当前位置:文档之家› 开式液压系统与闭式液压系统区别及优缺点(转载)之欧阳家百创编

开式液压系统与闭式液压系统区别及优缺点(转载)之欧阳家百创编

开式液压系统与闭式液压系统区别及优缺点(转载)之欧阳家百创编
开式液压系统与闭式液压系统区别及优缺点(转载)之欧阳家百创编

开式液压系统与闭式液压系统区别

及优缺点

欧阳家百(2021.03.07)

开式系统

开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。在泵出口处装溢流阀4。这种系统结构较为简单。由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。但因油液常与空气接触,使空气易于渗入系统,导致路上需设置背压阀,这将引起附加的能量损失,使油温升高。

在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀。换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,仍被大多数起重机所采用。

闭式系统

在闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。闭式系统结构较为

紧凑,不口空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补液泵进行补油和散热,因此这种系统实际上是一个半闭式系统。

一般情况下,闭式系统中的执行元件若采用双作用单活塞杆液压缸时,由于大小腔流量不等,在工作过程中,会使功率利用率下降。所以闭式系统中的执行元件一般为液压马达。

工程机械液压传动系统,有开式系统和闭式系统,国内小吨位汽车起重机通常采取具有换向阀把持的开式系统,实现履行机构正、反方向活动及制动的请求。中、大吨位起重机大多采用闭式系统,闭式系统采取双向变量液压泵,通过泵的变量转变主油路中液压油的流量和方向,来实现履行机构的变速和换向,这种节制方法,可以充足体现液压传动的长处。

重型机械厂中、大吨位起重机液压工作装置,通常采取斜盘式轴向柱塞变量泵和定量马达组成的闭式系统。斜盘式变量柱塞泵的流量与驱动转速及排量成正比,并且可无级变量。闭式回路中变量泵的出油口和马达的进油口相连,马达的出油口和泵的进油口相连,组成一个封闭的液压油路,无需换向阀,通过调节变量泵斜盘的角度来转变泵的流量及压力油的方向,从而改变马达的转速和旋转方向。变量泵的流量随斜盘摆角变更可从零增添到

最大值。当斜盘摆过中位,可以安稳转变液体流动方向,因此微动性好,且工作安稳。

闭式液压驱动系统在工作中不断有油液泄露(连续的高压油内泄是元件设计的固有产物),为了弥补这些泄漏和耗费,保持闭式系统正常工作,必需给闭式体系及时弥补油液。闭式系统主泵上通轴附设一个小排量补油泵,由于补油泵的排量和压力相对主泵均很小,所以其附加功率丧失通常仅为传动装置总功率的1%~2%,可以忽咯不计。在闭式系统液压工作装置中设有补油溢流阀和补油单向阀,补油溢流阀限制最高补油压力,补油单向阀依据两侧管路液压油压力的高下,选择补油方向,向主油路低压侧补油,以补偿由于泵、马达容积丧失所泄露的流量;主泵的两侧设有两个高压溢流阀,斜盘快速摆动时呈现的压力峰值及最大压力由高压溢流阀维护,防止泵和马达超载;该液压装置中还设有压力切断阀,压力切断阀相当于一种压力调节,当到达设定的压力时,将油泵的排量回调到为零的状况。另外,在补油泵出口处还设有过滤器,对液压系统工作介质进行过滤,进步了液压油的干净度。

闭式体系具有以下优点:

(1)目前闭式系统变量泵均为集成式构造,补油泵及补油、溢流、把持等功效阀组集成于液压泵上,使管路衔接变得简略,不仅缩小了安装空间,而且减少了由管路衔接造成的泄露和管道振动,进步了体系的可靠性,简化了操作进程。

(2)补油系统不仅能在主泵的排量产生变更时保证容积式传动的响

应,进步系统的动作频率,还能增添主泵进油口处压力,防止大流量时产赌气蚀,可有效提高泵的转速和防止泵吸空,提高工作寿命;补油系统中装有过滤器,提高传动装置的可靠性和应用寿命;另外,补油泵还能便利的为一些低压帮助机构供给动力。

(3)由于仅有少量油液从油箱中汲取,减少了油箱的损耗。

开式液压系统的特点:

(1)一般采用双泵或三本供油,先导油由单独的先导泵提供。有些液压执行元件所需功率大需要合流供油,合流有两种方式:①阀内合流。一般有双泵合流供给一个阀杆,在由该阀一般杆控制供油给所需合流的液压执行元件。该合流方式的阀杆的孔径设计需要考虑多泵供油所虚的流通面积。②阀外合流。双泵分别通过各自阀杆,通过两阀泛联动操纵,在阀杆外合流供油给所需合流的液压执行元件。虽然操纵结构相对复杂、体积较大,但由于流经阀杆的饿是单泵流量,阀杆孔径相对较小,而且有可能与其他阀杆通用。

(2)多路阀常进行分块且分泵供油,每一阀组根据实际需要可利用直通供油道和并联供油道两种油道。前者可实现优先供油,既上游阀杆动作时,压力油就供给该阀杆操纵的液压元件,而下游阀杆操纵的液压元件就不能动作。后者可实现并供油。

(3)为满足多种作业工况及复合动作要求,一般采用简单的通断型二位二痛阀和插装阀,把油从某一油路直接引到另一油路,并往往采用单向阀防止油回流,构成单向通道。通断阀操纵有以下3种方式:①采用先导操纵油联动操纵,先导操纵油在控制操纵阀

杆移动的同时,联动操纵通断阀。②采用操纵阀中增加一条油道作为控制通断阀的油道,这样在操纵操纵阀的同时,也操纵了通断阀的开闭。

开式油路的另一缺点是:当一个泵供多个执行器同时动作时,因液压油首先向负载轻的执行器流动,导致高负载的执行器动作困难,因此,需要对负载轻的执行器控制阀杆进行节流。

闭式液压系统具有以下优点:

(1)目前闭式系统变量泵均为集成式结构,补油泵及补油、溢流、控制等功能阀组集成于液压泵上,使管路连接变得简单,不仅缩小了安装空间,而且减少了由管路连接造成的泄漏和管道振动,提高了系统的可靠性,简化了操作过程。

(2)补油系统不仅能在主泵的排量发生变化时保证容积式传动的响应,提高系统的动作频率,还能增加主泵进油口处压力,防止大流量时产生气蚀,可有效提高泵的转速和防止泵吸空,提高工作寿命;补油系统中装有过滤器,提高传动装置的可靠性和使用寿命;另外,补油泵还能方便的为一些低压辅助机构提供动力。

(3)由于仅有少量油液从油箱中吸取,减少了油箱的损耗。

液压与气压传动的优缺点

1、液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点: (1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。 (2)液压传动装置的重量轻、结构紧凑、惯性小。例如,相同功率液压马达的体积为电动机的12%~13%。液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至W(牛/瓦),发电机和电动机则约为W。 (3)可在大范围内实现无级调速。借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1∶2000,并可在液压装置运行的过程中进行调速。 (4)传递运动均匀平稳,负载变化时速度较稳定。正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动。 (5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。 (6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控。 (7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。 液压传动的缺点是: (1)液压系统中的漏油等因素,影响运动的平稳性和正确性,使得液压传动不能保证严格的传动比。 (2)液压传动对油温的变化比较敏感,温度变化时,液体粘性变化,引起运动特性的变化,使得工作的稳定性受到影响,所以它不宜在温度变化很大的环境条件下工作。 (3)为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造精度要求较高,加工工艺较复杂。 (4)液压传动要求有单独的能源,不像电源那样使用方便。 (5)液压系统发生故障不易检查和排除。 总之,液压传动的优点是主要的,随着设计制造和使用水平的不断提高,有些缺点正在逐步加以克服。液压传动有着广泛的发展前景。 2、气压传动的优点

开式液压系统与闭式液压系统区别及优缺点(转载)

开式液压系统与闭式液压系统区别及优缺点 开式系统 开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。在泵出口处装溢流阀4。这种系统结构较为简单。由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。但因油液常与空气接触,使空气易于渗入系统,导致路上需设置背压阀,这将引起附加的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀。换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,仍被大多数起重机所采用。 闭式系统 在闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。闭式系统结构较为紧凑,不口空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补液泵进行补油和散热,因此这种系统实际上是一个半闭式系统。 一般情况下,闭式系统中的执行元件若采用双作用单活塞杆液压缸时,由于大小腔流量不等,在工作过程中,会使功率利用率下降。所以闭式系统中的执行元件一般为液压马达。 工程机械液压传动系统,有开式系统和闭式系统,国内小吨位汽车起重机通常采取具有换向阀把持的开式系统,实现履行机构正、反方向活动及制动的请求。中、大吨位起重机大多采用闭式系统,闭式系统采取双向变量液压泵,通过泵的变量转变主油路中液压油的流量和方向,来实现履行机构的变速和换向,这种节

液压传动的优缺点

液压英才网资深顾问袁工分享液压传动的优缺点 液压传动系统的主要优点 液压传动与机械传动、电气传动相比有以下主要优点:: k1 E/ w1 V+ ?, ?" ?" @ (1) 在同等功率情况下,液压执行元件体积小、重量轻、结构紧凑。例如同功率液压马达的重量约只有电动机的1/6左右。5 e0 X1 _! (2) 液压传动的各种元件,可根据需要方便、灵活地来布置;三维 (3) 液压装置工作比较平稳,由于重量轻,惯性小,反应快,液压装置易于实现快速启动、制动和频繁的换向;三维|cad|机械|汽车|技术4)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1),它还可以在运行的过程中进行调速;三维|cad|机械|汽车|技术(5) 一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长;三维|cad|机械|汽车|技术2 |, d) C/ _" W (6) 容易实现直线运动;三维网技术论坛/ K6 w5 Q0 z+ E# v% l0 p! (7) 既易实现机器的自动化,又易于实现过载保护,当采用电液联合控制甚至计算机控制后,可实现大负载、高精度、远程自动控制。 (8) 液压元件实现了标准化、系列化、通用化,便于设计、制造和使用。 液压传动系统的主要缺点 (1)液压传动不能保证严格的传动比,这是由于液压油的可压缩性和

泄漏造成的。 (2)工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。 (3)由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄漏不仅污染场地,而且还可能引起火灾和爆炸事故。' ~) B8 (4)为了减少泄漏,液压元件在制造精度上要求较高,因此它的造价高,且对油液的污染比较敏感。三维网技术论坛3 k# z8 m0 T1 ob 总的说来,液压传动的优点最突出的,它的一些缺点有的现已大为改善,有的将随着科学技术的发展而进一步得到克服。

开式液压系统与闭式液压系统区别及优缺点(转载)教程文件

开式液压系统与闭式液压系统区别及优缺 点(转载)

开式液压系统与闭式液压系统区别及优缺点 开式系统 开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。在泵出口处装溢流阀4。这种系统结构较为简单。由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。但因油液常与空气接触,使空气易于渗入系统,导致路上需设置背压阀,这将引起附加的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀。换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,仍被大多数起重机所采用。 闭式系统 在闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。闭式系统结构较为紧凑,不口空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补液泵进行补油和散热,因此这种系统实际上是一个半闭式系统。

一般情况下,闭式系统中的执行元件若采用双作用单活塞杆液压缸时,由于大小腔流量不等,在工作过程中,会使功率利用率下降。所以闭式系统中的执行元件一般为液压马达。 工程机械液压传动系统,有开式系统和闭式系统,国内小吨位汽车起重机通常采取具有换向阀把持的开式系统,实现履行机构正、反方向活动及制动的请求。中、大吨位起重机大多采用闭式系统,闭式系统采取双向变量液压泵,通过泵的变量转变主油路中液压油的流量和方向,来实现履行机构的变速和换向,这种节制方法,可以充足体现液压传动的长处。 重型机械厂中、大吨位起重机液压工作装置,通常采取斜盘式轴向柱塞变量泵和定量马达组成的闭式系统。斜盘式变量柱塞泵的流量与驱动转速及排量成正比,并且可无级变量。闭式回路中变量泵的出油口和马达的进油口相连,马达的出油口和泵的进油口相连,组成一个封闭的液压油路,无需换向阀,通过调节变量泵斜盘的角度来转变泵的流量及压力油的方向,从而改变马达的转速和旋转方向。变量泵的流量随斜盘摆角变更可从零增添到最大值。当斜盘摆过中位,可以安稳转变液体流动方向,因此微动性好,且工作安稳。 闭式液压驱动系统在工作中不断有油液泄露(连续的高压油内泄是元件设计的固有产物),为了弥补这些泄漏和耗费,保持闭式系统正常工作,必需给闭式体系及时弥补油液。闭式系统主泵上通轴附设一个小排量补油泵,由于补油泵的排量和压力相对主泵均很小,所以其附加功率丧失通常仅为传动装置总功率的1%~2%,可以忽咯不计。在闭式系统液压工作装置中设有补油溢流阀和补油单向阀,补油溢流阀限制最高补油压力,补油单向阀依据两侧管路液压油压力的高下,选择补油方向,向主油路低压侧补油,以补偿由于泵、马达容积丧

液压传动优缺点

浅谈液压传动的优缺点 机械设备中常用的传动方式有:机械传动、电气传动、气压传动、液压传动等几种类型。随着科学技术的发展,在大型机械设备中,各种传动方式相互配合,发挥其优越性来提高设备性能。液压传动与其他传动方式相比具有明显的优缺点。 一、液压传动的优点 1、能输出大的推力或大转矩,可实现低速大吨位传动,这是其它传动方式 所不能比的突出优点; 2、液压传动能在大范围内很方便的实现无极调速(调速比范围可达2000), 且可在系统运行过程中调速; 3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑; 4、液压传动能使执行元件运动均匀稳定没有换向冲击,反应快可实现快速 启动、制动和频繁换向; 5、液压传动系统操作简单,调整控制方便易于实现自动化。和机、电、气 联合使用,能方便的实现复杂的自动工作循环; 6、液压传动便于实现过载保护,使用安全可靠,不会因为过载而造成元件 损坏,使用寿命长, 7、由于液压元件已实现了标准化、系列化和通用化,液压系统的设计、制 造、维修都比较方便,且能缩短周期。 二、液压传动的缺点 1、由于工作介质的泄漏和液体的可压缩性会影响执行元件运动的准确性, 故液压传动系统无法保证准确的传动比,不能用于有严格传动比要求的 内传动链中; 2、工作介质对温度的变化比较敏感,工作温度或环境温度的变化对系统工 作的影响较大,故不能在较高和较低的温度条件下工作; 3、液压传动在传动过程中能量损失大,传动效率低,不适合远程传动; 4、为减少泄漏,液压元件的制造和装配精度要求很高,因此液压元件及液 压设备的造价很高,元件生产成本高。 5、若液压设备的使用者和维修者工作经验不足,系统出现了故障时,不易

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

工程机械液压传动系统开式系统与闭式系统区别及优缺点解读

工程机械液压传动系统开式系统与闭式系统区别及优缺点 开式系统 开式系统是指液压泵 1从油箱 5吸油, 通过换向阀 2给液压缸 3(或液压马达供油以驱动工作机构,液压缸 3(或液压马达的回油再经换向阀回油箱。在泵出口处装溢流阀 4。这种系统结构较为简单。由于系统工作完的油液回油箱, 因此可以发挥油箱的散热、沉淀杂质的作用。但因油液常与空气接触,使空气易于渗入系统,导致路上需设置背压阀,这将引起附加的能量损失,使油温升高。在开式系统中, 采用的液压泵为定量泵或单向变量泵, 考虑到泵的自吸能力和避免产生吸空现象, 对自吸能力差的液压泵, 通常将其工作转速限制在额定转速的 75%以内, 或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀铸造。换向阀换向时, 除了产生液压冲击外, 运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,仍被大多数起重机所采用。 闭式系统 在闭式系统中, 液压泵的进油管直接与执行元件的回油管相连, 工作液体在系统的管路中进行封闭循环。闭式系统结构较为紧凑,不口空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现, 避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂, 由于闭式系统工作完的油液不回油箱, 油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补液泵进行补油和散热, 因此这种系统实际上是一个半闭式系统。 一般情况下, 闭式系统中的执行元件若采用双作用单活塞杆液压缸时, 由于大小腔流量不等, 在工作过程中,会使功率利用率下降。所以闭式系统中的执行元件一般为液压马达。

液压伺服控制系统的优缺点

液压伺服控制系统的优缺点 参考资料:https://www.doczj.com/doc/387258467.html,/s/blog_71facf0001010n63.html 液压伺服控制系统,是在液压传动和自动控制理论基础上建立起来的一种自动控制系统。近年来,随着自动控制的发展,无论是电气或液压伺服系统,在所有的工业部门中都开始得到应用,并普遍地为人们所熟知起来。由于其具有结构紧凑、尺寸小、重量轻、出力大,刚性好,响应快,精度高等特点,因而在工业上获得了广泛的应用。 一、液压伺服控制系统的优点 现对液压伺服控制系统在设计和应用中体现的优缺点进行一下归纳和总结。同机电伺服系统、气动伺服系统相比较,液压伺服系统具有以下的突出特点,以致成为采用液压系统而不采用其他控制系统的主要原因: 1、重量比大 在同样功率的控制系统中,液压系统体积小,重量轻。这是因为对机电元件,例如电动机来说,由于受到激磁性材料饱和作用的限制,单位重量的设备所能输出的功率比较小。液压系统可以通过提高系统的压力来提高输出功率,这时只受到机械强度

和密封技术的限制。在典型的情况下,发电机和电动机的功率比仅为16.8W/N,而液压泵和液压马达的功率——重量比为 168W/N,是机电元件的10倍。在航空、航天技术领域应用的液压马达是675W/N。直线运动的动力装置更加悬殊。 这个特点,在许多场合下,在采用液压伺服而不采用其他伺服系统的重要原因,也是直线运动系统控制系统中多用液压系统的重要原因。例如在航空、特别是导电、飞行器的控制中液压伺服系统得到了很广泛的应用。几乎所有的中远程导弹的控制系统都是采用液压控制系统。 2、力矩惯量比大 一般回转式液压马达的力矩惯量比是同容量电动机的10倍至20倍,一般液压马达为61x10Nm/Kgm2。力矩惯量比大,意味着液压系统能够产生大的加速度,也意味着时间常数小,响应速度快,具有优良的动态性能。因为液压马达或者电动机消耗的功率一部分来克服负载,另一部分消耗在加速液压马达或者电动机本身的转子。所以一个执行元件是否能够产生所希望的加速度,能否给负载以足够的实际功率,主要受到它的力矩惯量比的限制。 这个特点也是许多场合下采用液压系统,而不是采用其他控制系统的重要原因。例如火箭炮武器的防真系统中,要求平台

开式液压系统与闭式液压系统区别及优缺点(转载)之欧阳家百创编

开式液压系统与闭式液压系统区别 及优缺点 欧阳家百(2021.03.07) 开式系统 开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。在泵出口处装溢流阀4。这种系统结构较为简单。由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。但因油液常与空气接触,使空气易于渗入系统,导致路上需设置背压阀,这将引起附加的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀。换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,仍被大多数起重机所采用。 闭式系统 在闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。闭式系统结构较为

紧凑,不口空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补液泵进行补油和散热,因此这种系统实际上是一个半闭式系统。 一般情况下,闭式系统中的执行元件若采用双作用单活塞杆液压缸时,由于大小腔流量不等,在工作过程中,会使功率利用率下降。所以闭式系统中的执行元件一般为液压马达。 工程机械液压传动系统,有开式系统和闭式系统,国内小吨位汽车起重机通常采取具有换向阀把持的开式系统,实现履行机构正、反方向活动及制动的请求。中、大吨位起重机大多采用闭式系统,闭式系统采取双向变量液压泵,通过泵的变量转变主油路中液压油的流量和方向,来实现履行机构的变速和换向,这种节制方法,可以充足体现液压传动的长处。 重型机械厂中、大吨位起重机液压工作装置,通常采取斜盘式轴向柱塞变量泵和定量马达组成的闭式系统。斜盘式变量柱塞泵的流量与驱动转速及排量成正比,并且可无级变量。闭式回路中变量泵的出油口和马达的进油口相连,马达的出油口和泵的进油口相连,组成一个封闭的液压油路,无需换向阀,通过调节变量泵斜盘的角度来转变泵的流量及压力油的方向,从而改变马达的转速和旋转方向。变量泵的流量随斜盘摆角变更可从零增添到

开式液压系统和闭式液压系统各有什么特点

开式液压系统的特点 (1)一般采用双泵或三本供油,先导油由单独的先导泵提供。有些液压执行元件所需功率大需要合流供油,合流有两种方式:①阀内合流。一般有双泵合流供给一个阀杆,在由该阀一般杆控制供油给所需合流的液压执行元件。该合流方式的阀杆的孔径设计需要考虑多泵供油所虚的流通面积。②阀外合流。双泵分别通过各自阀杆,通过两阀泛联动操纵,在阀杆外合流供油给所需合流的液压执行元件。虽然操纵结构相对复杂、体积较大,但由于流经阀杆的饿是单泵流量,阀杆孔径相对较小,而且有可能与其他阀杆通用。(2)多路阀常进行分块且分泵供油,每一阀组根据实际需要可利用直通供油道和并联供油道两种油道。前者可实现优先供油,既上游阀杆动作时,压力油就供给该阀杆操纵的液压元件,而下游阀杆操纵的液压元件就不能动作。后者可实现并供油。 (3)为满足多种作业工况及复合动作要求,一般采用简单的通断型二位二痛阀和插装阀,把油从某一油路直接引到另一油路,并往往采用单向阀防止油回流,构成单向通道。通断阀操纵有以下3种方式:①采用先导操纵油联动操纵,先导操纵油在控制操纵阀杆移动的同时,联动操纵通断阀。②采用操纵阀中增加一条油道作为控制通断阀的油道,这样在操纵操纵阀的同时,也操纵了通断阀的开闭。 开式油路的另一缺点是:当一个泵供多个执行器同时动作时,因液压油首先向负载轻的执行器流动,导致高负载的执行器动作困难,因此,需要对负载轻的执行器控制阀杆进行节流。 闭式液压系统具有以下优点: (1)目前闭式系统变量泵均为集成式结构,补油泵及补油、溢流、控制等功能阀组集成于液压泵上,使管路连接变得简单,不仅缩小了安装空间,而且减少了由管路连接造成的泄漏和管道振动,提高了系统的可靠性,简化了操作过程。 (2)补油系统不仅能在主泵的排量发生变化时保证容积式传动的响应,提高系统的动作频率,还能增加主泵进油口处压力,防止大流量时产生气蚀,可有效提高泵的转速和防止泵吸空,提高工作寿命;补油系

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统与闭式系统。 (1)开式系统 如图4、1所示,开式系统就是指液压泵1从 油箱5吸油,通过换向阀2给液压缸3(或液压马达) 供油以驱动工作机构,液压缸3(或液压马达)的回 油再经换向阀回油箱。在泵出口处装溢流阀4。 这种系统结构较为简单。由于系统工作完的油液 回油箱,因此可以发挥油箱的散热、沉淀杂质的作 用。但因油液常与空气接触,使空气易于渗入系统, 导致工作机构运动的不平稳及其它不良后果。为 了保证工作机构运动的平稳性,在系统的回油路 上可设置背压阀,这将引起附加的能量损失,使油 温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力与避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转速 限制在额定转速的75%以内,或增设一个辅助泵 进行灌注。工作机构的换向则借助于换向阀。换 向阀换向时,除了产生液压冲击外,运动部件的惯 性能将转变为热能,而使液压油的温度升高。但由 图4、1 开式系统 于开式系统结构简单,因此仍为大多数工程机械 所采用。 (2)闭式系统 如图4、2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,与空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速与换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击与能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热与过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油与散热,因此这种系统实际上就是一个半闭式系统。

开、闭式油路的液压系统特点

开式液压系统和闭式液压系统特点 开式液压系统的特点 (1)一般采用双泵或三本供油,先导油由单独的先导泵提供。有些液压执行元件所需功率大需要合流供油,合流有两种方式:①阀内合流。一般有双泵合流供给一个阀杆,在由该阀一般杆控制供油给所需合流的液压执行元件。该合流方式的阀杆的孔径设计需要考虑多泵供油所虚的流通面积。②阀外合流。双泵分别通过各自阀杆,通过两阀泛联动操纵,在阀杆外合流供油给所需合流的液压执行元件。虽然操纵结构相对复杂、体积较大,但由于流经阀杆的饿是单泵流量,阀杆孔径相对较小,而且有可能与其他阀杆通用。 (2)多路阀常进行分块且分泵供油,每一阀组根据实际需要可利用直通供油道和并联供油道两种油道。前者可实现优先供油,既上游阀杆动作时,压力油就供给该阀杆操纵的液压元件,而下游阀杆操纵的液压元件就不能动作。后者可实现并供油。 (3)为满足多种作业工况及复合动作要求,一般采用简单的通断型二位二痛阀和插装阀,把油从某一油路直接引到另一油路,并往往采用单向阀防止油回流,构成单向通道。通断阀操纵有以下3种方式:①采用先导操纵油联动操纵,先导操纵油在控

制操纵阀杆移动的同时,联动操纵通断阀。②采用操纵阀中增加一条油道作为控制通断阀的油道,这样在操纵操纵阀的同时,也操纵了通断阀的开闭。 开式油路的另一缺点是:当一个泵供多个执行器同时动作时,因液压油首先向负载轻的执行器流动,导致高负载的执行器动作困难,因此,需要对负载轻的执行器控制阀杆进行节流。 闭式液压系统具有以下优点: (1)目前闭式系统变量泵均为集成式结构,补油泵及补油、溢流、控制等功能阀组集成于液压泵上,使管路连接变得简单,不仅缩小了安装空间,而且减少了由管路连接造成的泄漏和管道振动,提高了系统的可靠性,简化了操作过程。 (2)补油系统不仅能在主泵的排量发生变化时保证容积式传动的响应,提高系统的动作频率,还能增加主泵进油口处压力,防止大流量时产生气蚀,可有效提高泵的转速和防止泵吸空,提高工作寿命;补油系统中装有过滤器,提高传动装置的可靠性和使用寿命;另外,补油泵还能方便的为一些低压辅助机构提供动力。 (3)由于仅有少量油液从油箱中吸取,减少了油箱的损耗。

液压系统基础知识

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。液压系统结构液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相

液压与气压传动特点及发展前景培训课件

液压与气压传动特点及发展前景 一、液压传动的特点 1、优点:(1)体积小、重量轻、结构紧凑 (2)液压传动的各种元件可根据需要灵活方便的布置 (3)液压装置工作平稳,换向冲击小,易于实现快递启动、制动和频繁的换向 (4)操纵控制方便,可实现大范围的无级调速,而且可以在运行过程中进行调速 (5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长 (6)易于实现自动化以及过载保护,当采用电液联合控制甚至计算机控制后,可实现大负载、高精度、复杂运动的自动控制(7)液压元件实现了标准化、系列化、通用化,便于设计、制造和推广使用 2、缺点:(1)液压传动能量损失较大,传动效率比机械、电力传动要低 (2)不能保证严格的传动比,这主要由液压油泄漏等造成的 (3)工作性能易受温度变化的影响,不宜在高温或者温度很低的环境下工作 (4)液压传动系统出现故障不易诊断 二、气压传动的特点 1、优点:(1)以空气为工作介质,来源方便且用之不竭,用后可直接排入大气 而不污染环境 (2)使用快速接头可以非常简单的进行配管,因此系统的组装维修以及元件的更换比较简单 (3)全气压传动控制装置具有防火、防爆、防潮的能力,可在高温场合下使用 (4)空气的黏性很小,其损失也很小,节能高效,适于远距离运输 (5)动作迅速、反应快、维护简单、不易堵塞 (6)工作环境适用好,安全可靠。具有较高的自保持能力,即使压缩机停止运行,由于储气罐的储能,气压传动系统仍可维持一个稳 定压力 (7)成本低、过载能自动保护 2、缺点:(1)由于空气是可压缩的,因此气压传动系统稳定性差。给位置控制 和速度控制精度带来很大影响 (2)不宜获得较大的推力或转矩 (3)噪声大,尤其在声速排气时,需要加装消声器 (4)因工作介质空气本身没有润滑性,须在气路中设置给油润滑装置

液压系统组成与工作原理的闭式液压系统

同兴液压总汇:贴心方案星级服务 液压系统组成与工作原理的闭式液压系统 (同兴液压总汇) 液压系统组成与工作原理泵站、油箱、转换阀组、液压马达、管路等组成。液压元件均采用REXROTH公司产品。全船共有2套相对独立的闭式液压系统,在两套系统之间设有连通管路及阀件,使2台绞机在单机单绞时可互为备用,在双机双绞时能共同施绞。单机单绞时,只一台绞机工作,另一台绞机备用,当工作绞机的柴油机-液压系统发生故障时,通过打开(或关闭)有关的管路阀件,能使备用绞机的系统投入工作。 绞车的液压主泵均为闭式回路轴向柱塞变量泵。液压马达均为轴向柱塞变量马达。绞机控制绞机采用PLC控制。PLC接受来自绞缆绞车的绳速信号、来自压力传感器的压力信号和操纵手柄的输入信号,然后通过控制程序进行数据处理,使绞机能直接通过控制主泵的排量实现同步和限制负载输出。各绞机仍通过各自的操纵手柄进行操纵。保证额定工作绞力为245kN并通过主泵内的压力切断阀保证绞机极限负载输出不超过设计值。在人工控制双机双绞状态,人工起动1号和2号主机。绞机通过各自的操纵手柄进行操作。绞机没有同步控制,绞机的速度通过它们各自的操纵手柄比例控制。当两台绞机总的负载力超过设定值时,2台绞机通过PLC控制等同减速以限定总的输出力。在自动负载平衡双机双绞状态,2台绞机通过同一个操纵手柄操作。两台绞机的速度通过来自同一操纵手柄的相同的输出信号即主泵的相绞滩船绞机―――同排量实现同步。当两台绞机负载出现差异且差值超过预先设定的比例值时,PLC将指令重载绞机减速以让轻载绞机承担更多的载荷。当两台绞机总的负载力超过设定值时,两台绞机通过PLC控制等同减速以限定总的输出力。

典型液压传动系统实例分析

第四章 典型液压传动系统实例分析 第一节 液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液 压泵1从油箱5吸油,通过换向阀2 给液压缸3(或液压马达)供油以驱 动工作机构,液压缸3(或液压马达) 的回油再经换向阀回油箱。在泵出口 处装溢流阀4。这种系统结构较为简 单。由于系统工作完的油液回油箱, 因此可以发挥油箱的散热、沉淀杂质 的作用。但因油液常与空气接触,使 空气易于渗入系统,导致工作机构运 动的不平稳及其它不良后果。为了保证工作机构运动的平稳性,在系统的回油路上可设置背压阀,这将引起附加的能量损失,使油温升高。 图4.1 开式系统

在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。工作机构的换向则借助于换向阀。换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。但由于开式系统结构简单,因此仍为大多数工程机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半闭式系统。

液压控制系统分类与优缺点

1.2 液压控制系统分类 液压控制系统的工作液粘度许多重要参数都是温度的变量,而温度会随工作时间和负载情况变化而发生改变,因此严格说液压控制系统是时变系统。为了分析方便,工程上通常将液压控制系统看作定常系统。 液压控制系统是自动控制系统之一,液压闭环控制系统常常有多种分类方法。 1)按照控制系统完成的任务分类 按照控制系统完成的任务类型,液压控制系统可以分为液压伺服控制系统和液压调节控制系统。 伺服控制系统输入控制指令信号是变化量。通常要求系统输出量能够以一定精度跟踪控制指令信号变化,也称随动系统。 调节控制系统的控制量为一个定值。通常,在外部干扰和内部参数变动条件下,要求系统输出以一定精度保持在希望数值上,也称定值系统。 本书也采用反馈控制系统或闭环控制系统的概念,它们涵盖伺服系统、调节系统。 2)按照控制系统各组成元件的线性情况分类 按照控制系统是否包含非线性组成元件,液压控制系统可以分为线性系统和非线性系统。 实际液压元件存在明显的非线性,实际液压控制系统是典型的非线性系统。 经过线性化处理的液压控制系统或液压元件模型是线性系统。 通常,非线性系统分析和设计都较困难,因此液压控制系统的分析与设计常在线性化模型进行。 3)按照控制系统各组成元件中控制信号的连续情况分类 按照控制系统中控制信号是否均为连续信号,液压控制系统可以分为连续系统和离散系统。 仅有机械机构和液压元件构成的液压控制系统是连续系统,采用电子模拟控制器构成的电液伺服系统也是连续系统。 采数字计算机等作为数字控制器的电液伺服系统是离散系统。 4)按照被控物理量分类 按照被控物理量不同,液压反馈控制系统可以分为位置控制系统、速度控制系统、力控制系统和其它物理量控制系统。 被控对象是机械平动运动时,位置控制系统的被控物理量是位置或位移,速度控制系统的被控物理量是速度,力控制系统的被控物理量是力。 被控对象是机械转动运动时,位置控制系统的被控物理量是角位置或角位移,速度控制系统的被控物理量是角速度。力控制系统的被控物理量是力矩。 5)按照液压控制元件或控制方式分类 按照液压控制元件类型或控制方式不同,液压反馈控制系统可以分为阀控系统(节流控制方式)和泵控系统(容积控制方式)。进一步按照液压执行元件分类,阀控系统可

(完整版)液压传动基础知识含答案,推荐文档

一.填空题: 1.液压油的主要物理性质有(密度)、(闪火点)、(粘度)、(可压缩性),液压油选择时, 最主要考虑的是油液的(粘度)。 2.液体受压力作用而发生的性质称为液体的可压缩性,当液压油中混有空气时,其抗压缩 能力将(降低)。 3.液压油的常见粘性指标有(运动)粘度、(动力)粘度、和(相对)粘度,其中表示液 压油牌号的是(运动)粘度,其单位是(厘斯)。 4.我国油液牌号以( 40℃)时油液的平均(运动)黏度的(cSt)数表示。 5.我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。 6.油的粘性易受温度影响,温度上升,(粘度)降低,造成(泄漏)、磨损增加、效率降低 等问题;温度下降,(粘度)增加,造成(流动)困难及泵转动不易等问题。 7.液压传动对油温变化比较敏感,一般工作温度在(15)~(60)℃范围内比较合适。 8.液压油四个主要的污染根源是(已被污染的新油)、(残留)污染、(侵入性)污染和(内 部生成)污染。 9.流体动力学三大方程分别为(连续性方程)、(伯努利方程)和(动量方程)。 10.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 11.绝对压力等于大气压力+(相对压力),真空度等于大气压力-(绝对压力)。 12.根据液流连续性原理,同一管道中各个截面的平均流速与过流断面面积成反比,管子细 的地方流速(大),管子粗的地方流速(小)。 13.理想液体的伯努利方程的物理意义为:在管内作稳定流动的理想液体具有(比压能)、 (比位能)和(比动能)三种形式的能量,在任意截面上这三种能量都可以(相互转化),但总和为一定值。 14.在横截面不等的管道中,横截面小的部分液体的流速(大),液体的压力(小)。 15.液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。 16.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损 失和(局部压力)损失两部分组成。 17.孔口流动可分为(薄壁)小孔流动和(细长)小孔流动,其中(细长)小孔流动的流量受 (温度)影响明显。 18.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2 次方成正比。通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作可调节流阀。19.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正 比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 20.为防止产生(空穴),液压泵距离油箱液面不能太高。 21.在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现 象称为(液压冲击)。 二.判断题: 1.液压油具有粘性,用粘度作为衡量流体粘性的指标。(√) 2.标号为N32的液压油是指这种油在温度为40℃时,其运动粘度的平均值为32mm2/s。(√) 3.空气的粘度主要受温度变化的影响,温度增高,粘度变小。(√) 4.液压油的密度随压力增加而加大,随温度升高而减小,但一般情况下,由压力和温度引起的这种变化较小,可以忽略不计。(√) 5.液压系统对液压油粘性和粘温特性的要求不高。(×)

液压传动的优缺点

液压传动的优缺点 1、液压传动之所以能得到广泛的应用,是由于它具有以下的主要优点: (1), 由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方.例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点.由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方. (2), 液压传动装置的重量轻,结构紧凑,惯性小.例如,相同功率液压马达的体积为电动机的12% 13%.液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W(牛/瓦),发电机和电动机则约为0.03N/W. (3), 可在大范围内实现无级调速.借助阀或变量泵,变量马达,可以实现无级调速,调速范围可达1:2000,并可在液压装置运行的过程中进行调速. (4), 传递运动均匀平稳,负载变化时速度较稳定.正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动. (5), 液压装置易于实现过载保护——借助于设置溢流阀等,

同时液压件能自行润滑,因此使用寿命长. (6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控. (7)液压元件已实现了标准化,系列化和通用化,便于设计,制造和推广使用. 2、液压传动的缺点是: (1), 液压系统中的漏油等因素,影响运动的平稳性和正确性,使得液压传动不能保证严格的传动比. (2), 液压传动对油温的变化比较敏感,温度变化时,液体粘性变化,引起运动特性的变化,使得工作的稳定性受到影响,所以它不宜在温度变化很大的环境条件下工作. (3), 为了减少泄漏,以及为了满足某些性能上的要求,液压元件的配合件制造精度要求较高,加工工艺较复杂. (4),液压传动要求有单独的能源,不像电源那样使用方便. (5),液压系统发生故障不易检查和排除. 总之,液压传动的优点是主要的,随着设计制造和使用水平的不断提高,有些缺点正在逐步加以克服.在很多情况下,液压传动依然是很不错的选择。

液压系统的优缺点

密闭式冷却塔,又被称作“闭式冷却塔、蒸发式冷却器、蒸发式空冷器”等。密闭式冷却塔和开放式冷却塔的不同处在于:被冷却水通过盘管与管外喷淋水和空气进行热质交换,避免了被冷却水与空气直接接触而导致的水质污染。由于管外有通过PVC填料预冷却的喷淋水,其换热效果明显优于空冷器。如用于冷冻机终端散热,冷却塔的盘管和冷冻机的热交换器连接在一起,形成一个封闭的循环系统,而防止了空气中的如硫化物气体、灰尘、微生物等对循环系统的腐蚀,并且冷冻机的热交换器不会结水垢,免除了冷冻机的除垢保养,使冷冻机节电,运行寿命增长。密闭式冷却塔广泛应用于发电厂、核电站、变电站、变压器等领域;化学、制药等领域;制铁及铸造工业领域;焊接、成型、注塑、压榨、油压机械等制造工业领域;以及运行环境恶劣的场合;还应用于冷冻空调系统需要精密控制时(如水源热泵、水冷机房专用空调等)。FBT密闭式冷却塔的特点密闭式冷却塔的核心部件是它的换热器,FBT密闭式冷却塔的换热器由恒润公司冷却塔研发中心自主开发,采用交斜设计,并在每排铜管之间辅于高效散热填料,最大限度增强换热效果,与传统顺排设计和未使用填料的设计相比较,换热性能更加卓越。FBT密闭式冷却塔的构造换热器材采用散热性能优良的薄壁紫铜管换热和PVC填充材辅助散热,通过优化排列和适度倾斜,并采用设计的差排布置,使散热性能更加卓越。相对普通钢管换热器而言,提高了换热能力,并保证了管内循环介质的干净、无污染。通风机对于越来越严格的噪音要求,恒润公司产品采用机翼型宽叶片铝合金风叶,和普通铝合金板风叶比较,噪音有大幅度降低。下部水槽下部水槽采用FRP一体成形制造,无接缝,无泄漏。两个模块以上的场合使用防漏密封垫连接,不需要在现场连接水槽,缩短了安装时间。下部水槽采用倾斜设计,使清扫更容易。塔体内部宽畅的检修过道,内部配管的设计,使维修保养作业容易进行。喷淋水管的内部配管设计和布水池与众不同的连接,不仅提高了管材的使用寿命,增强了淋水的均匀性,也使冷却塔外形美观整洁。塔体框架塔体结构采用型钢和厚钢板折边,增加了熔接强度和塔体强度。所有钢铁结构件经过热浸锌处理,大幅度提高了防腐蚀性能,确保塔体坚固耐用。塔体外板密闭式冷却塔体外板采用玻璃钢材料,提高了防腐蚀、抗寒冷等性能,不仅增强了塔体表面的抗外力强度,而且延长了冷却塔的使用寿命。螺纹连接换热盘管采用螺纹连接,方便组装和拆卸。可选备件可根据客户需要,提供多种可选备件。使用我公司密闭式冷却塔免维护5年,使用期限20年以上,为用户节省了费用,提高了工作效率. FBT构造及特点 密闭式冷却塔,又被称作“闭式冷却塔、蒸发式冷却器、蒸发式空冷器”等。 北京恒润玻璃钢制造有限公司生产的密闭式冷却塔和开放式冷却塔的不同处在于:被冷却水通过盘管与管外喷淋水和空气进行热质交换,避免了被冷却水与空气直接接触而导致的水质污染。由于管外有通过PVC填料预冷却的喷淋水,其换热效果明显优于空冷器。如用于冷冻机终端散热,冷却塔的盘管和冷冻机的热交换器连接在一起,形成一个封闭的循环系统,而防止了空气中的如硫化物气

相关主题
文本预览
相关文档 最新文档