当前位置:文档之家› 高中数学经典高考难题集锦解析版

高中数学经典高考难题集锦解析版

高中数学经典高考难题集锦解析版
高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷

一.解答题(共10小题)

1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x

轴交于点E、A,与y轴交于点E、B.

(1)证明多边形EACB的面积是定值,并求这个定值;

(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.

(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;

(Ⅱ)求S的最大值,并求取得最大值时k的值.

3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.

4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;

(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由.

5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.

(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共

点个数;

(3)解不等式|2x﹣1|<|x|+1.

6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;

(Ⅱ)当时,求直线l的方程;

(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理

由.

7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C

外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0).

(1)若点D(0,3),求∠APB的正切值;

(2)当点D在y轴上运动时,求∠APB的最大值;

(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.

8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

(Ⅰ)求k的取值范围;

(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请

说明理由.

9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l 向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点

P的速度为v,求这时点M的速度.

10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.

2015年10月18日姚杰的高中数学组卷

参考答案与试题解析

一.解答题(共10小题)

1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x

轴交于点E、A,与y轴交于点E、B.

(1)证明多边形EACB的面积是定值,并求这个定值;

(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.

考点:直线和圆的方程的应用.

专题:计算题;压轴题.

分析:(1)由题意,由于以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B,所以先得到点E为原点,利用方程的思想设出圆心C的坐标,进而利用面积公式求解;

(2)由于|EM|=|EN|此可以转化为点E应在线段MN的垂直平分线上,利用圆的性质可得EC与MN垂直建立t的方程求解即可.

解答:解:

(1)证明:点(t>0),

因为以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.

所以点E是直角坐标系原点,即E(0,0).

于是圆C的方程是.则

由|CE|=|CA|=|CB|知,圆心C在Rt△AEB斜边AB上,

于是多边形EACB为Rt△AEB,

其面积.

所以多边形EACB的面积是定值,这个定值是4.

(2)若|EM|=|EN|,则E在MN的垂直平分线上,即EC是MN的垂直平分线,

,k MN=﹣2.

所以由k EC?k MN=﹣1,得t=2,

所以圆C 的方程是(x ﹣2)2+(y ﹣1)2=5. 点评:

(1)重点考查了利用方程的思想用以变量t 写出圆的方程,判断出圆心O 在AB 上,故四边形为直角三角形,还考查了三角形的面积公式;

(2)重点考查了垂直平分线的等价式子,还考查了方程的求解思想,及两直线垂直的实质解直线的斜率互为负倒数. 2.(2010?江苏模拟)已知直线l :y=k (x+2)与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S . (Ⅰ)试将S 表示成的函数S (k ),并求出它的定义域; (Ⅱ)求S 的最大值,并求取得最大值时k 的值. 考点:

直线与圆的位置关系;二次函数的性质. 专题:

计算题;压轴题. 分析: (Ⅰ)先求出原点到直线的距离,并利用弦长公式求出弦长,代入三角形的面积公式进行化简.

(Ⅱ)换元后把函数S 的解析式利用二次函数的性质进行配方,求出函数的最值,注意换元后变量范围的改变. 解答:

解:(Ⅰ)直线l 方程, 原点O 到l 的距离为(3分)

弦长(5分)

?ABO 面积

?

∵|AB|>0,∴﹣1<K <1(K ≠0),? ∴

(﹣1<k <1且K ≠0)(8分), (Ⅱ) 令

∴.

∴当t=时,时,S max =2(12分)

点评: 本题考查点到直线的距离公式、弦长公式的应用,以及利用二次函数的性质求函数的最大值,注意换元中变量范围的改变. 3.(2013?越秀区校级模拟)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x ﹣2y=0的距离为

.求该圆的方程.

考点:直线与圆的位置关系.

专题:综合题;压轴题.

分析:设出圆P的圆心坐标,由圆被x轴分成两段圆弧,其弧长的比为3:1,得到圆P截x 轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关

系式,又根据圆与y轴的弦长为2,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x﹣2y=0的距

离,让其等于,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b

的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.

解答:解:设圆P的圆心为P(a,b),半径为r,

则点P到x轴,y轴的距离分别为|b|,|a|.

由题设知圆P截x轴所得劣弧对的圆心角为90°,

知圆P截x轴所得的弦长为.故r2=2b2

又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;

又因为P(a,b)到直线x﹣2y=0的距离为,所以=,即有a﹣2b=±1,由此有或

解方程组得或,于是r2=2b2=2,

所求圆的方程是:(x+1)2+(y+1)2=2,或(x﹣1)2+(y﹣1)2=2.

点评:本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力,是一道中档题.4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;

(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由.

考点:直线与圆的位置关系;平面向量数量积的运算;抛物线的标准方程.

专题:压轴题;圆锥曲线的定义、性质与方程.

分析:(Ⅰ)设抛物线方程为x2=2py,把点(2,1)代入运算求得p的值,即可求得抛物线的标准方程.

(Ⅱ)由直线与圆相切可得.把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及,求得

,求得点O到直线的距离,从而求得

,由此函数在(0,4)单调递增,故有,从而得出结论.

解答:解:(Ⅰ)设抛物线方程为x2=2py,

由已知得:22=2p,所以p=2,

所以抛物线的标准方程为x2=4y.

(Ⅱ)不存在.

因为直线与圆相切,所以.

把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0.

由△=16k2+16t=16(t2+2t)+16t>0,得t>0或t<﹣3.

设M(x1,y1),N(x2,y2),则x1+x2=4k且x1?x2=﹣4t,

∴.

∵∠MON为钝角,∴,解得0<t<4,

∵,

点O到直线的距离为,∴,易证在

(0,4)单调递增,

∴,故不存在直线,当∠MON为钝角时,S △MON=48成立.

点评:本题主要考查直线和圆的位置关系,两个向量的数量积公式的应用,点到直线的距离公式,利用函数的单调性求函数的值域,属于中档题.

5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.

(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共

点个数;

(3)解不等式|2x﹣1|<|x|+1.

考点:直线与圆的位置关系;二阶矩阵;绝对值不等式的解法.

专题:计算题;压轴题;转化思想.

分析:(1)由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M 的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的

逆矩阵;

(2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的

距离公式求出圆心到直线的距离d与半径r比较大小得到直线与圆的位置关系,即可得到交点的个数;

(3)分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,

求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.

解答:

解:(1)由题意可知(x,y)=(13,5),即,

解得,所以A(2,﹣3);

设矩阵M的逆矩阵为,则?=,即,

且,解得a=﹣1,b=3,c=﹣1,d=2

所以矩阵M的逆矩阵为;

(2)把圆的参数方程化为普通方程得(x+1)2+(y﹣2)2=4,圆心(﹣1,2),半径r=2

则圆心到已知直线的距离d==<2=r,得到直线与圆的位置关系是相

交,

所以直线与圆的公共点有两个;

(3)当x≥时,原不等式变为:2x﹣1<x+1,解得x<2,所以原不等式的解集为[,2);

当0≤x<时,原不等式变为:1﹣2x<x+1,解得x>0,所以原不等式的解集为(0,);

当x<0时,原不等式变为:1﹣2x<﹣x+1,解得x>0,所以原不等式无解.

综上,原不等式的解集为[0,2).

点评:此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.

6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;

(Ⅱ)当时,求直线l的方程;

(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理

由.

直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程.

点:

专压轴题.

题:

分析: (Ⅰ)根据已知,容易写出直线l 的方程为y=3(x+1).将圆心C (0,3)代入方程易知l 过圆心C .

(Ⅱ)过A (﹣1,0)的一条动直线l .应当分为斜率存在和不存在两种情况;当直线l 与x 轴垂直时,进行验证.当直线与x 轴不垂直时,设直线l 的方程为y=k (x+1),由于弦长,利用垂径定理,则圆心C 到弦的距离|CM|=1.从而解得斜率K 来得出直线l 的方程为.

(Ⅲ)同样,当l 与x 轴垂直时,要对设t=

,进行验证.当l 的斜率存在时,设

直线l 的方程为y=k (x+1),代入圆的方程得到一个二次方程.充分利用“两根之和”和“两根之积”去找

.再用两根直线方程联立,去找

.从而确定t=

的代数表达式,

再讨论t 是否为定值.

答:

解:(Ⅰ)由已知,故k l =3, 所以直线l 的方程为y=3(x+1).

将圆心C (0,3)代入方程易知l 过圆心C .(3分) (Ⅱ)当直线l 与x 轴垂直时,易知x=﹣1符合题意;(4分) 当直线与x 轴不垂直时,设直线l 的方程为y=k (x+1),由于

所以|CM|=1.由

,解得

故直线l 的方程为x=﹣1或4x ﹣3y+4=0.(8分) (Ⅲ)当l 与x 轴垂直时,易得M (﹣1,3),,

又A (﹣1,0)则

,故

.即t=﹣5.(10

分)

当l 的斜率存在时,设直线l 的方程为y=k (x+1),代入圆的方程得(1+k 2)x 2+(2k 2﹣6k )x+k 2﹣6k+5=0. 则

即,=.

又由得,

则.

故t=

综上,t 的值为定值,且t=﹣5.(14分)

另解一:连接CA ,延长交m 于点R ,由(Ⅰ)知AR ⊥m .又CM ⊥l 于M , 故△ANR ∽△AMC .于是有|AM|?|AN|=|AC|?|AR|. 由,得|AM|?|AN|=5.

(14分)

另解二:连接CA 并延长交直线m 于点B ,连接CM ,CN ,由(Ⅰ)知AC ⊥m ,又CM ⊥l , 所以四点M ,C ,N ,B 都在以CN 为直径的圆上, 由相交弦定理得

.(14分)

点评: (1)用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求

解一般.

(2)解决直线与圆相交弦相关计算时一般采用垂径定理求解.

(3)涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和”和“两根之积”整体求解.这种方法通常叫做“设而不求”. 7.(2009?天河区校级模拟)已知圆C :(x+4)2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,定点P 的坐标为(﹣3,0). (1)若点D (0,3),求∠APB 的正切值;

(2)当点D 在y 轴上运动时,求∠APB 的最大值;

(3)在x 轴上是否存在定点Q ,当圆D 在y 轴上运动时,∠AQB 是定值?如果存在,求出Q 点坐标;如果不存在,说明理由. 考点:

直线和圆的方程的应用. 专题:

计算题;证明题;压轴题. 分析: (1)由已知中圆C :(x+4)2+y 2=4,点D (0,3),我们易求出CD 的长,进而求出圆D 的半径,求出A ,B 两点坐标后,可由tan ∠APB=k BP 得到结果.

(2)设D 点坐标为(0,a ),圆D 半径为r ,我们可以求出对应的圆D 的方程和A ,B 两点的坐标,进而求出∠APB 正切的表达式(含参数r ),求出其最值后,即可根据正切函数的单调性,求出∠APB 的最大值; (3)假设存在点Q (b ,0),根据∠AQB 是定值,我们构造关于b 的方程,若方程有解,则存在这样的点,若方程无实根,则不存在这样的点. 解答: 解:(1)∵|CD|=5, ∴圆D 的半径r=5﹣2=3,此时A 、B 坐标分别为A (0,0)、B (0,6)

∴tan ∠APB=k BP =2(3分) (2)设D 点坐标为(0,a ),圆D 半径为r ,则(r+2)2=16+a 2,A 、B 的坐标分别为(0,a ﹣r ),(0,a+r )

∴==

∵|r+2|2≥16, ∴r ≥2,

∴8r ﹣6≥10, ∴

.(8分)

(3)假设存在点Q (b ,0),由

,得

∵a 2=(r+2)2﹣16, ∴

欲使∠AQB 的大小与r 无关,则当且仅当b 2=12,即,

此时有,即得∠AQB=60°为定值,

故存在或,使∠AQB 为定值60°.(13分) 点评: 本题考查的知识点是直线和圆的方程的应用,其中根据已知中圆C :(x+4)2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,确定圆D 的方程,

进而求出A ,B 的方程是解答本题的关键. 8.(2007?海南)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣12x+32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A ,B . (Ⅰ)求k 的取值范围; (Ⅱ)是否存在常数k ,使得向量

共线?如果存在,求k 值;如果不存在,请

说明理由. 考点: 直线和圆的方程的应用;向量的共线定理. 专题: 计算题;压轴题. 分析:

(Ⅰ)先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围, (Ⅱ)A (x 1,y 1),B (x 2,y 2),根据(1)中的方程和韦达定理可求得x 1+x 2的表达

式,根据直线方程可求得y 1+y 2的表达式,进而根据以

共线可推知(x 1+x 2)

=﹣3(y 1+y 2),进而求得k ,根据(1)k 的范围可知,k 不符合题意. 解答: 解:(Ⅰ)圆的方程可写成(x ﹣6)2+y 2=4,所以圆心为Q (6,0),过P (0,2)

且斜率为k 的直线方程为y=kx+2.

代入圆方程得x 2+(kx+2)2﹣12x+32=0, 整理得(1+k 2)x 2+4(k ﹣3)x+36=0. ①

直线与圆交于两个不同的点A ,B 等价于△=[4(k ﹣3)2]﹣4×36(1+k 2)=42(﹣8k 2﹣6k )>0, 解得

,即k 的取值范围为

(Ⅱ)设A (x 1,y 1),B (x 2,y 2),则

由方程①,

又y 1+y 2=k (x 1+x 2)+4. ③ 而.

所以

共线等价于(x 1+x 2)=﹣3(y 1+y 2),

将②③代入上式,解得.

由(Ⅰ)知

,故没有符合题意的常数k .

点评:

本题主要考查了直线与圆的方程的综合运用.常需要把直线方程与圆的方程联立,利用韦达定理和判别式求得问题的解.

9.如图,已知圆心为O ,半径为1的圆与直线l 相切于点A ,一动点P 自切点A 沿直线l 向右移动时,取弧AC 的长为

,直线PC 与直线AO 交于点M .又知当AP=

时,点

P 的速度为v ,求这时点M 的速度. 考点:

直线与圆的位置关系. 专题:

压轴题. 分析:

设AP 的长为x ,AM 的长为y ,用x 表示y ,并用复合函数求导法则对时间t 进行求导. 解答:

解:如图,作CD ⊥AM ,并设AP=x ,AM=y ,∠COA=θ, 由题意弧AC 的长为,半径OC=1,可知θ=,考虑θ∈(0,π).

∵△APM ∽△DCM ,∴

∵DM=y ﹣(1﹣cos ),DC=sin ,∴

∴.

上式两边对时间t 进行求导,则y ′t =y ′x ?x ′t . ∴y ′t =

时,x ′t =v ,代入上式得点M 的速度.

点评: 本题是难度较大题目,考查了弦长、弧度、相似、特别是复合函数的导数,以及导数的几何意义;

同时也考查了逻辑思维能力和计算能力.

10.过原点O 作圆x 2+y 2﹣2x ﹣4y+4=0的任意割线交圆于P 1,P 2两点,求P 1P 2的中点P 的轨迹. 考点: 直线与圆的位置关系;轨迹方程. 专题: 计算题;压轴题;数形结合. 分析: 设

割线OP 1P 2的直线方程为y=kx 与圆的方程联立得(1+k 2)x 2﹣2(1+2k )x+4=0,再由韦达定理得:

,因为P 是P 1P 2的中点,所以

,再由P 点在直线y=kx 上,得到,代入上式得

整理即可.要注意范围. 解答: 解:设割线OP 1P 2的直线方程为y=kx 代入圆的方程,

得:x 2+k 2x 2﹣2x ﹣4kx+4=0

即(1+k 2)x 2﹣2(1+2k )x+4=0

设两根为x 1,x 2即直线与圆的两交点的横坐标; 由韦达定理得:

又设P 点的坐标是(x ,y )

P 是P 1P 2的中点,所以

又P 点在直线y=kx 上, ∴

,代入上式得

两端乘以,得

即x2+y2=x+2y

(0<x<)

这是一个一点为中心,以为半径的圆弧,

所求轨迹是这个圆在所给圆内的一段弧.

点评:本题主要考查直线与圆的位置关系,韦达定理,中点坐标公式及点的轨迹方程.

考点卡片

1.二次函数的性质

【知识点的认识】

其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.

【解题方法点拨】

以y=ax2+bx+c为例:

①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式△=b2﹣4ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.

②根与系数的关系.若△≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1?x2=;

③二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,

含义为抛物线上的点到到焦点的距离等于到准线的距离.

④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;

例题:y=2x2+x﹣3

那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f(﹣)=﹣,;△=1+24=25>0,故方程2x2+x﹣3=0有两个根,其满足x1+x2=﹣;x1?x2=﹣;

另外,方程可以写成(y+)=2(x+)2,当沿x轴向右,在向下平移时,就变

成y=2x2;

【命题方向】

重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.

2.向量的共线定理

【概念】

共线向量又叫平行向量,指的是方向相同或方向相反的向量.

假设向量=(1,2),向量=(2,4),则=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=(x1,y1)与向量=(x2,y2)平行时,有x1?y2﹣x2?y1=0,这也是

两向量平行的充要条件.

【例题解析】

例:设与是两个不共线的向量,且向量与共线,则λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k()

∴2=k.﹣1=λk

解得,λ=﹣0.5

故答案为﹣0.5.

根据向量共线的充要条件,若向量与共线,就能得到含λ的等式,

解出λ即可.

【考点分析】

向量共线定理和向量垂直定理是向量里面最重要的两个定理,要学会应用这两个定理去判别向量之间的关系.

3.平面向量数量积的运算

【平面向量数量积的运算】

平面向量数量积运算的一般定理为①(±)2=2±2?+2.②(﹣)(+)=2﹣2.③?(?)≠(?)?,从这里可以看出它的运算法则和数的运算法则有些

是相同的,有些不一样.

【例题解析】

例:由代数式的乘法法则类比推导向量的数量积的运算法则:

①“mn=nm”类比得到“”

②“(m+n)t=mt+nt”类比得到“()?=”;

③“t≠0,mt=nt?m=n”类比得到“?”;

④“|m?n|=|m|?|n|”类比得到“||=||?||”;

⑤“(m?n)t=m(n?t)”类比得到“()?=”;

⑥“”类比得到.以上的式子中,类比得到的结论正确的是①②.

解:∵向量的数量积满足交换律,

∴“mn=nm”类比得到“”,

∵向量的数量积满足分配律,

∴“(m+n)t=mt+nt”类比得到“()?=”,

即②正确;

∵向量的数量积不满足消元律,

∴“t≠0,mt=nt?m=n”不能类比得到“?”,

即③错误;

∵||≠||?||,

∴“|m?n|=|m|?|n|”不能类比得到“||=||?||”;

即④错误;

∵向量的数量积不满足结合律,

∴“(m?n)t=m(n?t)”不能类比得到“()?=”,

即⑤错误;

∵向量的数量积不满足消元律,

∴”不能类比得到,

即⑥错误.

故答案为:①②.

向量的数量积满足交换律,由“mn=nm”类比得到“”;向量的数量积满足分配律,故“(m+n)t=mt+nt”类比得到“()?=”;向量的数量积不满足消元律,故“t≠0,mt=nt?m=n”不能类比得到“?”;||≠||?||,故“|m?n|=|m|?|n|”不能类比得到“||=||?||”;向量的数量积不满足结合律,故“(m?n)t=m (n?t)”不能类比得到“()?=”;向量的数量积不满足消元律,故”不能类比得到.

【考点分析】

本知识点应该所有考生都要掌握,这个知识点和三角函数联系比较多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.

4.直线的一般式方程

【直线的一般式方程】

直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.

【知识点的认识】

1.曲线的方程和方程的曲线

在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对(x,y)表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标(x,y)中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.

一般地,在直角坐标系中,如果某曲线C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

(1)曲线上点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点.

那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.

2.求曲线方程的一般步骤(直接法)

(1)建系设点:建立适当的直角坐标系,用(x,y)表示曲线上任一点M的坐标;(2)列式:写出适合条件p的点M的集合{M|p(M)};

(3)代入:用坐标表示出条件p(M),列出方程f(x,y)=0;

(4)化简:化方程f(x,y)=0为最简形式;

(5)证明:证明以化简后的方程的解为坐标的点都是在曲线上的点

【常用解法】

(1)直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间的距离公式、点到直线的距离公式、夹角公式等)进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.

(2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.关键是条件的转化,即转化为某一基本轨迹的定义条件.

(3)相关点法:用所求动点P的坐标(x,y)表示已知动点M的坐标(x0,y0),即得到x0=f(x,y),y0=g(x,y),再将x0,y0代入M满足的条件F(x0,y0)=0中,即得所求.一般地,定比分点问题、对称问题可用相关点法求解,相关点法的一般步骤是:设点→转换→代入→化简.

(4)待定系数法

(5)参数法

(6)交轨法.

6.直线与圆的位置关系

【知识点的认识】

1.直线与圆的位置关系

2.判断直线与圆的位置关系的方法

直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:

(1)几何方法:利用圆心到直线的d和半径r的关系判断.

圆心到直线的距离d=

①相交:d<r

②相切:d=r

③相离:d>r

(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.

由消元,得到一元二次方程的判别式△

①相交:△>0

②相切:△=0

③相离:△<0.

7.直线和圆的方程的应用

【知识点的知识】

1、直线方程的形式:

2、圆的方程:

(1)圆的标准方程:

(x﹣a)2+(y﹣b)2=r2(r>0),其中圆心C(a,b),半径为r.

特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.

其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件.

(2)圆的一般方程:

x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0)

其中圆心(﹣,﹣),半径r=.

8.抛物线的标准方程

【知识点的认识】

抛物线的标准方程的四种种形式:

(1)y2=2px,焦点在x轴上,焦点坐标为F(,0),(p可为正负)

(2)x2=2py,焦点在y轴上,焦点坐标为F(0,),(p可为正负)

四种形式相同点:形状、大小相同;

四种形式不同点:位置不同;焦点坐标不同.

下面以两种形式做简单的介绍:

标准方程y2=2px(p>0),焦点在x轴上x2=2py(p>0),焦点在y轴上图形

顶点(0,0)(0,0)

对称轴x轴

焦点在x轴长上y轴

焦点在y轴长上

焦点

(,0)(0,)焦距无无

离心率e=1 e=1

准线

x=﹣y=﹣9.二阶矩阵

【知识点的知识】

1、矩阵

由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表

称为m行n列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大

写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的(i,j)元.以数a ij为(i,j)元的矩阵可简记作(a ij)或(a ij)m×n.矩阵A也记作A m×n.

注意:

①矩阵的记号是在数表外加上括弧,与行列式的记号(在数表外加上双竖线)是不同的,这是两个不同的概念.

②矩阵的行数和列数不一定相等.

2.二阶矩阵

由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或(aij)表示(其中i,j分别为元素aij所在的行和列).2.矩阵的乘法

行矩阵[a11 a12]与列矩阵的乘法规则为,二阶矩阵

与列矩阵的乘法规则为=.矩阵乘法满足结合律,不满足交

换律和消去律.

10.绝对值不等式的解法

【知识点的认识】

绝对值不等式的解法

1、绝对值不等式|x|>a与|x|<a的解集

不等式a>0 a=0 a<0

|x|<a {x|﹣a<x<a} ??

|x|>a {x|x>a,或x<﹣a} {x|x≠0} R

2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:

(1)|ax+b|≤c?﹣c≤ax+b≤c;

(2)|ax+b|≥c?ax+b≥c或ax+b≤﹣c;

(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:

方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.

方法二:利用“零点分段法”求解,体现了分类讨论的思想;

方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.

【解题方法点拨】

1、解绝对值不等式的基本方法:

(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;

(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;

(3)利用绝对值的几何意义,数形结合求解.

2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m (m为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.

高中数学常见难题

1、已知正三棱锥S-ABC的高SO为3,底面边长为6,过A向它所对侧面 SBC作垂线,垂足为O′,在AO′上取一点P,使AP︰PO′=8,求经过P 点且平行底面的截面的面积. 分析:本题的关键在于求出过P平行于底的截面到顶点的距离与底面到顶点的距 离之比. 解答:如图10.13,因S-ABC是正三棱锥,所以O是正三角形ABC的中心.连 结AO延工交BC于D,则D是BC的中点,故BC⊥AD,BC⊥SD,因而BC⊥平面SAD, 从而平面ASD⊥平面SBC.又AO′⊥平面SBC,故SO′在平面SAD内,因而O′在SD上,于是 由 设过P作平行于底的平面与SD的交点为O1,则 于是 故所求截面面积

2、设正三棱锥P—ABC的高为PO,M为PO的中 点,过AM作与棱BC平行的平面,将正三棱锥 截成上、下两部分,试求两部分体积之比. 分析:设过AM且平行BC的平面交平面PBC于EF(E ∈PB,F∈PC),要求两部分体积之比,只要求VP —ABC=S△PEF︰S△PBC. 解答:如图10.14,过设AM且平行BC的平面与棱PB、PC分别交于E、F.则EF//BC.连 结AO并延长交BC于D,则D为BC的中点,连结PD交EF于G,则因A 到平面PEF的距离即为A到平面ABC的距离,所以在△PAD中,过O作PD的平行线,交AG于N.因为M为PO的中点,故|ON|=|PG|,,故,因而,故所求上下两部分体积之比为 3、四面体ABCD被平面α所截,对棱AB,CD都与α平行且与α等距,设α截得截面四边形的面积为S,对棱AB与CD的距离为h,求这个四面体ABCD的体积.分析:利用“等底、等高的两个四面体的体积相等”将四面体添加几个等体积的四面体,构成一个平行六面体来计算. 解答:过四面体ABCD的各棱分别作与其对棱平行的平面,六个平面相交得一平行六面体AC1BD1-A1CB1D(如图10.15).此时VABCD等于平行六面体的体积V减去四个彼此等积的三棱锥的体积,这四个三棱锥分别是A-A1CD,B-B1DC,C-C1AB,D-D1AB.因为这四个三棱锥的底面积为 平行六面体底面积的,其高与平行六面体的高相等,故每一个三棱锥的体积等于于是 由于AB,CD与截面α等距,如图10.15可知K,L,M,N分别是AA1,CC1,BB1,DD1的中点,易知,而h就是平面AC1BD1与平面A1CB1D的距离,所以 说明:利用“等积”进行割补,是解决多面体体积问题的一个有效方法.

【人教A版】高中数学重点难点突破:简单的三角恒等变换 同步讲义

【人教A 版】高中数学重点难点突破:简单的三角恒等变换 同步讲义 (学生版) 【重难点知识点网络】: 1 同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θ θ cos sin , 2 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 3 和角与差角公式 sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ ±±= .ααααcos sin 21)cos (sin 2 ±=± ?由点(,)a b 的象限决定,tan b a ?= ). 3 二倍角公式及降幂公式 sin 22sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan α αα = -. 221cos 21cos 2sin ,cos 22 αα αα-+= = 4 三角函数的周期公式 函数sin()y x ω?=+,(A,ω,?为常数,且A ≠0)的周期2|| T π ω= ; 函数tan()y x ω?=+,,2 x k k Z π π≠+ ∈(A,ω,?为常数,且A ≠0)的周期|| T πω= .

三角函数的图像: 【重难点题型突破】: 一、和差公式的化简及求值 例1.(1)(2019·山东高一期末)10208020cos cos cos sin ?-??=( ) A . 2 B . C . 12 D .12 - (2).(2018·广东高一期末)sin 49sin19cos19sin 41??+??=() A . 1 2 B .12 - C D . 【变式训练1-1】、(1).(2019·兰州市第五中学高一期末)sin15 =( ) A . 4 B . 4 C . 24 + D . 4 (2).已知()2tan 5αβ+= ,1tan 44πβ??-= ???,那么tan 4πα? ?+= ?? ?( ) A . 1318 B . 13 22 C . 322 D . 518 例2.(2020届甘肃省高三第一次高考诊断)已知tan 3α=,则sin 22πα? ? + = ?? ? ( ) A .45 - B . 35 C . 35 D . 45

高一数学必修一易错题集锦答案

高一数学必修一易错题集锦答案 1. 已知集合M={y |y =x 2 +1,x∈R },N={y|y =x +1,x∈R },则M∩N=( ) 解:M={y |y =x 2 +1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }. ∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, 注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2 +1,x ∈R }、{(x ,y )|y =x 2 +1,x ∈R },这三个集合是不同的. 2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2} 3 。已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个) 解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z , ∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。 4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围. 解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3 ②当B=时,即p +1>2p -1p <2. 由①、②得:p≤3. 点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题. 5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2 }.若A=B ,求c 的值. 分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式. 解:分两种情况进行讨论. (1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2 -2ac=0, a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0. ∴c 2 -2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解. (2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2 -ac -a=0, ∵a≠0,∴2c 2 -c -1=0, 即(c -1)(2c +1)=0,又c≠1,故c=- 21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则 a -11∈A ,1≠a 且1?A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由. ⑶若a∈A,证明:1- a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.

高二会考数学重点知识点梳理五篇

高二会考数学重点知识点梳理五篇 高二会考数学知识点1 空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 线线平行线面平行 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行.线面平行线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行), (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行. (线线平行→面面平行), (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行) 高二会考数学知识点2 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x 在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的

线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也****于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 高二会考数学知识点3 第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。

如何解决高中数学难题

●如何解决高中数学难题 1、首先最重要的一点就是基础知识一定要扎实,这种扎实,不是说你仅仅会这 条公式,而是要清楚这条公式是怎么来的,反过来可以怎么用。即使你在考试的时候忘记公式了,你也能够推导出来。能做到这样子,基本上什么题型都不怕了。高考的题型再新,也无非是换汤不换药。还是考一个学生的基础知识; 2、等你真正上了高中,你就会发现,在课下学到的东西远比书本上的多,并且老师在课上 讲的很多都不是书本上能领悟的东西,书本上的东西太基础了。 题做多了就熟练了,创新思维这些虚幻的东西最好不要带到课堂里去。你在研究什么创新思维的时候还不如多做几张试卷来的实在。 3、呵呵,该说的方法其实就是那样,相信你也懂的,我个人是比较注重心态,对数学的心态,建议你非常简单的两点:一,问,问老师,问同学。----- 一定要交流,不是说一道题的答案问题,而是,超乎一道题的效果。至于效果,你会明白的,我说了没用。二,天天碰数学。----不管今天是生日还是分手,春节还是解放日,都一定要碰!实在特别困难哪怕是5-10分钟也要。呵呵,持之以恒,不要很聪明,你数学就能很容易上130· ●高中数学解题速度,思路和反应应该怎样提高 多解基础题,形成思维的稳定性 总结类型题,形成思维的定式化 攻击疑难题,形成思维的多变性 注重解题的规范化,形成思维的逻辑性 上课专心听讲固然是关键,但是高中的学习已经和大学有些类似了,加强对题目的熟悉程度是高考的关键,多练能让你对题目和做题的思路更熟悉,但是光做题也不行,我就不是一个喜欢做题的选手。我学数学靠的是思考和做题的结合。别人做两道题的时间我只做一道,剩下一道的时间我就思考我刚才是怎么做出来这个题目的,做出来用了哪些知识,再马上从各种高考题模拟题中找出类似的题型,看看是不是用同样的思路也能迎刃而解,如果能,那么这是条重要的思路对于解这个类型的题目,要针对性的再练习巩固一下。如此反复练习和思考,肯定有所提高。过来人的意见,你可以试试看! 数学:像数轴的三要素、分数、等式、函数的图像及平移等概念,从接触这些概念开始,几乎贯穿一个人的一生。所以理解并记住数学学科中的概念是相当重要的。如果不能理解或记住概念,那么老师讲课的时候,就像听天书,不知所云,当然不能学好了。如果能够理解或记住概念(真正暂时不能理解,不仿死记硬背),那么在老师讲课的时候,动脑子想:“老师为什么要这样做,用了什么方法和定理,是从哪个地方切入的?”把理解或记住的基本概念与老师所讲的一一印证,反过来,又加深了对基本概念的理解与记忆,更能起到举一反三的效果(一般来说听老师评讲10套左右的讲义或试卷就可以了)。数学最怕的就是蒙对了,不知道对在哪。宁可做错了,知道错在哪。

2014高考数学难题集锦(一)含详细答案及评分标准

2014高考数学难题集锦(一) 1、已知集合,若集合,且对任意的,存在 ,使得(其中),则称集合为集合的一个元基底. (Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由; ①,; ②,. (Ⅱ)若集合是集合的一个元基底,证明:; (Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的 一个基底. 2、设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求p 的最小值. (3)证明不等式: 3、设,圆:与轴正半轴的交点为,与曲线的交点为, 直线与轴的交点为. (1)用表示和; (2)求证:;

(3)设,,求证:. 4、数列,()由下列条件确定:①;②当时,与满足:当 时,,;当时,,. (Ⅰ)若,,写出,并求数列的通项公式; (Ⅱ)在数列中,若(,且),试用表示; (Ⅲ)在(Ⅰ)的条件下,设数列满足,, (其中为给定的不小于2的整数),求证:当时,恒有. 5、已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R) (1)求f(x)的解析式; (2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+; (3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由. 6、(理)对数列和,若对任意正整数,恒有,则称数列是数列的“下界数列”. (1)设数列,请写出一个公比不为1的等比数列,使数列是数列的“下界数列”; (2)设数列,求证数列是数列的“下界数列”; (3)设数列,构造

高中数学难题

高中数学 1、等差数列公差d不等于零,a1 a3 a9 成等比数列, (a1+a3+a9)/(a2+a4+a10)=? 方法1:设an的公差是d ∴a3=a1+2d,a9=a1+8d a2=a1+d,a4=a1+3d,a10=a1+9d ∴a1+a3+a9=3a1+10d,a2+a4+a10=3a1+13d ∵a1,a3,a9依次成等比数列 ∴a3/a1=a9/a3 ∴a1^2+4d^2+4a1d=a1^2+8a1d ∴a1=d ∴(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=13/16 方法二:用特值法是最好的方法。 考查a1,a3,a9,我们发现,1,3,9正好是等比数列,而自然数列正好是最典型的等差数列, 那么,我们把a1,a2,a3……跟1,2,3……分别对应起来, 所以(a1+a3+a9)/(a2+a4+a10)=(1+3+9)/(2+4+10)=13/16 点评:在解决选择填空的时候,有时候,特值法是比较好的一个方法。 2、已知f(x)=-x^3+ax^2-4 1)若f(x)在x=4/3处取得极值求a的值 2)在1)的条件下,若关于x的方程f(x)=m在[-1,1]上恰有两个不同的实数根,求实数m的取值范围 3) 若存在x0∈(0,+∞)使得f(x0)>0能成立,求a的取值范围 答:设函数f(x)的倒函数是G(x) 所以G(x)=-3x^2+2ax 第1个:因为f(x)在x=4/3处取得极值所以G(x)在x=4/3处时G(4/3)=0 即a=-2 第2个:f(x)=m在[-1,1]上恰有两个不同的实数根 设K(x)=-x^3+ax^2-4 N(x)=m 即K(x)与N(x)在[-1,1]上恰有两个不同的交点! 设M(x)为K(x)的倒函数 M(x)=G(x)=-3x^2+2ax 令M(x)=0 即X1=2a/3 X2=0 所以K(x)在x=X1和x=X2处取得极值

高一数学下难题突破

选择题难题突破 一、选择题(题型注释) 1.函数6(3)3,7, (),7. x a x x f x a x ---≤?=?>?若数列{}n a 满足()()n a f n n N *=∈,且{}n a 是递 增数列,则实数a 的取值范围是( ) A .9,34?????? B .9,34?? ??? C .()2,3 D .()1,3 试题分析:因为()()n a f n n N *=∈,{}n a 是递增数列,所以函数 6 (3)3,7(),7.x a x x f x a x ---≤?=?>?为增函数,需满足三个条件 () ()30 178 a a f f ?->? >??

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇 与高一高二不同之处在于,高三复习知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。 高三数学知识点总结1 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_. (2)若{an}为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,q∈N_. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明

高中数学难题(含答案)

东莞龙文教育高中数学试卷(24) 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一个 项是符合题目要求的。 1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条 件 4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。 现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10 D .12 5.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .123 6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞) 7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A . 1 4 B . 13 C . 1 2 D . 23 8.已知函数f (x )=。若f (a )+f (1)=0,则实数a 的值等于 A .-3 B .-1 C .1 D .3 9.若a ∈(0, 2 ),且sin 2a+cos2a=14,则tana 的值等于 A . 2 B . C . D .

最新高中数学难点突破_难点28__求空间距离

1 难点28 关于求空间距离 2 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到3 面的距离为基础,求其他几种距离一般化归为这三种距离. 4 ●难点磁场 5 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 6 是PA的中点. 7 8 求:(1)Q到BD的距离; 9 (2)P到平面BQD的距离. 10 ●案例探究 11 [例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、12 BC的中点,点O是原正方形的中心,求: 13 (1)EF的长; 14 (2)折起后∠EOF的大小. 15 命题意图:考查利用空间向量的坐标运算来解决 16 立体几何问题,属★★★★级题目. 17

知识依托:空间向量的坐标运算及数量积公式. 18 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两19 两互相垂直. 20 技巧与方法:建系方式有多种,其中以O 点为原点,以、、的方21 向分别为x 轴、y 轴、z 轴的正方向最为简单. 22 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长23 为a ,则A (0,- 22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 2 2a ),E (0,-24 42a , a ),F (42a , 4 2a ,0) 25 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE a a a a a a a a a a a a EF a a a a a 26 ∴∠EOF =120° 27 [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 28 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 29 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线30 面距离,或面面距离,亦可由最值法求得. 31 错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直32 线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的33 距离. 34

高中数学经典高考难题集锦(解析版)

2015年10月18日杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程. 2.(2010?模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

高中必修二数学知识点全面总结

第1章 空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++=)31 下下上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 222r rl S ππ+=

2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形, 锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2 作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

高考数学难点突破__函数中的综合问题含答案

高考数学难点突破 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点磁场 (★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4. (1)求证:f (x )为奇函数; (2)在区间[-9,9]上,求f (x )的最值. ●案例探究 [例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,2 1 ],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f ( 21)、f (4 1); (2)证明f (x )是周期函数; (3)记a n =f (n +n 21 ),求).(ln lim n n a ∞→ 命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力. 知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口. 错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形. 技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为) 2 ()2()2()22()(x f x f x f x x f x f ??=+=是解决问题的关键. (1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2 ()22(x f x x f =+≥ 0, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (2 1 )]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21 ,f (4 1)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R .

高中趣味数学题锦集

高中数学趣题集锦 猴子搬香蕉 一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里? 解答: 100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。 河岸的距离 两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽? 解答: 当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离

之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。 变量交换 不使用任何其他变量,交换a,b变量的值? 分析与解答 a = a+b b = a-b a= a-b 步行时间 某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。 有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分

全国百强名校 ”2020-2021学年高三数学重难点训练 (91)

第一讲 等差数列、等比数列 [高考导航] 1.对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解. 2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题. 3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节. 考点一 等差、等比数列的基本运算 1.等差数列的通项公式及前n 项和公式 a n =a 1+(n -1)d ; S n =n (a 1+a n )2 =na 1+n (n -1)2d . 2.等比数列的通项公式及前n 项和公式 a n =a 1q n -1(q ≠0); S n =????? na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).

1.(2019·大连模拟)记S n 为等差数列{a n }的前n 项和.若a 4+a 5 =24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 [解析] 由已知条件和等差数列的通项公式与前n 项和公式可列 方程组,得????? 2a 1+7d =24, 6a 1+6×5 2d =48, 即?? ? 2a 1+7d =24,2a 1+5d =16, 解得?? ? a 1=-2,d =4, 故选C . [答案] C 2.(2019·济南一中1月检测)在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148 [解析] 由题意可知, ?? ? a 1+a 2=9,a 1+a 2+a 3=21,即?? ? a 1(1+q )=9,a 1(1+q +q 2)=21, 解得?? ? q =2,a 1=3 或????? q =-23, a 1=27 (舍). ∴a 5+a 6=a 1q 4(1+q )=144.故选A . [答案] A 3.(2019·广东珠海3月联考)等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 9=15,则S 8-S 3=( ) A .30 B .25

2018高中数学(函数难题)

难点突破 一.选择题(共18小题) 1.已知奇函数f(x)是定义在R上的连续可导函数,其导函数是f'(x),当x >0时,f'(x)<2f(x)恒成立,则下列不等关系一定正确的是()A.e2f(1)>﹣f(2)B.e2f(﹣1)>﹣f(2) C.e2f(﹣1)<﹣f(2)D.f(﹣2)<﹣e2f(﹣1) 2.当x>0时,不等式恒成立,则a的取值范围是() A.[0,1)∪(1,+∞)B.(0,+∞) C.(﹣∞,0]∪(1,+∞) D.(﹣∞,1)∪(1,+∞) 3.设n∈N*,函数f1(x)=xe x,f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),曲线y=f n(x)的最低点为P n,△P n P n+1P n+2的面积为S n,则()A.{S n}是常数列B.{S n}不是单调数列 C.{S n}是递增数列D.{S n}是递减数列 4.中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种. 例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为() A.48 B.60 C.96 D.120 5.已知函数f(x)是定义在(0,+∞)上的可导函数,f'(x)是f(x)的导函数,若,且f'(2)=2,那么f(2)=()A.0 B.﹣2 C.﹣4 D.﹣6 6.函数f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,其中e为自然对数的底数,若存在实数x0使f(x0)=3成立,则实数a的值为() A.ln2 B.ln2﹣1 C.﹣ln2 D.﹣ln2﹣1

相关主题
文本预览
相关文档 最新文档