当前位置:文档之家› (完整版)轨迹方程练习题

(完整版)轨迹方程练习题

(完整版)轨迹方程练习题
(完整版)轨迹方程练习题

轨迹方程练习题

1.已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2

x PB PA =?,则点P 的轨迹为( )

A .圆

B .椭圆

C .双曲线

D .抛物线 2.P 是椭圆5

92

2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为: ( )

A 、159422=+y x

B 、154922=+y x

C 、12092

2=+y x D 、5

3622y x +=1 3.. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )

A.圆

B.椭圆

C.双曲线的一支

D.抛物线

4.. 设A 1、A 2是椭圆4

92

2y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( ) A.14922=+y x B.14922=+x y C.14922=-y x D.14

92

2=-x y 5.已知椭圆的焦点是1F 、2F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是 ( ),如果M 是线段1F P 的中点,则动点M 的轨迹是( ).

(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线

6.一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是: A :抛物线B :圆 C :椭圆 D :双曲线一支

7.△ABC 中,A 为动点,B 、C 为定点,B (-

2a ,0),C (2

a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.

8.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程是_______.

9.已知点F 为抛物线22y x =的焦点,P 在抛物线上运动,则线段PF 的中点轨迹方程是 .

10.设A ,B 分别是直线y =和y =上的两个动点,并且||AB u u u r ,动点P 满足OP OA OB =+u u u r u u u r u u u r .记动点P 的轨迹为C ,求轨迹C 的方程.

11.已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.

12 如图,从双曲线1:22=-y x C 上一点Q 引直线 2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.

13.已知椭圆1C

的中心在坐标原点,一个焦点为,过点F 且垂直长轴的弦长为1,

(1) 求椭圆1C 的方程;

(2) 过椭圆1C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON =+u u u r u u u u r u u u r

求动点Q 的轨迹方程,并说明此轨迹是什么曲线.

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

课题:与圆有关的轨迹方程

课题:与圆有关的轨迹方程 北京市第八十中学 王伟 一、教学时间:10.27 二、教学目标: 1、掌握求曲线的方程的一些常见方法; 2、建立数形结合思想,培养学生运用解析几何的基本思想方法; 3、培养学生的创新意识, 提高学生的分析问题、解决问题的能力; 三、教学重难点: 重点:求与圆有关的轨迹方程的方法; 难点:建立动点坐标之间的等量关系; 四、教学用具:计算机、投影仪、圆规、三角板; 五、教学过程: (一)复习提问导入新课: 1什么叫曲线的方程、方程的曲线? 2求曲线的方程的步骤是什么? 学生回答 教师点评:明确解析几何的基本思想方法是在坐标系的基础上,用坐标表示点,用方程表示曲线,通过方程的特征间接地来研究曲线的性质。其主要问题是1、根据已知条件求曲线的方程,2、通过方程研究平面曲线的性质。 (二)新课: 今天我们一起来研究与圆有关的轨迹方程; 例1已知定点A (6,0),点B 是圆 2+y x 求点P 的轨迹方程。 解法一:作PQ ∥OB 交x 轴于点Q , ∵P 为AB 中点,∴PQ 为△OAB 的中位线 ∴Q(3,0),|PQ|= OB 21 ∴|PQ|=2 3,由圆的定义知,P 在以Q (3,0)为圆心,半径r=|PQ|=23的圆上,∴点P 的轨迹方程是:49)3(22=+-y x ; 1、解法一由学生探讨,寻求解答,展示思维过程; 2、教师点评,总结解法一:定义法; 用计算机演示动点P 的轨迹图形,学生观察运动变化规律。 教师提问:例1的解答还有其他方法吗? 学生观察分析:动点P 的轨迹依赖圆上点B 的变化;

解法二:设P ),(),,(11y x B y x ,由中点坐标公式得: ?? ???+=+=202611y y x x ∴???=-=y y x x 26211∵B ),(11y x 在圆922=+y x 上,∴92121=+y x ∴9)2()62(22=+-y x ∴4 9)3(22=+-y x 教师总结解法二:坐标转移法,并把例1进行的拓展: 变化A 点的位置探求点P 的轨迹方程(1) A 在圆上 (2)A 在圆内 变化P 点位置探求点P 的位置关系(1)P 分AB 的比为2:1 (2)P 在的延长线上,使BP AB = 学生回答在上述四种情况中如何解答? 例2 自圆外一点A (6,0)引圆922=+y x 的割线ABC ,求弦BC 的中点P 的轨迹方程。 定义法 解法一:∵OP ⊥AP,取OA 中点M 则M(3,0),|PM|=3, 由圆的定义得P 点轨迹方程为0622=-+x y x 几何法 1 解法二:设P ),(y x ,连OP ,则OP ⊥BC 14 ,-=-?⊥x y x y k k BC OP 即,即0422=-+x y x ,当0=x 时P 点坐标为(0,0)是方程的解,∴BC 中点P 的轨迹方程为0422=-+x y x (在圆的内部分) 几何法2 解法三 :设P ),(y x ,连OP ,=),(y x ,=),6(y x --,∵⊥, ∴·=0,0)()6(=-+-y y x x ,0622=-+x y x (在圆的内部分) 几何法2 解法四 :设P ),(y x ,连OP ,OP =),(y x ,PA =),6(y x --,∵OP ⊥PA , ∴OP ·=0,0)()6(=-+-y y x x ,0622=-+x y x (在圆的内部分) 坐标转移法 解法五:设 ),,(),,(2211y x C y x B ),(y x P 则 4212 1=+y x …..①

第四十讲曲线和方程(轨迹问题)(文)

名师作业练全能 第四十讲 曲线和方程(轨迹问题)(文) 班级 __________ 姓名____________ 考号 ____________ 日期 ___________ 得分____________ 括号内.) 1. 设线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,且|AB|= 5, oM = |O )A +-5OB , 则点M 的轨迹方程为 2 2 x y , A — + ——=1 9 + 4 2 2 C z + 乞=1 C. 25+ 9 答案:A 2. 方程 x (x? + — 4) = 0 与 x + (x? + y — 4)2 = 0 表示的曲线是( ) A .都表示一条直线与一个圆 B .前者是两个点,后者是一条直线和一个圆 C .都表示两个点 D .前者是一条直线和一个圆,后者是两个点 解析:x(x 2 + y 2— 4)= 0? x = 0 或 x 2 + y 2= 4; x 2 + (x 2 + y 2 — 4)2= 0? x = 0 且 x 2 + y 2 — 4 = 0. 答案:D 3. 设动点P 在直线x = 1上,O 为坐标原点,以 0P 为直角边、点 0为直角顶点作等 腰Rt △ OPQ ,则动点 Q 的轨迹是( ) 2 2 r y X ’ B.勺 + = 1 9 4 2 2 D .2I +討 i 解析: 如图,设 M(x 、 (x , y)= |(X O ,O) +1(0, 3 x = |x o y o ),则 2 y =|y o y o =fy 由 |AB|= 5,得 2 !|x/+ gy)= 52 化简得;+ x o =1

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

数学百大经典例题-曲线和方程

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.

与圆有关的轨迹方程

求与圆有关的轨迹方程 [概念与规律]求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤是:设动点M(x,y),已知曲线上的点为N (x o, y o), 求出用x,y表示x o,y o的关系式,将(x o, y o)代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4,o ),点B是圆x2+y2=4上的动点,点P分AB的比为2:1,求点P的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP则OPL BC 』-=一止 当x^0 时,k op ■ k AP=—1,即TT x—4 即x2+ y2—4x = O.① 当x= O时,P点坐标(0,0)是方程①的解, BC中点P的轨迹方程为x2+ y2—4x= O(在已知圆内的部分). 方法二:(定义法) 由方法一知OPtAP,取OA中点M 则M2,0), |PM =2 I OA = 2, 由圆的定义知,P的轨迹方程是(x —2)2+ y2= 4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2, 0)和圆C: x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数 (0),求动点M的轨迹方程,并说明它表示什么曲线。 设直线MN切圆于N,则动点M组成的集合是:P={M||MN|= J'|MQ|} T圆的半径|ON|=1,二|MN|2=|MO|2-|ON|2=|MO|2-1 , 设点M的坐标为(x, y),则j 整理得(x-4)2+y2=7 . ???动点M的轨迹方程是(x-4 )2+y2=7 . 它表示圆,该圆圆心的坐标为(4 , 0),半径为越 例4 如图,已知两条直线11:2x-3y+2=0 , I2: 3x-2y+3=0,有一动圆(圆心和半径都在变化)与丨1,丨2都相交, 并且I 1与I 2被截在圆内的两条线段的长度分别是26和24,求圆心M的轨迹方程。 设动圆的圆心为M(x,y),半径为r,点M到直线1* 2的距离分别为d1和dz 由弦心距、半径、半弦长间的关系得,

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知 识推出等量关系,求方程时可用直接法。 例1长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB 中点P的轨迹方程。 /解:设点P的坐标为(x, y),\ 则A(2x,0),B(0,2y),由|AB|=2a 得\、(2x 0)2(0 2y)2=2a 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2动点P到直线x+4=0的距离减去它到M (2, 0)的距离之 差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M (2,0)的距离等于这点到直 线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则/ |x+4|- (x 2)2 y2=2

当x > -4 时,x+4- (x 2)2 y2=2 化简得

当时,y2=8x 当x V -4 时,-X-4- .. (x 2)2 y2=2 无解 所以P点轨迹是抛物线y2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显, 解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、代入法 如果轨迹点P(x,y)依赖于另一动点Q(a, b),而Q(a, b)又在某已知曲线上,则可先列出关于x、y、a、b的方程组,利用x、y表示出a、b,把a、b代入已知曲线方程便得动点P的轨迹方程,此法称为代入法。 2 2 例3 P 在以F1、F2为焦点的双曲线16七1上运动,则厶F1F2P 、k2 (x2 y2) ? . x2 y2=12 ??? k (x2+y2) =12,又点M在已知圆上, ??? 13k2x2+13k2y2-15kx-36ky=0 由上述两式消去x2+y2得 5x+12y-52=0 点评:用参数法求轨迹,设参尽量要少,消参较易。 五、交轨法 若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,

解析几何求圆的轨迹方程专题一师用

专题一求圆的轨迹方程 教学目标: 1、掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的 形式求圆的方程; 2、掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程 3、理解圆的标准方程与一般方程之间的关系,会进行互化。 教学重难点: 1、掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆 的方程; 2、会求曲线的轨迹方程(圆) 教学过程: 第一部分知识点回顾 一、圆的方程 : 1 .圆的标准方程:x a? y b 2 r2o 2 ?圆的一般方程:x2 y2 Dx Ey F 0(D2+ E2—4F 0) 特别提醒:只有当D2+ E2—4F 0时,方程x2 y2 Dx Ey F 0才表示圆心为(D, E),半径为1~E2~4F的圆 2 2 2 思考:二元二次方程Ax2 Bxy Cy2 Dx Ey F 0表示圆的充要条件是什么? 答案:(A C 0,且 B 0 且D2 E2 4AF 0 ));

3 .圆的参数方程:y a r s°s (为参数),其中圆心为(a,b),半径为 r 。圆的参数方程的主要应用是三角换元: (3) 已知P( 1, -3)是圆y ;;煮(为参数,0 2 )上的点,则圆的 普通方程为,P 点对应的 值为,过P 点的圆的切线方程是 (答:x 2 y 2=4 ; — ; x ,3y 4 0); 3 (4) 如果直线l 将圆:x 22-240平分,且不过第四象限,那么I 的斜率 的取值范围是_ (答: [0 , 2]); (5) 方程x 22 - 0表示一个圆,则实数k 的取值范围为(答:k 丄); (6) 若 M {(x, y) | y 3sos (为参数,0 )}, N (x, y) | y x b , 若MN ,则b 的取值范围是(答:-33& ) 二、点与圆的位置关系:已知点M x 0 ,y 0 及圆C: x-a $ y b ? r 2 r 0 , (1) 点 M 在圆 C 外 |CM | r x 0 a 2 y 。b 2 r 2; (2) 点 M 在圆 C 内 CM| r x 0 a 2 y 。b 2 r 2; (3) 点 M 在圆 C 上 CM r x 0 a $ y 0 r 2。女口 点P(5a+1,12a)在圆(x -1 )2 + y 2=1的内部,则a 的取值范围是(答: 2 ^22, r x r cos , y r sin ; x y t x r cos ,y r sin (0 r .,t)。 X i ,y i ,B X 2,y 2为直径端点的圆方程 x x 1 x X 2 y y 1 y y 2 0 如 (1) 圆C 与圆(X 1)2 y 2 1关于直线y x 对称, 则圆 C 的方程为 (答: x 2 (y 1)2 1); (2) 圆心在直线2x y 3上,且与两坐标轴均相切的圆的标准方程是 (答: (x 3)2 (y 3)2 9或(x 1)2 (y 1)2 1 );

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

与圆有关的轨迹方程的求法培训资料

与圆有关的轨迹方程 的求法

与圆有关的轨迹方程的求法 若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系: ? ??βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得???=β=α) ,(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0. 例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程. 【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程. 【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴ 3 1||||==OQ OP QA PQ , ∴Q 分PA 的比为31 .

∴???????=-=????? ??????=+?+=+=+?+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622 =+??? ??-y x . ∴Q 的轨迹方程为)0(16 9)43 (22>=+-y y x . 例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .4)1(22=+-y x B .)10(4)1(22<≤=+-x y x C .4)2(22=+-y x D .)10(4)2(22<≤=+-x y x 变式练习 1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且 3 1=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵31=,∴),3(3 1),(11y x y y x x --=--, ∴???????-=--=-y y y x x x 31)3(3111,∴??? ????=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴ 12121=+y x ,∴1)34()134(22=+-y x ,即16 9)43(22=+-y x ,∴点M 的轨迹方程是16 9)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .

最全地圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (3) 一.直接法 (5) 二. 相关点法 (10) 三. 几何法 (16) 四. 参数法 (19) 五. 交轨法 (22)

六. 定义法 (25)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ , 求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0, 设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=4 1 (x ≠0),即 点P 的轨迹方程是(x -21)2+y 2=4 1 (0<x ≤1)。 二.定义法 ∵∠OPC =90°,∴动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原 点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=4 1 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0, ∴x ≠0,即(x - 21)2+y 2=4 1 (0<x ≤1)

四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,∴.12 2 21k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1(0<x ≤1)

求曲线轨迹方程专题(2)

轨 迹 方 程 问 题 常见的有六种求轨迹方程的方法: ①待定系数法:由几何量确定轨迹方程; ②定义法:根据曲线的定义,求轨迹方程; ③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程; ④“代入法”求轨迹方程; ⑥参数法(包括解决中点弦问题的点差法)求轨迹方程. ⑤“交轨法”求轨迹方程; 1.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围. 例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点 (,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状; 解:因为a b ⊥,(,1)a mx y =+,(,1)b x y =-,所以a ·b =2210mx y +-=, 即 221mx y +=. 当m =0时,方程表示两条直线:1±=y ; 当1m =时,方程表示的是圆:221x y +=; 当m >0且1≠m 时,方程表示的是椭圆; 当m <0时,方程表示的是双曲线. 2.根据圆锥曲线的定义,求轨迹方程

P M N 例2.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点) ,使得PM =试建立适当的坐标系,并求动点 P 的轨迹方程. 解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴,建立平面直角坐标系,则两圆心 分 别 为 12(2,0),(2,0) O O -.设 (,) P x y , 则,同理 222(2)1PN x y =-+-.2222211(2)1PM O P O M x y =-=++- ∵PM =, ∴2222(2)12[(2)1]x y x y ++-=-+-, 即221230x x y -++=,即22(6)33x y -+=. 这就是动点P 的轨迹方程. 注:动圆圆心轨迹问题 ①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切. 3.参数法求轨迹方程: 例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程; (2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE ?的重心G 的轨迹方程。 解:(1)点P 到点A 的距离等于点P 到直线y= -1的距离,故点P 的轨迹C 是以点A 为焦点,直线y=-1为准线的抛物线,所以曲线C 的方程 x 2=4y. 2222 A , 1 4440,+=4,(+)2, 1, 2 1 2()1,1.2221l x y x x kx k x k y x x k y y x y =====+=?=?+=+?=+? 1122212122 (2)设M(x,y),D(x ,y ),E(x ,y ),依题意知过的直线的斜率存在,设该直线的方程为:y=kx+1 与联立,消整理得:--则x x 则x x kx+1=2k 2k 即,消去得:即为所求的方程k 另解:(2)

与圆的轨迹方程

与圆的轨迹方程文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

求与圆有关的轨迹方程 [概念与规律] 求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问 题,其步骤是:? 设动点M(x,y),已知曲线上的点为N(x 0,y ), ? 求出用x,y表示x 0,y 的关系式, ? 将(x 0,y )代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4, 0),点B是圆x2+y2=4 上的动点,点P分AB的比为2:1,求点P的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP,则OP⊥BC, 当x≠0时,k OP·k AP=-1,即 即x2+y2-4x=0. ① 当x=0时,P点坐标(0,0)是方程①的解, ∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内的部分). 方法二:(定义法) 由方法一知OP⊥AP,取OA中点M,则M(2,0),|PM|=|OA|=2, 由圆的定义知,P的轨迹方程是(x-2)2+y2=4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长 > 设直线MN切圆于N,则动点M组成的集合是:P={M||MN|=√2|MQ|}

圆锥曲线轨迹方程问题

圆锥曲线轨迹方程问题 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高, 主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目. 分析原因除了这类题目的入手确实不易之外,主要是学生没 有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是 ft东卷高 考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生 心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其 实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类 问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同 时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨 迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型 (定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处 理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问 题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理 解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要 等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;② 简化条件式; ③转化化归。 解题方法荟萃

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种 方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。 例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。 解:设点P的坐标为(x,y), 则A(2x,0),B(0,2y),由|AB|=2a得 2) 2 x- 2(y + -=2a 2 0( )0 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则 |x+4|-2 2 -=2 x+ (y )2

当x ≥-4时,x+4-22)2(y x +-=2化简得 当时,y 2=8x 当x <-4时,-x-4-22)2(y x +-=2无解 所以P 点轨迹是抛物线y 2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、 代入法 如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。 例3 P 在以F 1、F 2为焦点的双曲线19 1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。 解:设P (x 0,y 0),G (x ,y ),则有 ??? ????++=+-=)00(31)4(3100y y x x x 即???==y y x x 3300,代入 191622=-y x 得19 91692 2=-y x 即116 922 =-y x 由于G 不在F 1F 2上,所以y ≠0

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

圆锥曲线之轨迹问题例题习题(精品)

专题:圆 锥 曲 线 之 轨 迹 问 题 一、临阵磨枪 1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。这种求轨迹的方法称之为直接法。 2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。 3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。 5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、小试牛刀 1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析: MN PM PN =- ∴点P 的轨迹一定是线段MN 的延长线。 故所求轨迹方程是 0(3)y x =≥ 2.已知圆O 的方程为22 2 =+y x ,圆O '的方程为01082 2 =+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x = 3.已知椭圆)0(122 22>>=+b a b y a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1 MF 的中点P 的轨迹方程为 析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:

相关主题
文本预览
相关文档 最新文档