当前位置:文档之家› 常用的因式分解公式

常用的因式分解公式

常用的因式分解公式
常用的因式分解公式

常用的因式分解公式:

待定系数法(因式分解)

待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

例1 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x+y+n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设

x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)

=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有

解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).

说明 本题也可用双十字相乘法,请同学们自己解一下. 例2 分解因式:x 4-2x 3-27x 2-44x+7.

分析 本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x 2+ax+b)(x 2+cx+d)的形式. 解 设

原式=(x 2+ax+b)(x 2+cx+d)

=x 4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd , 所以有

由bd=7,先考虑b=1,d=7有所以 原式=(x 2-7x+1)(x 2+5x+7).

说明 由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a ,c 的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地. 求根法(因式分解)

我们把形如anxn+an-1xn-1+…+a1x+a0(n 为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a 时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×

我们把形如a n x n +a n-1x n-1+…+a 1x+a 0(n 为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如

f(x)=x2-3x+2,g(x)=x5+x2+6,…,

当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)

f(1)=12-3×1+2=0;

f(-2)=(-2)2-3×(-2)+2=12.

若f(a)=0,则称a为多项式f(x)的一个根.

定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.

定理2

的根,则必有p是a

0的约数,q是a

n

的约数.特别地,当a

=1时,整系数多项式f(x)的整数根

均为a

n

的约数.

我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.

分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有

f(2)=23-4×22+6×2-4=0,

即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.

解法1 用分组分解法,使每组都有因式(x-2).

原式=(x3-2x2)-(2x2-4x)+(2x-4)

=x2(x-2)-2x(x-2)+2(x-2)

=(x-2)(x2-2x+2).

解法2 用多项式除法,将原式除以(x-2),

所以

原式=(x-2)(x2-2x+2).

说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.

例3 分解因式:9x4-3x3+7x2-3x-2.

分析因为9的约数有±1,±3,±9;-2的约数有±1,

为:

所以,原式有因式9x2-3x-2.

解 9x4-3x3+7x2-3x-2

=9x4-3x3-2x2+9x2-3x-2

=x2(9x3-3x-2)+9x2-3x-2

=(9x2-3x-2)(x2+1)

=(3x+1)(3x-2)(x2+1)

说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式

可以化为9x2-3x-2,这样可以简化分解过程.

总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为

(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.

双十字相乘法(因式分解)

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为 2x2-(5+7y)x-(22y2-35y+3),可

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以

原式=[x+(2y-3)][2x+(-11y+1)]

=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:

(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.

笔算开平方

对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可

例求316.4841的平方根.

第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成

3,16.48,41.

第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.

第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.

第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.

第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.

第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:

根式的概念

【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n次方根记为(n为

大于1的自然数).作为代数式,称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能

开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.

【算术根】正数的正方根称为算术根.零的算术根规定为零.

【基本性质】由方根的定义,有

根式运算

【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即

≥0,b≥0)

【分式的方根】分式的方根等于分子、分母同次方根相除,即

≥0,b>0)

【根式的乘方】≥0)

【根式化简】

≥0)

≥0,d≥0)

≥0,d≥0)

【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.

进位制的基与数字

任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如

一般地,任一正数a可表为

这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示

(1)

式中数字ai在{0,1,2,...,q-1}中取值,a

n a

n-1

...a

1

a

称为q进数a(q)的整数部分,记作[a(q)];

a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下

2进制 0, 1

8进制 0, 1, 2, 3, 4, 5, 6, 7

16进制 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

各种进位制的相互转换

1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如

2 10→q转换转换时必须分为整数部分和分数部分进行.

对于整数部分其步骤是:

(1) 用q去除[a(10)],得到商和余数.

(2) 记下余数作为q进数的最后一个数字.

(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.

对于分数部分其步骤是:

(1)用q去乘{a(10)}.

(2)记下乘积的整数部分作为q进数的分数部分第一个数字.

(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:

103.118(10)=147.074324 (8)

整数部分的草式分数部分的草式

因式分解法(提公因式法、公式法)

因式分解法(提公因式 法、公式法) -CAL-FENGHAI.-(YICAI)-Company One1

【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是 正的,并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公 因式,这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【典例分析】 例1.分解下列因式: (1)2 2321084y x y x y x -+ (2)233272114a b c ab c abc --+

(完整版)因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、 44411681a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+

题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、 2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷2222211111(1)(1)(1)(1)(1)234910 - --???--

初二因式分解习题大全含答案

因式分解进阶 中考要求 例题精讲 一、基本概念 因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项 式分解因式. 因式分解与整式乘法互为逆变形: ()m a b c ma mb mc ++++整式的乘积 因式分解 式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式 因式分解的常用方法: 提取公因式法、运用公式法、分组分解法、十字相乘法. 分解因式的一般步骤: 如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式 十字相乘法分解,如还不能,就试用分组分解法或其它方法. 注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止; ②结果一定是乘积的形式; ③每一个因式都是整式; ④相同的因式的积要写成幂的形式. 在分解因式时,结果的形式要求: ①没有大括号和中括号; ②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解; ③单项式因式写在多项式因式的前面; ④每个因式第一项系数一般不为负数; ⑤形式相同的因式写成幂的形式. 二、提公因式法 提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法: 系数——取多项式各项系数的最大公约数; 字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂. 三、公式法 平方差公式:22()()a b a b a b -=+- ①公式左边形式上是一个二项式,且两项的符号相反; ②每一项都可以化成某个数或式的平方形式; ③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积. 完全平方公式:2222()a ab b a b ++=+

因式分解公式法、十字相乘法教师版

2、运用公式法进行因式分解 【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±() 立方和、立方差公式 a b a b a ab b 3322±=±?+()()μ 补充:欧拉公式: 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。 下面我们就来学习用公式法进行因式分解 【分类解析】 1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。 解:根据已知条件,设221322x x m x x ax b -+=+++()() 则222123232x x m x a x a b x b -+=+++++()() 由此可得211120 23a a b m b +=-+==???????()()()

初中常用因式分解公式

初中常用因式分解公式 2013.6.6 一.因式分解概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。 二.因式分解方法: 1、提公因法 如果一个多项式的各项都含有相同因式,那么就可以把这个相 同因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x2-2x 解:x2-2x =x(x -2) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 +4ab+4b 解:a2 +4ab+4b =(a+2b)(a+2b)完全平方公式 最常用的公式: (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 注意该方法的核心是分组后能提取公因式! 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2 -19x-6 分析: 1 -3 7 2 交差相乘再相加2-21=-19 解:7x2 -19x-6=(7x+2)(x-3) 5、配凑法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解。

因式分解一_提取公因式法和公式法_超经典

因式分解(一) ——提取公因式与运用公式法 【学习目标】(1)让学生了解什么是因式分解; (2)因式分解与整式的区别; (3)提公因式与公式法的技巧。 【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的, 并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式, 这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【经典例题】 例1、找出下列中的公因式: (1) a 2b ,5ab ,9b 的公因式 。 (2) -5a 2,10ab ,15ac 的公因式 。 (3) x 2y(x -y),2xy(y -x) 的公因式 。

因式分解公式大全

公式及方法大全 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 常用的因式分解公式:

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是 x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7).

《公式法因式分解》教学设计

《公式法因式分解》教学设计 永年县第八中学——胡平亮 一、教学内容:冀教版七年级数学第十一章公式法分解因式 二、教学目标: 知识与技能 1、经历逆用平方差公式的过程. 2、会运用平方差公式,并能运用公式进行简单的分解因式. 过程与方法 1、在逆用平方差公式的过程中,培养符号感和推理能力. 2、培养学生观察、归纳、概括的能力. 情感与价值观要求: 在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。 三、教学重点: 利用平方差公式进行分解因式 四、教学难点: 领会因式分解的解题步骤和分解因式的彻底性。 五、教学准备: 深研课标和教材,分析学情,制作课件 六、教学过程; 一、知识回顾 1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? (1)、(2x-1)2=4x2-4x+1 否 (2)、 3x2+9xy-3x=3x(x+3y-1) 是 (3)、4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 否 2、把下列各式进行因式分解

(1). a3b3-a2b-ab (2)(3x+y)(3x-y) (3)、(x+5)(x-5) 利用一组整式的乘法运算复习平方差公式,为探究运用平方差公式进行分解因式打下基础。 二、导入新课: 你能把多项式:x2 -25、9x2 -y2分解因式吗? 利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解 a2- b2类的二次二项式。学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。 三、探究与交流 a2- b2=(a+b)(a-b) (1)用语言怎样叙述公式? (2)公式有什么结构特征? (3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征, 学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。 判断:下列多项式能不能运用平方差公式分解因式? (1) m2-1 (2)4m2-9 (3)(3)4m2+9 (4)(4)x2-25y + (5) -x2-25y2 (6) -x2-25y2 通过这一组判断,使学生加深理解和掌握平方差公式的结构特征,既突出了重点,也培养了学生的应用意识。 四、体验新知: (A)通过自学例1: 分解因式(1)25-16x2 (2)9a2 -1/4b2 引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。 要让学生明确: (1)要先确定公式中的a和b; (2)学习规范的步骤书写。 (B)例2、分解因式9(m+n)2-(m-n)2

公式法因式分解知识点讲解及练习

公式法因式分解知识点讲解及练习 1.平 方 差公式: )b a )(b a (b a 22-+=- 因式分解 22)b a )(b a (b a -=-+ 整式乘法 2、分解因式的一般步骤为: (1)若多项式各项有公因式,则先提取公因式。 (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。 (3)每一个多项式都要分解到不能再分解为止。 3、分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分 解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目 的。例如:22a b a b -+-= 22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 4、原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 5、有些多项式用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 题型一 公式法因式分解 例 1将下列各式因式分解 225-36x 22916b a - 点评::能用平方差公式因式分解的多项式的特征:(1)有且只有两个平方项: (2)两个平方项异号。 知识梳理

巩 固1、计算 (1)22758258- (2)22429171- (3)223.59 2.54?-? 2、已知0001.03,100003=-=+b a b a ,求229a b -的值。 3、把多项式()()2 249b a b a --+分解因式 * 平方差公式中字母b a 、不仅可以表示数,而且也可以表示其他代数式。 例2判断下列各式是不是完全平方式 (1) 222y xy x ++ (2)2244y xy x ++ (3)226b ab a +- (5)222y x xy ++- (6)2242b ab a ++ (4) 412++x x

常用的因式分解公式

常用的因式分解公式: 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下. 例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7).

45.3.2因式分解公式法(第1课时)

14.3.2公式法导学案(第1课时) 备课时间: 主备:张洪波 高永爱 审核:高永爱 使用时间: 【学习目标】 1.运用平方差公式分解因式,能说出平方差公式的特点. 2.会用提公因式法与平方差公式法分解因式. 3.会两次运用平方差公式分解因式,知道因式分解必须进行到不能分解为止. 【学习重难点】 学习重点:用平方差公式法进行因式分解. 学习难点:把多项式进行必要变形,灵活运用平方差公式分解因式 【自主学习】 1、对于等式x 2+x = x (x+1): 1) 如果从左到右看,是一种什么变形? 2) 什么叫因式分解?这种因式分解的方法叫什么? 3) 如果从右到左看,是一种什么变形? 4) 因式分解和整式乘法是两种互为_______的变形. 【合作探究】 探究一: 1.计算:(1)(x-1)(x+1)=_________;(2)(y+4)(y-4)=_______ 2.根据1题的结果分解因式:(1)21_____x -=;(2)216________y -= 3.你能将22a b -进行因式分解吗?你是如何思考的? 分析:要将22a b -进行因式分解,可以发现它_________公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的 ____________ 形式,所以用平方差公式可以写成如下 形式:

结论:多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法。 拓展延伸: 1.把一个单项式写成平方的形式: (1)24a =( )2;(2)40.16a =( )2;(3)221.21a b =( )2; 例1:分解因式:(1);249x -; (2)22()()x p x q +-+ (3).22221.1b b a - 结论:(1)中的_______(2)中的________和(3)中的________相当于平方差公式中的a ;(1)中的______(2)中的_________和(3)中的__________相当于平方差公式中的b ,这说明公式中的a 和b 可以表示一个数,也可以表示一个单项式,或是多项式,只要符合公式的特点( )()22-,就可以运用公式分解因式. 总结平方差公式的特点: ①左边是二项式,每项都是 的形式,两项的符号 . ②右边是两个多项式的 ,一个因式是两数的 ,另一个因式是这两数的 . 例2:因式分解:(1)44x y - ; (2)3a b ab -; 【尝试应用】 1.口答:①24x -=_________ ②29t -= ③21649____m -= ④2254______x -+= 2.因式分解: (1)22125 a b -; (2)2294a b -; (3)24x y y -;

因式分解—公式法

14.3.2 公式法(平方差公式) 授课时间: 教学目标: 1.知识与技能:会应用平方差公式进行因式分解,发展学生推理能力。 2.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。 3.情感、态度与价值观: 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。 教学重点:掌握平方差公式的特点及运用平方差公式进行因式分解的方法。 教学难点:提取公因式与平方差公式结合进行因式分解的思路和方法。 教学过程: (一) 复习提问: 1. 讲评上节课作业,复习用提取公因式法分解因式。 2. 计算:(1)))((b a b a -+; (2))3)(3(-+a a ; (3))35)(35(y x y x -+; (4))43 1)(431(n m n m +-。 (设计意图:通过以上练习,复习用平方差公式进行整式的乘法计算,进一步引导学生理解整式的乘法与因式分解的关系) (二)讲解新课: 我们知道,整式乘法与因式分解相反,因此,利用这种关系,可以得到因式分解的方法,如果把乘法公式反过来,就可以用来把某些多项式分解因式, 这种分解因式的方法叫做运用公式法,今天我们学习公式中的一种。 板书“平方差公式”。 把乘法公式22))((b a b a b a -=-+,反过来,就得到))((22b a b a b a -+=-, 这就是说,两个数的平方差,等于这两个数的和与这两个数的差的积。 公式特征:二项式、差的形式、两项分别是平方数或平方式,符合此特征的二项式可用平方差公式进行因式分解,分解为这两个底数的和与这两个底数的差的积。解题的关键在于找出这两项的底数,相当于公式中的a 、b 。 如:把22925y x -进行因式分解,因为22)5(25x x =,22)3(9y y =,底数分别为x 5、y 3,则22925y x -分解为)35)(35(y x y x -+。 下面我们举例说明,如何利用平方差公式分解因式:

因式分解公式大全

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 公式及方法大全 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 常用的因式分解公式:

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是 x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3

=(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有 由bd=7,先考虑b=1,d=7有

公式法因式分解练习

运用公式法分解因式 思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。 例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。 二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。 例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解. 例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4. 四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止. 例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4. 五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。 例5、 分解因式:(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y). 六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。 例6 、分解因式: (x-y)2-4(x-y-1). 七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。 例7、 分解因式:(x 2+4)2-16x 2. 练习: 1、多项式2244x xy y -+-分解因式的结果是( ) (A)2(2)x y - (B)2(2)x y -- (C)2(2)x y -- (D)2()x y + 2、 41x -的结果为( ) A.22(1)(1)x x -+ B.22(1)(1)x x +- C.2(1)(1)(1)x x x -++ D.3(1)(1)x x -+ 3、222516a kab a ++是一个完全平方式,那么k 值为( )

因式分解 公式法(一)

因式分解——公式法(一) 一、教学目标: (一)知识与技能: 1.使学生了解运用公式法分解因式的意义; 2.会用平方差公式进行因式分解; 3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式. (二)过程与方法: 1.发展学生的观察能力和逆向思维能力; 2.培养学生对平方差公式的运用能力。 (三)情感与态度: 在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。 二、教学重点和难点: 1.教学重点:利用平方差公式分解因式. 2.教学难点:领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式,?对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来. 三、教学方法:采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维. 四、教学用具:多媒体 五、教学过程: 一知识回顾: 1 什么叫多项式的分解因式? 2 分解因式和整式乘法有何关系? 3 我们学了什么方法进行因式分解?

练习1:根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? 1.(2x-1)2=4x2-4x+1 2. 3x2+9xy-3x=3x(x+3y-1) 3.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 练习2把下列各式进行因式分解 (1). a3b3-a2b-ab (2). -9x2y+3xy2-6xy 二观察探讨,体验新知 在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= - (2)(a+b)(a-b) = () (3) x2-25 = (4) a2-b2= 知识探索 平方差公式:a2-b2=(a+b)(a-b). 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式). 公式的结构特征:什么形式的多项式能用平方差公式进行分解 下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式。 (1) m2-1 (2)4m2-9 (3)4m2+9 (4)x2-25y 2

(完整版)高中数学因式分解方法大全(十二种)

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x -2x -x x -2x –x =x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b 解:a +4ab+4b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3)

5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、求根法

因式分解公式法

知识点一:因式分解的概念 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 4、(a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). 5、a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; 6、a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);知识点三:方法及典型例题一、直接用公式:当所给的多用公式法分解因式。 例1、分解因式: 1)x2-9; :当所 分解因式: 1)x5y3-x3y5; :当 ,转换为 分解因式: 2-25y2; :通过方式的形式,然后利公式 再分解为止. 例4、分解因式: (1)x4-81y4;

五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。 例5、 分解因式: (1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y). 2、下列多项式中,能用公式法进行因式分解的是( ) (A)22x y + (B)222x xy y -+ (C)222x xy y +- (D)22x xy y ++ 3、 41x -的结果为( ) A.22(1)(1)x x -+BD.3(1)(1)x x -+ 4、代数式42819x x --,, A.3x - B.(3 x +11、把下列各式分解因式. (1)249x -; (2)4 220.01625m n -. 12、把下列各式分解因式.

因式分解公式法

因 式 分 解 公式法 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。 1.利用平方差公式因式分解:()()b a b a b a -+=-2 2 ①条件:两个二次幂的差的形式; ②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式; ③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。 2.利用完全平方公式因式分解:()2 2 22b a b ab a ±=+± 注意: ①是关于某个字母(或式子)的二次三项式; ②其首尾两项是两个符号相同的平方形式; ③中间项恰是这两数乘积的2倍(或乘积2倍的相反数); ④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。 ⑤在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号. ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.

典型例题分析: 利用平方差公式: 例1. 用平方差公式分解因式: (1)2 2 )(9y x x -+-; (2)2233 1n m -.

例2.分解因式: (1)ab b a -5; (2))()(4 4 n m b n m a +-+ (3)2 2 2 2 )23()32(4y x m y x m ---; (4)b a b a 2418321822+-- 例3. 简算 (1) 226778- (2)22991001- 例4. 解方程:.36)321()321(2 2 =--+x x 【拓展提升】 例5. 分解因式:(1)8 8y x +-; (2) 2 2 2 16)4(x x -+. 例6. 1)12 ()12)(12)(12(32 3 2 +++++Λ的个位数字是 . 例7.若12 48 -能被60与70之间的两个整数整除,这两个数是 . 针对性训练: 1. 若)2)(2)(4(162 x x x x n -++=-,则n 的值是( ) A. 6 B. 4 C. 3 D. 2 2. 把多项式2 22 22 4)(b a b a -+分解因式的结果是( ) A. 222)4(ab b a ++ B. 2 22)4(ab b a ++ C. )4)(4(2 2 2 2 ab b a ab b a -+++ D. 22)()(b a b a -+ 3. 分解因式: (1)2 2536x -; (2)2201.094n m +- ; (3)624 9 8116x y -; (4)224)32(x y x --

常用的因式分解公式

常用的因式分解公式: 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例1 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x+y+n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设 x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n) =x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明 本题也可用双十字相乘法,请同学们自己解一下. 例2 分解因式:x 4-2x 3-27x 2-44x+7. 分析 本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x 2+ax+b)(x 2+cx+d)的形式. 解 设 原式=(x 2+ax+b)(x 2+cx+d) =x 4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd , 所以有 由bd=7,先考虑b=1,d=7有所以 原式=(x 2-7x+1)(x 2+5x+7). 说明 由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a ,c 的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地. 求根法(因式分解) 我们把形如anxn+an-1xn-1+…+a1x+a0(n 为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a 时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3× 我们把形如a n x n +a n-1x n-1+…+a 1x+a 0(n 为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如

因式分解(公式法之完全平方公式与平方差公式)

因式分解基础习题 (公式法) 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1.24x - 2.2 9y - 3.21a - 4.224x y - 5.2125b - 6.222 x y z - 7.2240.019m b - 8.2219 a x - 9.2236m n - 10.2249x y - 11.220.8116a b - 12.222549p q - 13.2422a x b y - 14.41x - 15. 44411681 a b m - 题型(二):把下列各式分解因式 1.22()()x p x q +-+ 2. 22 (32)()m n m n +-- 3.2216()9()a b a b --+ 4.22 9()4()x y x y --+ 5.22()()a b c a b c ++-+- 6.22 4()a b c -+ 题型(三):把下列各式分解因式 1.53x x - 2.22 4ax ay - 3.322ab ab -

4.316x x - 5.2433ax ay - 6.2 (25)4(52)x x x -+- 7.324x xy - 8.343 322x y x - 9.4416ma mb - 10.238(1)2a a a -++ 11.416ax a -+ 12.2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1.证明:两个连续奇数的平方差是8的倍数。 2.计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷222221 1111(1)(1)(1)(1)(1) 234910---???-- 专题训练二:利用完全平方公式分解因式 题型(一):把下列各式分解因式 1.221x x ++ 2.2441a a ++ 3. 2169y y -+ 4.2 14m m ++ 5. 221x x -+ 6.2816a a -+

相关主题
文本预览
相关文档 最新文档