问题 1.高层带裙房桩筏基础 现阶段设计出来的很多项目是高层带裙房及同一大面积地下室上有多栋高层和裙房,按照桩基础设计规范的规定,建筑物基础都得设计为一级,桩基设计不宜采用不同桩型和不同持力层。而大多数设计单λδ按原规范建议设计考虑荷载和桩的承载力水平,采用不同持力层、不同桩型或不同布桩密度,使桩的承载力水平接近的原则。实际上主¥与裙房荷载差异悬殊,反映在桩的承载力水平也相差悬殊,采用相同持力层,裙房桩的承载力水平过高,制约裙房的变形,致使梁上出现裂缝。对于这方面应适当考虑引起建筑物变形地基土的压缩性及厚度因素,在承载力水平上予以增减,建筑物建成多年δ发现过大的差异沉降致使梁出现裂缝,为了能达到变形协调的效果,必须对主¥的桩基进行强化,裙房的桩基也要适当的弱化。 2.桩筏基础变刚度调平设计 在高层中心集荷部λ,通过桩顶反力分布,可以桩的直径增大或者长度变长,提高中心部λ的桩土刚度,则筏板下的桩顶反力分布发生变化,成为外小内大状态,筏板的变形随之趋于平缓。变刚调平的概念设计基本思·为桩、土与上部结构共同作用,对其沉降变形的主导因素是对桩土支承刚度分布进行调整,使其沉降变形均匀,一般可以将中心部λ桩的桩径加大、布桩加密处理或者适当加长,这三种方法可以单独使用也可以重复使用,从而加强中心部λ桩土刚度,达到刚度平衡的效

果,概念设计只可以通过变刚度设计对实际存在的欠缺进行弥补的设计理念,而不能成熟分析软件或者精确计算表达式。 3.地基士质与桩基础的关系 对于桩底标高和土质之间的关系的分析,大部分时候桩长决定着柱底的标高。如果土质在一定范Χ内较好的情况下的桩底,为了保证桩尖落入承载力较高的土层来提高桩基础承载力就需要适当加大桩长以保证桩尖落入承载力较高的土层,而对由于钻探不是逐墩钻探而不能提供全面的钻探资料时则应根据相邻处桩长进行确定,一般为安全起见取相邻桩长较大值。对沉渣段与土质两者之间的分析,当桩尤其是桩端落于具有粗颗粒的砂砾、卵石等土层时,因为桩端会有较大粒径的卵石等,这时候为了保证桩基础的承载力以及灌注混凝土质量,就必须在施工时应必须给予清除。 4.同基础相邻桩底高差 若桩底标高相差过大,对于桩基础尤其是摩擦桩来说则会导致单桩的竖向承载力相差较大而造成桩基础整体失稳问题,所以对于同一建筑物尤其是坐落在同一土层的桩基础桩长长度及桩底标高差不宜超过桩长度的1/10;但若桩基础坐落于强度及稳定性较好的基岩上的端承桩则该限值可适当放宽;而桩端落于非岩石类土上则相邻桩高差不宜大于桩的中心距来避免将桩长较小的桩所受荷载传到相邻桩上增加临桩所受的侧向推力。 5.工程地质勘察

大型石油储罐设计选型与安全

编号:AQ-JS-01737 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 大型石油储罐设计选型与安全 Design selection and safety of large oil storage tank

大型石油储罐设计选型与安全 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985年从日本引进。发达国家建造、使用大型储罐已有近30年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进行分析,并提出对策,为工程设计提供参考。 目前,我国成品油储罐主要有内浮顶储罐、拱顶储罐两种型式。由于内浮顶罐的浮顶随油面的升降而升降,浮顶与液面之间不存在气体空间,油品蒸发量小,因而基本上消除了大小呼吸损耗,既降低油品损耗外,又减少对大气的污染,所以,易蒸发的油品储罐多采用铝浮盘内浮顶储罐。

密封装置:浮顶储罐绝大部分液面是被浮顶覆盖的,而浮顶与罐壁之间的环形空间要依靠密封装置来减少油品的蒸发损失及气候变化对油品的影响,密封材料应满足耐温、耐磨、耐腐蚀、阻燃、抗渗透、抗老化、等性能要求。油罐内浮顶与罐壁之间的密封带应采用丁腈胶带。 1大型原油储罐工程危险性分析 1.1原油危险性分析 原油为甲B类易燃液体,具有易燃性爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。

建筑桩基技术规范2018

1总则 1.0.1 为了在桩基设计与施工中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量,保护环境,制定本规范。 1.0.2 本规范适用于建筑(包括构筑物)桩基的设计、施工及验收。 1.0.3 桩基的设计与施工,应综合考虑工程地质与水文地质条件、上部结构类型、使用功能、荷载特征、施工技术条件与环境;应重视地方经验,因地制宜,注重概念设计,合理选择桩型、成桩工艺和承台形式,优化布桩,节约资源;应强化施工质量控制与管理。 1.0.4 在进行桩基设计、施工及验收时,除应符合本规范外,尚应符合国家现行有关标准、规范的规定。 2术语、符号 2.1 术语 2.1.1 桩基pile foundation

由设置于岩土中的桩和与桩顶连接的承台共同组成的基础或由柱与桩直接连接的单桩基础。 2.1.2 复合桩基composite pile foundation 由基桩和承台下地基土共同承担荷载的桩基础。 2.1.3 基桩foundation pile 桩基础中的单桩。 2.1.4 复合基桩composite foundation pile 单桩及其对应面积的承台下地基土组成的复合承载基桩。 2.1.5 减沉复合疏桩基础composite foundation with settlement-reducing piles 软土地基天然地基承载力基本满足要求的情况下,为减小沉降采用疏布摩擦型桩的复合桩基。 2.1.6 单桩竖向极限承载力ultimate vertical bearing capacity of a single pile 单桩在竖向荷载作用下到达破坏状态前或出现不适于继续承载的变形时所对应的最大荷载,它取决于土对桩的支承阻力和桩身承载力。

轴承支承刚度及齿轮啮合刚度计算

4.6设计参数的计算方法 在XXX 的动力学模型中涉及众多的设计参数:如尺寸参数、质量参数,刚度参数等。在本节中介绍其中的刚度参数的计算方法(轴承刚度和齿轮啮合综合刚度)。 1轴承刚度系数的计算方法 一个滚动轴承的径向支承刚度由下式计算 3 21δδδ++= F k 式中: k 一滚动轴承的径向刚度系数 F 一轴承的径向载荷 1δ一轴承的径向弹性位移 2δ一轴承外圈与轴承孔的接触变形 3δ一轴承内圈与轴径的接触变形 (1)轴承的径向弹性位移 轴承的径向弹性位移根据有无予紧按如下两式计算 予紧时: 01βδδ= 轴承中存在游隙时: 2 01g - =βδδ 式中: 0δ一游隙为零时轴承的径向弹性位移,其计算公式见表4一1 g 一轴承的游隙(有游隙时取正号,予紧时取负号) β一系数,根据相对间隙0δg 从图4一7中查出

系数 表4一10δ的计算公式 序号 轴承类型 径向弹性位移计算公式 1 单列深沟轴承 θδd Q 2 3 4 -010 37.4?= 2 向心推力球轴承 θ α δd Q 2 4 -0cos 1037.4?= 3 双列深沟球面球轴承 θ α δd Q 2 3 4 -0cos 1099.6?= 4 向心短圆柱滚子轴承 8.09 .05 -01069.7θ δd Q ?= 5 双列向心短圆柱滚子轴承 815 .0893 .000625.0d F =δ 6 滚道挡边在的上双列向心短圆 柱滚子轴承 8 .0897 .000625.0d F =δ 7 圆锥滚子轴承 8 .09 .05-0cos 1069.7a l Q αδ?= 滚动体上的载荷α cos 5iz F Q =

变刚度调平原理

高层建筑有相当比例的上部结构为刚度相对较弱、荷载不均的框剪、框筒结构,其基础采用桩筏、桩箱基础,建成后其沉降呈蝶形分布,桩顶反力呈马鞍形分布。这些工程的基础设计多数沿用传统理念,采用均匀布桩与厚筏(或箱形承台)。 这种传统理念可以概括为四点: 1、基桩的总承载力不小于总荷载,桩群形心与荷载重心重合或接近;即满足力和力矩的平衡。 2、桩的布置大体均匀,有的还主张在角部和边部适当加密;因为 实测桩顶反力角部最大,边部次之,中部最小; 3、沉降量和整体倾斜满足规范要求; 4、筏板厚度在满足抗冲切的前提下随建筑物层数和高度成正比增大,厚度达3-4m者鲜见,或为增加刚度而采用箱形承台; 常规设计计算方法只考虑静力平衡条件,而没有考虑上部结构、筏板、桩土的共同作用。而实际情况中,群桩效应将导致桩的支承刚度由外向内递减;对于框剪、框筒结构,荷载集度是内大外小,而其上部结构的刚度对变形的制约能力相对较弱。若采用传统设计方法,则碟形差异沉降较明显,易引起开裂,影响正常使用的要求。 而采用变刚度调平设计理论调整桩基布置,使得基底反力分布模式与上部结构的荷载分布一致,可减小筏板内力,实现差异沉降、承台(基础)内力和资源消耗的最小化。

二、传统设计理念的盲区 传统设计理念的盲区归纳起来有以下四个方面: 1、设计中过分追求高层建筑基础利用天然地基 将箱基或厚筏应用于荷载与结构刚度极度不均的超高层框筒结构 天然地基,由此导致基础的整体弯矩和挠曲变形过大,差异变形超标,甚至出现基础开裂。 2、桩筏基础中,忽视桩的选型应与结构形式、荷载大小相匹配的原则 将小承载力挤土桩用于大荷载高层建筑的情况,由此导致超规范密布大面积挤土桩,既不能有效减小差异沉降和承台内力,又极易引发成桩质量事故。 3、桩筏基础中,忽视合理利用复合桩基调整刚度分布、减小差异沉降的作用 由于荷载分布不均,布桩必然稀密不一,承台分担荷载作用在疏桩区不予利用,必然导致该部分支承刚度偏高,既不利于调平,又不利于节材。 4、桩筏设计中,对利用筏板刚度“调整荷载、桩反力分布及减小差异沉降”的期望值过高 筏板对调整荷载和桩反力、减小差异沉降可起到一定作用,但这是以高投入为代价,且效果不理想。 三、基本概念

大型储罐的基础设计及构造研究 丁园

大型储罐的基础设计及构造研究丁园 发表时间:2019-12-09T09:57:41.753Z 来源:《基层建设》2019年第25期作者:丁园 [导读] 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。 中国纺织科学研究院有限公司上海聚友化工有限公司北京 100025 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。与此同时,这种类型的储罐在实际应用过程中,其整体刚度比较低,同时具有一定柔性特征。储罐基础产生的不均匀沉降要求较高,如果基础有较大的不均匀沉降,就会直接影响到储罐的正常使用。本文对大型储罐的基础设计及构造进行研究。 关键词:大型储罐;基础设计;构造 1 大型储罐的基础设计形式 1.1 护坡式基础 当天然地基承载力特征值大于或等于基底平均压力、地基变形满足规范要求的允许值且场地不收限制时,可采用护坡式基础。护坡式基础是在储罐底面四周用素土或碎石沿着基础砌成护坡。其优点是工程投资少、施工方便;缺点是对调整地基不均匀沉降作用小效果差,且占地面积大。如果基础大量沉降后,周围护坡破裂,罐底各层填料往往在大于后流失,造成基底局部掏空,所以在这种背景下,护坡式基础在设计已经不常见。 1.2 外环墙式基础 外环墙式基础是将钢筋混凝土环墙离开储罐外壁一定距离,罐体坐落在由砂石土构成的基础上。其优点是受力状态较好,具有一定的稳定性,较环墙式基础省钢筋和水泥;缺点是调整不均匀沉降的能力较差,当罐壁下节点处的下沉量低于外环墙顶时易造成两者之间的凹陷。一般用于车间内部生产原料储罐,容积控制在1000m3以内。 1.3 环墙式基础 环墙式基础在设计中使用较多,系将储罐壁板直接安装在钢筋混凝土环墙上,大部分用与软和中软场地的浮顶罐及内浮顶罐。环墙式基础在实际应用过程中,其最明显的优点之一就是在平面抗弯的刚度程度上比较大,这样有利于调整不均匀沉降问题,减少罐壁的变形。罐体自身的荷载在某种程度上可以给地基传递相对较均匀的压力。与此同时,使用时可以调整中心和边缘的沉降,防止环墙内砂垫层或土的侧向变形或流散,整体的稳定性较好,抗震效果较理想,有利于为施工提供便利操作方式。减少罐底潮气对罐底板的腐蚀,并且有利于事故的处理。但是环墙基础在实际应用过程中,还存在一定的缺点。最明显的缺点问题之一就是环墙的竖向抗力刚度比环墙内填料相差较大,受力状态不均匀,导致罐壁和罐底的受力效果受到影响,达不到最理想的状态。除此之外,钢筋及水泥等材料消耗较大,在其中所需要投入的成本也比较高。 1.4 钢筋混凝土桩筏基础 在地基土相对比较软弱,地基处理有困难或不做处理时,宜采用钢筋混凝土桩筏基础,一般是由底部桩基、钢筋混凝土承台板及环墙组合而成的基础形式。桩筏基础承载力相对比较高,整体性也比较良好,具有非常良好的抵抗地基不均匀沉降的优势特征。由于储罐的直径比较大,承台要满足刚性基础的要求的情况下设计的较厚,桩基数量也较多,故其最大的缺点就是对钢筋及水泥等材料的整体消耗比较大,投资规模较大。 2 储罐基础地基处理方法 在不良土质或特殊地基上建造大型储罐时,如果对原有地基不做任何处理,则储罐的安全会经常出现各种问题。这时,必须采取措施改善地基土的力学性能,提高土的抗剪强度,改善土的压缩性能,改善饱和土的渗透性,改善砂土的动力特性等,使其在上部结构荷载作用下不发生破坏或出现过大的变形,保证储罐的正常使用。常用的地基处理方法有换填垫层法、充水预压法、强夯法和强夯置换法、振冲法、砂石桩法、水泥粉煤灰碎石桩法、水泥土搅拌法、绘图挤密桩法、钢筋混凝土桩复核地基法等。储罐地基处理方法的选定应根据储罐对地基的要求,结合地质勘查报告选定几种地基处理方案。对初步选出的方案分别从加固原理、适用范围、处理效果、工程进度、材料来源、设备条件、工程费用等进行反复综合研究对比,选择最合适的地基处理方法。方案确定后,还应根据现有条件进行相应的现场实验及施工,以检验设计参数和处理效果。当岩土工程条件较为复杂时,可由两种或多种地基处理措施组成的综合处理方法将会达到较好的地基处理效果。 3 储罐基础的构造及材料要求 3.1 沥青砂绝缘层 储罐基础顶面应设置沥青砂绝缘层。利用沥青砂绝缘层的根本目的就是为了实现对罐底腐蚀问题的提前预防和有效阻止。与此同时,通过这种基础设计模式在其中科学合理的利用,还可以使其下面的砂石土填料层稳固,尽可能减少透水性,避免出现严重的渗漏现象,避免罐底遭受到严重的腐蚀。除此之外,利用沥青砂绝缘层,有利于对罐底进行方便快捷的铺设和施工操作。沥青砂绝缘层所用的沥青材料,主要是根据储罐内储存介质的温度,按沥青的软化点来选用。当储罐内介质温度低于80℃时,宜采用60号甲、乙道路石油沥青,也可采用30号甲、乙建筑石油沥青;当储罐内介质温度等于或高于80℃时,宜采用30号甲、乙建筑石油沥青。沥青砂绝缘层的配合比一般为(质量比)7::9,即沥青7:中砂93(并掺一部分滑石粉),砂石在其中的整个含泥量不能够超过5%。当储罐内储存介质最高温度高于90℃时,罐基础表面应采取隔热措施。在施工中要注意的一点就是,在针对沥青或者是砂石进行搅拌的时候,应当尽可能将砂石进行加热处理,一般需要加热到100~150℃左右。另外,石油沥青也需要进行加热操作,一般需要加热到160℃~180℃,如果是在冬天的时候,加热温度还需要更高一些。在这一温度的基础上,需要立即将砂石和石油沥青进行拌合,保证拌合的均匀性,紧接着可以对其进行浇筑,提高使用率。 3.2 中粗砂垫层 沥青砂绝缘层下面应设置中粗砂垫层,砂垫层宜采用质地坚硬的中、粗砂,亦可采用最大粒径不超过20mm的砂石混合物,不宜采用细砂,不得采用粉砂和冰结砂。砂中不得含植物残体、垃圾等杂质,应级配良好。砂垫层的作用,主要是使压力分布均匀,调整和减少地基的不均匀沉降;当厚度不小于300mm时,可防止地下毛细管水的渗入,当底板开裂时,可作为漏油显示信号的通道。对于有的储罐基础因

桩基1-4章

1 总则 1.0.1为了在桩基设计与施工中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 1.0.2本规范适用于各类建筑(包括构筑物)桩基的设计、施工与验收。 1.0.3桩基的设计与施工,应综合考虑工程地质与水文地质条件、上部结构类型、使用功能、荷载特征、施工技术条件与环境;并应重视地方经验,因地制宜,注重概念设计,合理选择桩型、成桩工艺和承台形式,优化布桩,节约资源;强化施工质量控制与管理。 1.0.4在进行桩基设计与施工时,除应符合本规范外,尚应符合现行的有关标准的规定。

2 术语、符号 2.1 术语 2.1.1桩基piled foundation 由设置于岩土中的桩和与桩顶联结的承台共同组成的基础或由柱与桩直接联结的单桩基础。 2.1.2复合桩基composite piled foundation 由基桩和承台下地基土共同承担荷载的桩基础。 2.1.3基桩foundation pile 桩基础中的单桩。 2.1.4复合基桩composite foundation pile 单桩及其对应面积的承台下地基土组成的复合承载基桩。 2.1.5 减沉复合疏桩基础composite foundation with settlement-reducing piles 软土地基天然地基承载力基本满足要求的情况下,为减小沉降采用疏布摩擦型桩的复合桩基。 2.1.6单桩竖向极限承载力标准值ultimate vertical bearing capacity of a single pile 单桩在竖向荷载作用下到达破坏状态前或出现不适于继续承载的变形时所对应的最大荷载,它取决于土对桩的支承阻力和桩身承载力。 2.1.7极限侧阻力标准值ultimate shaft resistance 相应于桩顶作用极限荷载时,桩身侧表面所发生的岩土阻力。 2.1.8 极限端阻力标准值ultimate tip resistance 相应于桩顶作用极限荷载时,桩端所发生的岩土阻力。 2.1.9单桩竖向承载力特征值characteristic value of the vertical bearing capacity of a single pile 单桩竖向极限承载力标准值除以安全系数后的承载力值。 2.1.10变刚度调平设计optimized design of pile foundation stiffness to reduce differential settlement 考虑上部结构形式、荷载和地层分布以及相互作用效应,通过调整桩径、桩长、桩距等改变基桩支承刚度分布,以使建筑物沉降趋于均匀、承台内力降低的设计方法。 2.1.11承台效应系数pile cap coefficient 竖向荷载下,承台底地基土承载力的发挥率。 2.1.12负摩阻力negative skin friction ,negative shaft resistance 桩周土由于自重固结、湿陷、地面荷载作用等原因而产生大于基桩的沉降所引起的对桩表面的向下摩阻力。 2.1.13下拉荷载down drag 作用于单桩中性点以上的负摩阻力之和。 2.1.14土塞效应plugging effect 敞口空心桩沉桩过程中土体涌入管内形成的土塞,对桩端阻力的发挥程度的影响效应。 2.1.15灌注桩后注浆post grouting for cast-in-situ pile 灌注桩成桩后一定时间,通过预设于桩身内的注浆导管及与之相连的桩端、桩侧注浆阀注入水泥浆,使桩端、桩侧土体(包括沉渣和泥皮)得到加固,从而提高单桩承载力,减小沉降。 2.1.16 桩基等效沉降系数equivalent settlement coefficient for calculating settlement of piled

相关主题
文本预览
相关文档 最新文档