当前位置:文档之家› 静力学知识点

静力学知识点

静力学知识点
静力学知识点

一.力的概念

1.力的存在离不开两个物体:__________和__________。这两个物体________(一定、不一

定)相互接触.

2.力的作用效果是①_________________________ ;②____________________。

3.力的三要素 : ______、______、______。力是______(矢、标)量.

4.力的分类 : (1)按力的性质分为______、________、_________。

(2)按力的效果分为_________________________________。

注意:(a)效果不同的力,性质可以相同:例如,压力、支持力、拉力都是__;(b)性

质不同的力,效果可以相同:例如自由下落的物体,重力是使其加速运动的动力;用绳

拉着物体竖直上升,__是动力,重力是__(“动”或“阻”)力;被传送带运输到高

处的物体,摩擦力是__(“动”或“阻”)力.

5.平衡力: 两个平衡力作用在____个物体上,它们大小_____,方向______.合力为______。

物体在平衡力的作用下处于平衡状态,平衡状态包括______状态或____________状态。

6.作用力与反作用力: 它们作用在____个物体上,大小_______,方向_______,合力为

________。

二.重力

1.重力的产生:由于地球(星球)对物体的吸引而产生.其施力物体是

______.

2.大小:G=_____,测量工具:________。方向:____________。

3. 重心:物体所受重力的作用点叫物体的________,一个物体有

_______ 个重心; 重心________(一定,不一定)在物体上;对________、____________

的物体,其重心在几何中心.

不规则物体重心的确定方法 —— 悬挂法:薄板形物体的重心,可用悬挂法确定(如图

所示)

三.弹力

1.产生:弹力的存在须具备两个条件:______________________和

_______________________

2.大小:对弹簧: 胡克定律 f =________,其中k 是___________,单位:________,x 是

________,单位______.

3.方向:与接触面_________或沿绳子_________的方向.

四 摩擦力

1.产生条件:①两物体必须_________且发生___________②接触面_________③有相对运动

或___________

2.分类:________________,______________,_________________.

3.大小:静摩擦力根据____________________求出;滑动摩擦力由公式f =________求出,其

中μ叫________________,

其大小与__________有关,与_____________,_____________,___________等无关;F N 是

___________. 与重力没有必然的联系。

注意:(1)静摩擦力的大小随着运动趋势强弱变化而在0~F m (最大静摩擦力)之间变化.跟

相对运动趋势强弱程度有关,但跟接触面相互挤压力F N 无直接关系.

(2)最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它

们数值相等.

4.方向:根据摩擦力总是________物体的相对运动或相对运动趋势来判断

.

五.力的合成与分解

1.力的合成与分解: 求几个力的合力叫力的合成,求一个力的分力叫力的分解.

(1)运算定则:平行四边形定则、三角形定则

(2)分力和合力的关系:

①两个分力F

1、F

2

的合力范围:____________________. ②合力F可能比分力大,也可能

比分力小,还可能等于某个分力的大小.

(3)一个已知力的实际分力的确定方法:

①先根据力的实际作用效果确定两个实际分力的方向.

②再根据两个实际分力方向画出平行四边形.

③最后根据平行四边形定则求出两分力的大小和方向.

(4)根据平行四边形定则,将已知的一个力分解为两个力时,有确定解的情况只有两种:

①已知两个分力的方向;②已知一个分力的大小和方向。

(5)常见计算结论: 两个大小都为F的力的夹角为1200时,合力为______;

②两个大小都为F的力的夹角为900时,合力为_______; ③两个大小都为F的力的夹角为600时,合力为__________;

④当F

1 和F

2

垂直,F

1

= 3N,F

2

= 4N,则F

=______N; F

1

=210N,F

2

=280N,则F

=________N.

六:物体受力分析的基本方法

1.基本步骤

(1)确定研究对象,并将其隔离。

(2)根据周围与其相关联的物体对研究对象的作用,把所受重力、弹力、摩擦力按顺序进行分析。

在常见的几种力中,重力是因动力,而弹力、摩擦力是被动力,其中弹力的存在又是摩擦力存在的前提,所以分析受力时应按重力、弹力、摩擦力的顺序进行。

(3)逐一正确合理的画出每个作用力的示意图,并标上各力的符号。

2.物体受力分析的常用方法

(1)整体法和隔离法:将研究对象与周围物体分隔或将相对位置不变的物体系作为一个整体来分析。

分析两个以上的物体所组成的系统的受力情况时,若每个物体的运动状态都相同,可以先取整体研究,若分析物体间的相互作用时,需将物体隔离分析。

注意:区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。

(2)假设法:在未知某力是否存在时,可先对其作出存在或不存在的假设,然后就该力对物体的运动状态是否产生影响来判断该力是否存在。

常见的力的分解图:

七:用矢量三角形动态分析求极值问题

1.矢量三角形是平行四边行的一半,因此矢量三角形来源于平行四边形。

2.矢量三角形求极值时一定会出现直角三角形问题。

流体静力学基本方程

三、流体静力学基本方程式 1、方程的推导 设:敞口容器内盛有密度为ρ的静止流体,取任意一个垂直流体液柱,上下底面积 均为Am 2。 作用在上、下端面上并指向此两端面的压力 分别为 P 1和 P 2 。 该液柱在垂直方向上受到的作用力有: (1)作用在液柱上端面上的总压力P 1 P 1= p 1 A (N) ↓ (2)作用在液柱下端面上的总压力 P 2 P 2= p 2 A (N) ↑ (3)作用于整个液柱的重力G G =ρgA(Z 1-Z 2) (N) ↓ 由于液柱处于静止状态,在垂直方向上的三个作用力的合力为零,即 : p 1 A+ ρgA(Z 1 -Z 2) -–p 2 A = 0 令: h= (Z 1 -Z 2) 整理得: p 2 = p 1 + ρgh 若将液柱上端取在液面,并设液面上方的压强为 p 0 ; 则: p 0 = p 1 + ρgh 上式均称为流体静力学基本方程式,它表明了静止流体内部压力变化的规律。 即:静止流体内部某一点的压强等于作用在其上方的压强加上液柱的重力压强。 2、静力学基本方程的讨论: (1)在静止的液体中,液体任一点的压力与液体密度和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面上各点的压力均相等。 (3)当液体上方的压力有变化时,液体内部各点的压力也发生同样大小的变化。

(4) g h p p ρ+=12 或g p p h ρ12-= 压强差的也大小可利用一定高度的液体柱来表示。 (5)整理得:g g z p g z 2 21 1ρρ+=+ 也为静力学基本方程 (6)方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变化不大的情况。 3、静力学基本方程的应用 (1) 测量流体的压差或压力 ① U 管压差计 U 管压差计的结构如图。 对指示液的要求:指示液要与被测流体不互溶,不起 化学作用,且其密度指ρ应大于被测流体的密度ρ。 通常采用的指示液有:水、油、四氯化碳或汞等。 测压差:设流体作用在两支管口的压力为1p 和2p ,且1p >2p , A-B 截面为等压面 即:B A p p = 根据流体静力学基本方程式分别对U 管左侧和U 管右侧进行计算, 整理得: ()Rg p p ρρ-=-指21 讨论:(a )压差(21p p -)只与指示液的读数R 及指示液同被测流体的密度差有关。(b )若压差△p 一定时,(21p p -)越小,读数R 越大,误差较小。 (c )若被测流体为气体, 气体的密度比液体的密度小得多,即()指指ρρρ≈-, 上式可简化为: Rg p p 指ρ=-21

流体静力学实验报告

一、实验目的 1.掌握用液式测压计测量流体静压强的技能。 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解。 3.观察真空度(负压)的产生过程,进一步加深对真空度的理解。 4.测定油的相对密度。 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 本实验的装置如图1-1所示。 图1-1 流体静力学实验装置图 1. 测压管 ; 2. 带标尺的测压管 ; 3. 连通管 ; 4. 通气阀 ; 5. 加压打气球 ; 6. 真空测压管 ; 7. 截止阀 ; 8. U 型测压管 ; 9. 油柱 ; 10. 水柱 ;11. 减压放水阀 说明: (1)所有测压管液面标高均以标尺(测压管2)零读数为基准。 (2)仪器铭牌所注B ?,C ?,D ?系测点B ,C ,D 的标高。若同时取标尺零点作为静力学基本方程的基准,则B ?,C ?,D ?亦成为C z ,C z ,D z 。 (3) 本仪器中所有阀门旋柄均以顺管轴线为开。

三、实验原理 1.在重力作用下不可压缩流体静力学基本方程。 形式一: p z γ +=const (1-1-1a ) 形式二: P=P 。+γ (1-1-1b ) 式中 z---测点在基准面以上的位置高度; P —测点的静水压强(用相对压强表示,一下同); P 。--水箱中液面的表面压强; γ--液体的重度; h —测点的液体深度; 2.油密度测量原理。 当u 形管中水面与油水界面齐平(见图1-1-2),取油水界面为等压面时,有: P01=w γ=0γH (1-1-2) 另当U 形管中水面与油面平齐(见图1-1-3),取油水界面为等压面时,有: P02+W γH=0γH 即 P02=-w γh2=0γH-W γH (1-1-3) 图1-2 图1-3 四、实验要求 1.记录有关常数 实验装置编号No. 12 各测点的标尺读数为: B ?= 2.1 -210m ?; C ?= -2.9 -210m ?; D ?= -5.9 -210m ?; 基准面选在 测压管的0刻度线处 ; C z = -2.3 -210m ?; D z = -5.9 -210m ?; 2.分别求出各次测量时,A 、B 、C 、D 点的压强,并选择一基准验证同一

高中物理静力学之动态平衡

动态平衡分析 (一)共点力的平衡 1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一 点的力. 2.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动 的状态. 3.共点力作用下物体的平衡条件:合力为零,即=合F 0. 4.力的平衡:作用在物体上几个力的合力为零,这种情形叫做力 的平衡. (1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相 等、方向相反、作用在一条直线上,即二力平衡. (2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两 个力的合力一定与另一个力大小相等、方向相反、作用在一条直 线上. (3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜 用正交分解法处理,此时的平衡方程可写成:???=∑=∑00y x F F (二)物体的动态平衡问题 物体在几个力的共同作用下处于平衡状态,如果其中的某个力

(或某几个力)的大小或方向,发生变化时,物体受到的其它力也会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,我们就可以依据平衡条件,分析出物体受到的各力的变化情况。 分析方法: (1)矢量三角形法 ①如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个只有大小变化,方向不发生变化的情况。 ②如果物体在三个力作用下处于平衡状态,其中一个力的大小和方向发生变化时,物体受到的另外两个力中只有一个大小和方向保持不变,另一个力的大小和方向也会发生变化的情况下,考虑三角形的相似关系。 (三)例题与习题: 1.如图所示,小球用细绳系住放在倾角为 的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将: A.逐渐变大 B.逐渐变小 C.先增大后减小D.先减小后增大O A B C D θ

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

静力学分析报告

静力学分析报告 一、制作人员: 二、模型名称:桁架 三、创意来源: 四、模型视图: 五、模型简化

因为桁架本身由硬杆组成,所以简化结构 如下图所示,并求各点的受力情况。 假设桁架受到集中力G的影响 1以节点A为探究对象 m A F=0 F B Y?4?F?3=0 F B Y=0.75F F Y=0 F A Y+F B Y=0 F A Y=0.25F 2以节点B为探究对象 F12F13 B F B Y F Y=0 F13cos45°+F B Y=0 F13=?32 4 F F X=0 ?F13cos45°?F12=0 F12=?3 4 F

3以节点G为探究对象 F F10 G F11F13′ F Y=0 ?F13′cos45°?F?F11=0 F11=?0.25F F X=0 F13′cos45°?F10=0 F8=?0.75F 4以节点H为探究对象 F9F11′ F8 H F12′ F Y=0 F9cos45°+F11′=0 F9= 2 4 F F X=0 ?F9cos45°?F8+F12′=0 F8=0.5F 5以节点I为探究对象 F7 F6I F8′ F Y=0 F7=0

F X=0 ?F6+F8′=0 F6=0.5F 6以节点E为探究对象 F4E F10′ F5F7′F9′ F Y=0 F9′cos45°?F5cos45°=0 F5=2 F F X=0 ?F5cos45°+F9′cos45°?F4+F10′=0 F4=?0.25F 7以节点D为探究对象 F3F5′ F2 D F6′ F Y=0 F3+F5′cos45°=0 F3=1 4 F F X=0 F5′cos45°?F2+F6′=0 F4=0.25F 8以节点C为探究对象 C F4′

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

1静力学基本知识与结构计算简图

教案 专业:道路桥梁工程技术 课程:工程力学 教师:刘进朝 学期:2010-2011-1 教案首页 授课日期: 2010年 9 月 22 日授课班级:10211-10216

教学内容: 课题1 静力学基本知识与结构计算简图一、静力学基本概念

1.力的概念 ※定义:力是物体间相互的机械作用,这种作用使物体的运动状态发生改变和变形状态发生改变。 ※力的三要素:大小,方向,作用点 集中力:例汽车通过轮胎作用在桥面上的力。 2.力系的概念 定义——指作用在物体上的一群力。 根据力系中各力作用线的分布情况可将力系分为平面力系和空间力系两大类。 若两个力系分别作用于同一物体上时,其效应完全相同,则称这两个力系为等效力系。 用一个简单的等效力系(或一个力)代替一个复杂力系的过程称为力系的简化。 力系的简化是工程静力学的基本问题之一。 3.刚体的概念:指在力的作用下,大小和形状都不变的物体。 4.平衡的概念 平衡——指物体相对于惯性参考系保持静止或作匀速直线运动的状态。 二、静力学基本公理 公理1:二力平衡公理。 作用于刚体上的两个力,使刚体平衡的必要与充分条件是:这两个力大小相等,方向相反,作用线共线,作用于同一个物体上(如图所示)。 (a)(b) 注意:①对刚体来说,上面的条件是充要的②对变形体来说,上面的条件只是必要条件 例如,如图所示之绳索 二力构件(二力杆):在两个力的作用下保持平衡的构件。 例如,如图所示结构的直杆AB、曲杆AC就是二力杆。

(a)(b)(c) 公理2:加减平衡力系公理。 在作用于刚体的任意力系上,加上或减去任意平衡力系,并不改变原力系对刚体的作用效应。 加减平衡力系公理也只适用于刚体,而不能用于变形体。 推论1:力的可传性。 作用于刚体的力可沿其作用线移动而不致改变其对刚体的运动效应(既不改变移动效应,也不改变转动效应),如图所示。 因此,对刚体来说,力作用的三要素为:大小,方向,作用线 注意:(1)不能将力沿其作用线从作用刚体移到另一刚体。 (2)力的可传性原理只适用于刚体,不适用于变形体。 例如,如图(a)所示之直杆 (a)拉伸 (b)压缩 在考虑物体变形时,力失不得离开其作用点,是固定矢量。 公理3:力的平行四边形法则。 作用于物体上同一点的两个力可合成一个合力,此合力也作用于该点,合力的大小和方向由以原两力矢为邻边所构成的平行四边形的对角线来表示,如图(a)所示。 F R=F1+F2 力的平行四边形法则可以简化为三角形法则,如图(b)所示,

1.静力学基本概念

1.静力学基本概念 1.1力的概念 力是物体间相互机械作用。这种作用使物体的运动状态发生变化,同时使物体发生形变。前者称为力的运动效应;后者称为力的变形效应。 ?力的三要素 力对物体作用的效应,决定于力的大小、方向(包括方位和指向)、和作用点,这三个要素称为力的三要素。 ?力是一个矢量。(既有大小又有方向的量) ?力的单位:牛顿N、千牛KN ? 1.2等效力系 (1)力系作用在物体上力的集合,或作用在物体上若干个力的总称。 (2)等效力系作用于物体上的一个力系可用另一个力系代替,而不改变原力系对物体作用的外效应,以(F1,F2,...,F n )~(F1’,F2’,...,F m’)表示。 1.2 刚体的概念 任何物体在力的作用下,任意两点间均将产生相对运动,使其初始位置发生改变,称之为位移,从而导致物体发生变形。忽略物体变形时,将其抽象为刚体。 在静力学中以刚体为研究对象,在材料力学中则以变形体为研究对象。 1.3其它概念 静力学:是研究物体在力系作用下平衡规律的科学。 刚体静力学:研究刚体在力系作用下的平衡问题。 平衡:物体相对于地面保持静止或作匀速直线运动的状态。 平衡条件:要使物体处于平衡状态,作用于物体上的力系必须满足的条件。 平衡力系:作用于物体上正好使之保持平衡的力系。 1.4刚体静力学研究的基本问题 (1)受力分析-分析作用在物体上的各种力,弄清研究对象的受力情况。 (2)利用平衡条件求解未知力,以解决工程中的相关问题。 2.静力学公理 (1)二力平衡公理 (2)加减平衡力系公理 (3)力的平行四边形法则 (4)作用与反作用定律 (5)刚化公理 公理1 二力平衡公理 作用于刚体上的两个力,使刚体处于平衡状态的必要与充分条件是:这两个力大小相等、方向相反、作用在同一直线上(等值、反向、共线) 二力构件:只受两个力作用而处于平衡的物体。 公理2 加减平衡力系公理 在作用于刚体上的已知力系中,加上或减去任一平衡力系,并不改变原力系对刚体的效应。力的可传性原理: 作用于刚体上的力,可沿其作用线任意移动而不改变它对刚体的作用效应。 注意:力的可传性原理不适用于变形体 公理3 力的平行四边形法则 作用于物体上的两个力,其合力也作用在该点上,合力的大小和方向则由以这两个力为边所

基于ABAQUS和EXCEL的泡棉静态力学性能分析

龙源期刊网 https://www.doczj.com/doc/3010599306.html, 基于ABAQUS和EXCEL的泡棉静态力学性能分析 作者:周万里黄攀 来源:《科技风》2017年第09期 摘要:手机中大量应用泡棉作为缓冲材料保护关键器件,不同泡棉的缓冲效果完全不 同,对器件的保护作用大小也不同。通过泡棉的单轴压缩和回弹实验测试可以得到材料的位移-力曲线,但有限元软件ABAQUS中需要的材料参数不能直接在该软件中拟合得到。故基于EXCEL的VB模块构建新公式和使用规划求解功能拟合材料参数。在ABAQUS中建立有限元模型验证了用EXCEL拟合材料的准确性和该分析方法的正确性。 关键词:泡棉;有限元;ABAQUS;hyperfoam;Mullins软化效应;EXCEL;规划求解 泡棉因为具有良好的密封性和可压缩性,在手机中被大量应用根据用途可以分为导电泡棉、缓冲泡棉、双面胶泡棉和防尘防水泡棉等,根据应用的位置可以分为LCM泡棉、摄像头泡棉、音腔泡棉、受话器泡棉等。不同的用途和位置对泡棉的要求完全不同。国内文献对泡棉的研究主要在后期仿真应用上和没有考虑泡棉的应力软化效应,没有详细介绍如何从基础实验数据中获取有限元仿真所需要的参数再到仿真应用的过程。 本文首先使用高精度试验机对泡棉进行单轴压缩和回弹实验,获取位移-力曲线;然后转换为名义应变-名义应力曲线。利用EXCEL的VB模块构建新公式,再把名义应变-名义应力 曲线输入到EXCEL表格,并使用规划求解功能拟合曲线获取基于ABAQUS的hyperfoam本构模型和Mullins软化效应的材料参数;最后通过建立有限元模型验证该本构模型和拟合方法的正确性。 1 压缩和回弹实验 使用高精度试验机对泡棉进行压缩和回弹实验。因为该泡棉太薄只有0.3mm的厚度,为 减小误差把4层泡棉叠加在一起进行测试。具体样品尺寸为25mmX25mmX0.3mmX4。 2 记录压缩和回弹数据 压缩试验机记录力的单位为g,位移为mm。 3 处理数据 因为前面有一段行程为空压,需要处理数据,减掉这部分位移并减少数据点。处理后的数据见下图:

重点高中物理竞赛(静力学)

重点高中物理竞赛(静力学)

————————————————————————————————作者:————————————————————————————————日期: 2

3 力、物体的平衡 补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。 一、力学中常见的三种力 1.重力、重心 ①重心的定义:Λ ΛΛ Λ++++= g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。 ②重心与质心不一定重合。如很长的、竖直放置的杆,重心和质心不重合。 如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。 以重心为转轴,两边的重力力矩平衡(不是重力相等): (0.5-x ) 2G =(x +0.25)2 G ,得x =0.125m (离B 点). 或以A 点为转轴:0.5?2G +(1+0.5)2 G =Gx ', 得x '=0.875m ,离B 点x =1-x '=0.125m. 2.巴普斯定理: ①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积剩平面薄板重心通过和路程。 如质量分布均匀的半圆盘的质心离圆心的距离为x , 绕直径旋转一周,2321234R x R πππ?=,得π 34R x = ②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度剩曲线的重心通过路程。 如质量分布均匀的半圆形金属丝的质心离圆心的距离为x , 绕直径旋转一周,R x R πππ?=242,得πR x 2= 1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。 (2)如图b 所示是一个均匀三角形割去一个小三角形 AB 'C ',而B 'C '//BC ,且?AB 'C '的面积为原三角形面积的 4 1 ,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。 [答案:(1) 离圆心的距离6 R ;(2)离底边中点的距离92L ] 解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x . 有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6 R x ==5cm.

人教版高中物理必修一难题分析--静力学

高中物理学习材料 金戈铁骑整理制作 难题分析--静力学 1.如图所示,a 、b 两个质量相同的球用线连接,a 球用线挂在天花板上,b 球放在光滑斜面上,系统保持静止,以下图示哪个是正确的 ( B ) 2.L 型木板P (上表面光滑)放在固定斜面上,轻质弹簧一 端固定在木板上,另一端与置于木板上表面的滑块Q 相连, 如图所示。若P 、Q 一起沿斜面匀速下滑,不计空气阻力。则 木板P 的受力个数为(c) A . 3 B .4 C .5 D .6 2、如图所示,在水平力作用下,木块A 、B 保持静止。若木块A 与B 的接触面是水平的,且F ≠0。则关于木块B 的受力个数可能是c A . 3 个或4个 B . 3 个或5 个 C . 4 个或5 个 D . 4 个或6 个 3、如图所示,在倾角为a 的传送带上有质量均为、的三个木块1、2,3,中问均用原长为L,劲度系数为k 的轻弹簧连接起来,木块 与传送带间的动摩擦因数均为拜,其中木块1被与传送带平行 的细线拉住,传送带按图示方向匀速运行,三个木块处于平衡状态.下列结论正确的是:b A.2,3两木块之问的距离等于 A B C D

B.2,3两木块之问的距离等于 C. 1,2两木块之间的距离等于2,3两木块之间的距离 D.如果传送带突然加速,相邻两木块之间的距离都将增大 4、如图,在水平板的左端有一固定挡板,挡板上连接一轻质弹簧。紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度。已知滑块与板的动摩擦因素及最大静摩擦因素均为3/3。现将板的右端缓慢抬起(板与水平面的夹角为θ),直到板竖直,此过程中弹簧弹力的大小F 随夹角θ的变化关系可能是( c ) 3、如图所示,置于水平地面的三脚架上固定着一质量为m 的照相机,三脚 架的三根轻质支架等长,与竖直方向均成30?角,则每根支架中承受的压力 大小为(D ) (A )1 3mg (B )23 mg (C )36mg (D )239mg 4 如图,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l 。现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加

瓦楞结构材料瓦楞方向静力学性能的研究

瓦楞结构材料瓦楞方向静力学性能的研究瓦楞结构材料,因其无污染、可再生、质量轻、刚度好、缓冲吸能、易加工成型、可回收且成本低廉,在造船、汽车、建筑、航空航天、铁路运输和包装等行业有着广泛的应用。目前对瓦楞结构材料的研究主要集中在平压方向的力学性能上,而在实际应用中瓦楞结构材料常在其瓦楞方向上承载。因此研究瓦楞结构材料瓦楞方向的力学性能,对于促进其应用具有十分重要的意义。瓦楞结构材料是由瓦楞芯材和面材复合而成。根据瓦楞形状不同,瓦楞可分为U、V和UV形。瓦楞楞型有A、C、B和E型。通过静态拉伸试验对瓦楞原纸的物理性能进行了测定,得到相关物理参数,为有限元模拟提供基材的力学参数。对瓦楞结构材料进行静态压缩试验,验证有限元模型的可靠性。建立不同种类的瓦楞结构材料的有限元静力学分析模型,并使用试验结果验证模型的可靠性。基于此,通过能量效率法分别研究不同楞型和楞形瓦楞结构材料的力学性能,深入分析它们对瓦楞结构材料瓦楞方向静力学性能的影响。不同楞型、楞形和壁厚的瓦楞结构材料,瓦楞方向的变形模式都是呈现自上而下的折曲变形,应力应变曲线形态都是由弹性、屈服、平台和密实化四个阶段组成,能量效率曲线都是呈现先增大后减小的变化趋势。对于任一楞型的瓦楞结构材料,瓦楞方向的初始峰应力、平均抗压强度、最大能量吸收效率、密实化单位体积能量吸收和密实化比能量吸收随着壁厚的增大而增大。对于任一壁厚的瓦楞结构材料,A、C、B和E楞瓦楞的初始峰应力、平均抗压强度、密实化单位体积能量吸收和密实化比能量吸收依次增大。对于

U、V和UV任一楞形的瓦楞结构材料,其瓦楞方向的初始峰应力、平均抗压强度、最大能量吸收效率、密实化单位体积能量吸收和密实化比能量吸收随着壁厚的增大而增大。它们之间的相互关系,可拟合为一定的关系曲线,基于计算结果给出了相关经验公式。对于任一壁厚的瓦楞结构材料,U、V和UV形瓦楞的初始峰应力、平均抗压强度、密实化单位体积能量吸收和密实化比能量吸收总是呈现出V形瓦楞 最小,U形瓦楞最大,UV形瓦楞介于两者之间的规律。综上所述,楞型、楞形和壁厚对瓦楞结构材料瓦楞方向的静力学性能,影响较大,相关 规律可以为瓦楞结构材料在缓冲包装设计方面提供指导性参考与帮助。

流体静力学基本方程式

第一节流体静力学基本方程式 流体静力学是研究流体在外力作用下达到平衡的规律。在工程实际中,流体的平衡规律 应用很广,如流体在设备或管道内压强的变化与测量、液体在贮罐内液位的测量、设备的液封等均以这一规律为依据。 1-1-1流体的密度 一、密度 单位体积流体所具有的质量,称为流体的密度,其表达式为: m(1-1) V 式中p -------------------流体的密度,kg/m3; m ---- 流体的质量,kg; V——流体的体积,m3。 不同的流体密度不同。对于一定的流体,密度是压力P和温度T的函数。液体的密度 随压力和温度变化很小,在研究流体的流动时,若压力和温度变化不大,可以认为液体的密度为常数。密度为常数的流体称为不可压缩流体。 流体的密度一般可在物理化学手册或有关资料中查得,本教材附录中也列出某些常见气 体和液体的密度值,可供查用。 二、气体的密度 气体是可压缩的流体,其密度随压强和温度而变化。因此气体的密度必须标明其状态, 从手册中查得的气体密度往往是某一指定条件下的数值,这就涉及到如何将查得的密度换算 为操作条件下的密度。但是在压强和温度变化很小的情况下,也可以将气体当作不可压缩流体来处理。 对于一定质量的理想气体,其体积、压强和温度之间的变化关系为 pV p'V' T T' 将密度的定义式代入并整理得 '112 (1-2) 式中p——气体的密度压强,Pa; V ----- 气体的体积,m3; T——气体的绝对温度,K; 上标“’”表示手册中指定的条件。 一般当压强不太高,温度不太低时,可近似按下式来计算密度。 pM (1-3a) RT 或M T o p T°p 22.4 Tp00Tp o

闸式剪板机力学性能分析与优化

闸式剪板机力学性能分析与优化* 王 勇1,朱世凡1,陈 胜1,王 奇1,于 珺2,陈达兵2 (1.合肥工业大学机械工程学院,安徽合肥230009;2.马鞍山市中亚机床制造有限公司,安徽马鞍山243131) 摘 要:剪板机结构力学性能对剪切精度具有重要影响三以6×3200型数控闸式剪板机为对象,基于数值模拟方法对上刀架进行了静力学分析和瞬态动力学分析,得到了剪切过程中的最大等效应力与最大变形;对机架进行了模态分析,给出了剪板机系统可能发生共振的固有频率和相应振型;基于分析结果对闸式剪板机结构进行了优化三 关键词:闸式剪板机 静力学分析 动力学分析 模态分析 优化设计 中图分类号:TP13 文献标识码:A 文章编号:1002-6886(2019)02-0001-04 Analysis and optimization of mechanical properties of braking-type plate shearing machine WANG Yong,ZHU Shifan,CHEN Sheng,WANG Qi,YU Jun,CHEN Dabing Abstract:The mechanical properties of shearing machine have important influence on the shearing accuracy.Based on the numerical simulation method,the static analysis and transient dynamic analysis of the upper tool holder are carried out for the6×3200numerical control gate shear machine.The maximum equivalent stress and maximum deformation in the shearing process are obtained.The modal analysis of the frame is carried out to obtain the natural frequency and corresponding vibra?tion mode of the shearing machine.Based on the analysis results,the structure of the brake shearing machine is optimized. Keywords:braking-type plate shearing machine,statics analysis,dynamic analysis,modal analysis,optimization design 0 引言 与摆式剪板机相比,闸式剪板机从结构上避免了游隙的存在并可调节剪切角,具有更高的效率二精度和可靠性三但闸式剪板机在剪切宽厚板或高强度薄板时,仍存在机床变形影响剪切精度等问题三现有文献多研究剪切参数对剪切精度的影响[1]二剪板机组控制系统设计与自动化改造[2-3]或者以有限的 离散点模拟剪切过程[4],有关闸式剪板机的力学性能分析与结构优化的研究目前尚少见三本文通过机床的静动态特性分析,模拟剪板机剪切过程,获得连续的剪切数据,并给出优化方案三 1 静力学分析 以一款6×3200型数控闸式剪板机为例,其结构模型如图1所示三工作时,滚柱丝杠驱动的后挡料装置调节剪切长度,压料油缸将被剪板料压紧,设置刀刃间隙和剪切角等剪切参数后,两端的液压缸驱动上下刀刃相对运动完成板料的剪切三 仿真分析时,忽略过渡圆角二螺纹孔等[5],将简化的三维模型导入到有限元分析软件中,上刀架两侧面作固定约束,设置绑定接触模拟上刀架零部件的焊接和螺纹固定[6]三 图1 6×3200闸式剪板机结构模型 根据诺沙里公式[7]: P=0.6σbδs h2tanα1+ z tanα 0.6δs+ 1 1+10δsσ b y2 ? è ? ? ? ? ÷ ÷ x (1) 四1四

高中物理竞赛(静力学) (1)

第一讲:力、物体的平衡 补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。 一、力学中常见的三种力 1.重力、重心 重心的定义:Λ ΛΛΛ++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。 问题:半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。 2.弹力、弹簧的弹力(F =kx ,或F =-kx ) (1)两弹簧串联总伸长x ,F =? 由x 1+x 2=x ,k 1x 1=k 2x 2,得2 112k k x k x +=,所以kx k k x k k x k F =+===212122. (2)并联时F =(k 1+k 2)x . (3)把劲度系数为k 的弹簧均分为10段,每段劲度系数k '=?(10k ) 1. 一个重为G 的小环,套在竖直放置的半径为R 的光滑大圆上。一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,其上端固定在 大圆环最高点,下端与小环相接,不考虑一切摩擦,小环静止时弹簧与竖直方向的夹角为: . (答案:G kR kL 22cos 1--) 3.摩擦力 (1)摩擦力的方向: ①静摩擦力的方向:跟运动状态与外力有关。 ②滑动摩擦力的方向:跟相对运动方向相反。 2. 如图所示,在倾角θ=300的粗糙斜面上放一物体,物体的重力为G ,现用与斜面底边平行的水平作用力F (F =G /2)推物体,物体恰好在 斜面上作匀速直线运动,则物体与斜面的动摩擦因数为 . (答案: 3 6) (2)摩擦角:f 和N 的合力叫全反力,全反力的方向跟弹力的方向的最大夹角(f 达到最大)叫摩擦角,摩擦角?=tan -1f /N =tan -1μ。摩 擦角与摩擦力无关,对一定的接触面,?是一定的。 水平地面上有一质量为m 的物体,受斜向上的拉力F 作用而匀速移动,物体与地面间的动摩擦因数为μ,则为使拉力F 最小,F 与水平地面间的夹角多大?F 的最小值为多少? 二、物体的平衡 1.三力平衡特点 (1)任意两个的合力与第三个力是一对平衡力 (2)三力汇交原理:互不平行的三个力处于平衡,这三个力的作用线必交于一点。 ①确定墙壁或天花板对杆的弹力方向? ②若墙壁与杆间动摩擦因数为μ,物体只能挂在什么范围? 3. 如图所示,质量为M 的杆AB 静止在光滑的半球形容器中,设杆与水平方向的夹角为α.则容器面对杆A 点的作用力F 为多大? 2.力矩和力矩平衡:M =FL

静力学的基本概念

第一章静力学的基本概念 第一节力和平衡的概念 一、力的概念 力的运动效应和变形效应 1、力的定义:力是物体间的相互机械作用,这种作用使物体的运动状态或形状发生改变。 物体间的相互机械作用可分为两类:一类是物体间的直接接触的相互作用,另外一类是物和物体间的相互作用。 力的两种作用效应为: (1)外效应,也称为运动效应——使物体的运动状态发生改变; (2)内效应,也称为变形效应——使物体的形状发生变化。 静力学研究物体的外效应。 2、力的三个要素:力的大小、方向和作用点。 力的大小反映物体之间相互机械作用的强度,在国际单位制(SI)中,力的单位是牛(N);在工程单位制中,力的单位是千克力(kgf)。两种单位制之间力的换算关系为:1kgf=9.8N。 力的作用线:[力的方向是指静止物体在该力作用下可能产生的运动(或运动趋势)的方向。]沿该方向画出的直线。力的方向包含力的作用线在空间的方位和指向。 二、刚体和平衡的概念 刚体:在受力作用后而不产生变形的物体称为,刚体是对实际物体经过科学的抽象和简化而得到的一种理想模型。而当变形在所研究的问题中成为主要因素时(如在材料力学中研究变形杆件),一般就不能再把物体看作是刚体了。 平衡:指物体相对于地球保持静止或作匀速直线运动的状态。显然,平衡是机械运动的特殊形态,因为静止是暂时的、相对的,而运动才是永衡的、绝对的。 三、力系、等效力系、平衡力系 力系:作用在物体上的一组力。按照力系中各力作用线分布的不同形式, 力系可分为: (1)汇交力系力系中各力作用线汇交于一点; (2)力偶系力系中各力可以组成若干力偶或力系由若干力偶组成; (3)平行力系力系中各力作用线相互平行; (4)一般力系力系中各力作用线既不完全交于一点,也不完全相互平行。 按照各力作用线是否位于同一平面内,上述力系各自又可以分为平面力系和 空间力系两大类,如平面汇交力系、空间一般力系等等。 等效力系:两个力系对物体的作用效应相同,则称这两个力系互为等效力系。当一个力与一个力系等效时,则称该力为力系的合力;而该力系中的每一个力称为其合力的分力。把力系中的各个分力代换成合力的过程,称为力系的合成;反过来,把合力代换成若干分力的过程,称为力的分解。 平衡力系:若刚体在某力系作用下保持平衡。在平衡力系中,各力相互平衡,或者说,诸力对刚体产生的运动效应相互抵消。可见,平衡力系是对刚体作用效应等于零的力系。 第二节静力学基本公理 静力学公理是人们从实践中总结得出的最基本的力学规律,这些规律的正确性已为实

张力腿平台的整体设计及拟静力性能分析

第38卷 第5期2009年10月 船海工程SH IP &OCEA N ENG IN EERI NG V ol.38 N o.5 O ct.2009 收稿日期:2009-02-25修回日期:2009-04-30 基金项目:国家自然科学基金(50538050);国家863 计划(2006A A09A 103,2006A A09A 104)。 作者简介:闫功伟(1982-),男,博士生。研究方向:深水海洋平台的动力响应。E -mail:yango ng wei_hit@qq.co m DOI:10.3963/j.issn.1671-7953.2009.05.034 张力腿平台的整体设计及拟静力性能分析 闫功伟1 ,欧进萍 1,2 (1.哈尔滨工业大学土木工程学院,哈尔滨150090;2.大连理工大学土木水利学院,辽宁大连116024)摘 要:结合南海海域条件对传统式张力腿平台进行整体设计,计算平台所受各种环境荷载的大小,并采用拟静力分析法分析此平台的非线性运动响应,考虑平台水平漂移和下沉的非线性关系以及张力腿预张力、横截面面积、就位长度和立柱横截面面积等参数对平台运动响应的影响。 关键词:张力腿平台;整体设计;拟静力分析;非线性运动响应 中图分类号:U 674.38;T E952 文献标志码:A 文章编号:1671-7953(2009)05-0142-04 张力腿平台(tension leg platform,T LP),是一种垂直系泊的顺应式平台,通过数条张力腿与海底相接,具有半固定、半顺应的运动特征。它可以分为三部分:平台本体、张力腿系统和基础部分。平台本体的主要运动形式[1]有横荡、纵荡、垂荡、横摇、纵摇、首摇。整个结构的频率跨越海浪的一阶频率谱两端,从而避免了结构和海浪能量集中的频率发生共振,使平台结构受力合理,动力性能良好。 TLP 的结构形式发展倾向于多元化、小型化,以适应于不同油藏条件及边际油田的开发。按平台本体形式[2]不同可以分为传统式张力腿平台(CT LP)、海星式张力腿平台(seastar TLP)、迷你式张力腿平台(M OSES T LP)和延伸式张力腿平台(ETLP)。T LP 示意见图1、2 。 结合我国南海海域海况条件,开展了CT LP 平台的整体方案设计。 1 T LP 的整体设计 TLP 平台的整体设计[3] 需要做以下几方面的工作:1根据平台的功能要求,确定出比较合理的平台总体尺度;o规划设备位置,均衡平台中心;?进行张力腿的张力估算;?确定出设计能力界限。 平台总体规划流程见图3,中间框内4 项工 图3 TLP 总体设计规划流程 作是一个小循环,需要反复调整以达到设计要求。1.1 TLP 环境荷载的确定 风、浪、流等海洋环境参数选用文献[4]提供数据。考虑两种工况:工况1,1年一遇环境条件;工况2,100年一遇环境条件。 1)平台风荷载计算。作用于平台上体各部分的风力F 应按下式计算: F 风=C h C s S p (1) 式中:p )))风压,kPa ; S )))平台在正浮或倾斜状态时受风构件 的正投影面积,m 2; C h )))受风构件的高度系数,其值可根据 构件高度h(构件形心到设计水面的垂直距离)由规范查表确定; 142

流体静力学实验报告完整版

流体静力学实验报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

中国石油大学(华东)现代远程教育 工程流体力学实验报告学生姓名: 学号: 年级专业层次:16春网络春高起专 学习中心:山东济南明仁学习中心 提交时间:2016年5月30日

1.在重力作用下不可压缩流体静力学基本方程 形式之一:(1-1a) 形式之二:P=P0+γh(1-1b) 式中 Z——被测点在基准面以上的位置高度; P——被测点的静水压强,用相对压强表示,以下同; P0——水箱中液面的表面压强; ?γ ——液体重度; ?h——被测点的液体深度。 2.油密度测量原理 当U型管中水面与油水界面齐平(图1-2),取其顶面为等压面,有P01=γw h1=γ0HP01(1-2)另当U型管中水面和油面齐平(图1-3),取其油水界面为等压面,则有P02+γw H=γ0H 即P02=-γw h2=γ0H-γw H(1-3) 由(1-2)、(1-3)两式联解可得: ?代入式(1-2)得油的相对密度 ?(1-4) 据此可用仪器(不用另外尺)直接测得。 ?流型判别方法(奥齐思泽斯基方法):

本实验的装置如图1-1所示。 图1-1 流体静力学实验装置图 1.测压管; 2.带标尺的测压管; 3.连通管; 4.真空测压管;型测压管; 6.通气阀; 7.加压打气球; 8.截止阀; 9.油柱; 10.水柱; 11.减压放水阀 说明 1.所有测管液面标高均以标尺(测压管2)零读数为基准; 2.仪器铭牌所注、、系测点B、C、D标高;若同时取标尺零点作为静力学基本方程的基准, 则、、亦为、、; 3.本仪器中所有阀门旋柄顺管轴线为开。 四、实验步骤 1.搞清仪器组成及其用法。包括: (1)各阀门的开关; (2)加压方法:关闭所有阀门(包括截止阀),然后用打气球充气; (3)减压方法:开启筒底阀11放水; (4)检查仪器是否密封 加压后检查测管l、2、5液面高程是否恒定。若下降,表明漏气,应查明原因并加以处理。 2.记录仪器编号、各常数。 3.实验操作,记录并处理实验数据,见表1-1和表1-2。 4.量测点静压强。 (1)打开通气阀6(此时),记录水箱液面标高和测管2液面标高(此时);(

相关主题
文本预览
相关文档 最新文档