当前位置:文档之家› 平衡微分方程与切应力互等定理

平衡微分方程与切应力互等定理

平衡微分方程与切应力互等定理
平衡微分方程与切应力互等定理

第二章应力状态分析

一. 内容介绍

弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。

应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。

应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。

本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。

二. 重点

1.应力状态的定义:应力矢量;正应力与切应力;应力分量;

2.平衡微分方程与切应力互等定理;

3.面力边界条件;

4.应力分量的转轴公式;

5.应力状态特征方程和应力不变量

三.知识点

体力、应力矢量、应力分量、平衡微分方程、面力边界条件、主平面与主应力、主应力性质、截面正应力与切应力、三向应力圆、八面体单元、偏应力张量不变量、面力、正应力与切应力、应力矢量与应力分量、切应力互等定理、应力分量转轴公式、平面问题的转轴公式、应力状态特征方程、应力不变量、最大切应力、球应力张量和偏应力张量

§2.1 体力和面力

学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。

体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。

面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。

体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。

学习要点:

1.体力;

2. 面力。

体力:

作用于物体的外力可以分为两种类型:体力和面力。

所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。

面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻

域取一微小体积元素△V,设△V 的体力合力为△F,则P点的体力定义为令微小体积元素△V趋近于0,则可以定义一点P的体力为

一般来讲,物体内部各点处的体力是不相同的。

物体内任一点的体力用F b表示,称为体力矢量,其方向由该点的体力合力方向确定。

体力沿三个坐标轴的分量用F b i( i = 1,2,3)或者F b x,F b y,F b z表示,称为体力分量。体力分量的方向规定与坐标轴方向一致为正,反之为负。

应该注意的是:在弹性力学中,体力是指单位体积的力。

面力:

类似于体力,可以给出面力的定义。

对于物体表面上的任一点P,在P点的邻域取一包含P点的微小面积元素△S。

设△S 上作用的面力合力为△F,则P 点的面力定义为

面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。一般条件下,面力边界条件是弹性力学问题求解的主要条件。

面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。

面力的方向规定以与坐标轴方向一致为正,反之为负。

弹性力学中的面力均定义为单位面积的面力。

§2.2 应力和应力状态

学习思路:

物体在外界因素作用下,物体内部各个部分之间将产生相互作用,物体内部相互作用力称为内力。为讨论弹性体的强度,将单位面积的内力,就是内力集度定义为应力。

p n为过任意点M,法线方向为n的微分面上的应力矢量。应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。

一点所有截面的应力矢量的集合称为一点的应力状态。讨论一点各个截面的应力变化趋势称为应力状态分析。

凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。应力状态对于研究物体的强度是十分重要的。显然,作为弹性体内部一个确定点的各个截面的应力矢量,就是应力状态必然存在一定的关系。不可能也不必要写

出一点所有截面的应力。为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。

为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。

学习要点:

1. 应力矢量;

2. 应力矢量的分解;

3. 应力分量。

应力矢量:

物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力称为内力。

内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。

内力的分布一般是不均匀的。为了描述任意一点M的内力,在截面上选取一个包含M的微面积单元ΔS,则可认为微面积上的内力主矢ΔF的分布是均匀的。

设ΔS 的法线方向为n,则定义:

上式中p n为微面积ΔS 上的平均应力。如果令ΔS 逐渐减小,并且趋近于零,取极限可得

上述分析可见:p n是通过任意点M,法线方向为n的微分面上的应力矢量。

应力p n是矢量,方向由内力主矢ΔF确定,又受ΔS方位变化的影响。

应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。这种性质称为应力状态。因此凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。

一点所有截面的应力矢量的集合称为一点的应力状态。应力状态对于研究物体的强度是十分重要的。显然,作为弹性体内部一个确定点的各个截面的应力矢量,就是应力状态必然存在一定的关系。不可能也不必要写出一点所有截面的应力。为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。

正应力与切应力:

讨论一点各个截面的应力变化趋势称为应力状态分析。为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。

应力矢量的一种分解方法是将应力矢量p n在给定的坐标系下沿三个坐标轴方向分解,如用p x, p y, p z表示其分量,则

p n=p x i + p y j+ p z k

这种形式的分解并没有工程实际应用的价值。它的主要用途在于作为工具用于推导弹性力学基本方程。

另一种分解方法,是将应力矢量p n沿微分面ΔS的法线和切线方向分解。与微分面ΔS 法线n方向的投影称为正应力,用n表示;平行于微分面ΔS 的投影称为切应力或剪应力,切应力作用于截面内,用n表示。

弹性体的强度与正应力和切应力息息相关,因此这是工程结构分析中经常使用的应力分解形式。

由于微分面法线n的方向只有一个,因此说明截面方位就确定了正应力

n的方向。但是平行于微分面的方向有无穷多,因此切应力n不仅需要确定截面方位,还必须指明方向。

应力分量:

为了表达弹性体内部任意一点M 的应力状态,利用三个与坐标轴方向一致的微分面,通过M点截取一个平行六面体单元。

将六面体单元各个截面上的应力矢量分别向3个坐标轴投影,可以得到应力分量ij。

应力分量的第一脚标i 表示该应力所在微分面的方向,即微分面外法线的方向;

第二脚标j 表示应力的方向。如果应力分量与j 坐标轴方向一致为正,反之为负。

如果两个脚标相同,i=j,则应力分量方向与作用平面法线方向一致,这是正应力,可以并写为一个脚标,例如x。

如果两脚标不同,i≠j,则应力分量方向与作用平面法线方向不同,这是切应力,例如xy。

六面体单元的3对截面共有九个应力分量ij。

应该注意:应力分量是应力矢量在坐标轴上的投影,因此是标量,而不是矢量。

在已知的坐标系中应力状态通常用应力张量

表示。使用应力张量可以完整地描述一点的应力状态。

§2.3 应力矢量与应力分量

学习思路:

应力矢量不仅随点的位置改变而变化,而且也由于截面的法线方向n的方向改变而变化,研究这一变化规律称为应力状态分析。如果应力分量能够描述一点的应力状态,那么应力分量与其它应力参数必然有内在联系。

本节分析应力矢量与应力分量之间的关系,为深入讨论应力状态作准备。

利用三个坐标平面和一个任意斜截面构造微分四面体单元,通过四面体单元探讨坐标平面的应力分量和斜截面上的应力矢量的关系。

根据平衡关系,推导任意斜截面的应力矢量、法线方向余弦和各个应力分量之间的关系。

分析表明:一点的应力分量确定后,任意斜截面的应力矢量是确定的。

学习要点:

1. 微分四面体单元;

2. 应力矢量与应力分量。

一点的九个应力分量如果能够完全确定一点的应力状态,则其必须能够表达通过该点的任意斜截面上的应力矢量。

为了说明这一问题,在O点用三个坐标面和一任意斜截面截取一个微分四面体单元。

斜截面的法线方向矢量为n,它的三个方向余弦分别为l,m和n。

设斜截面上的应力为p n,i,j和k 分别为三个坐标轴方向的单位矢量,p n在坐标轴上的投影分别为p x, p y, p z。则应力矢量可以表示为

p n= p x i+ p y j+ p z k

同样,把单位体积的质量所受的体积力F b沿坐标轴分解,有

F b= F b x i+ F b y j+ F b z k

设S为ΔABC的面积,则

ΔOBC=lS, ΔOCA=mS, ΔOAB=nS

ΔABC的法线方向的单位矢量可表示为

n= l i+ l j + m k

微分四面体在应力矢量和体积力作用下应满足平衡条件,设h为O点至斜面ABC 的高,由x方向的平衡,可得

将公式代入上式,则

对于微分四面体单元,h与单元体棱边相关,因此与1相比为小量,趋近于零,因此

同理

如果采用张量记号,则上述公式可以表示为

上式给出了物体内一点的9个应力分量和通过同一点的各个微分面上的应力之间的关系。这一关系式表明,只要有了应力分量,就能够确定一点任意截面的应力矢量,或者正应力和切应力。因此应力分量可以确定一点的应力状态。

§2.4 平衡微分方程

学习思路:

物体在外力作用下产生变形,最后达到平衡位置。平衡不仅是指整个物体,而且弹性体的任何部分也是平衡的。

本节通过微分平行六面体单元讨论弹性体内部任意一点的平衡。

应该注意:在讨论微分单元体平衡时,考虑到坐标的微小变化将导致应力分量的相应改变。即坐标有增量时,应力分量也有对应的增量。这个增量作为高阶小量,如果不涉及微分单元体平衡时是可以不考虑的。

微分平衡方程描述了弹性体内部任意一点的平衡,确定了应力分量与体力之间的关系。又称为纳维(Navier)方程。

平衡微分方程描述弹性体内部应力分量与体力之间的微分关系,是弹性力学的第一个基本方程。

切应力互等定理是弹性体力矩平衡的结果。

学习要点:

1. 微分单元体及平衡关系;

2. 平衡微分方程与切应力互等定理。

平衡方程

物体在外力作用下产生变形,最后达到平衡位置。不仅整个物体是平衡的,而且弹性体的任何部分也都是平衡的。

为了考察弹性体内部的平衡,通过微分平行六面体单元讨论任意一点M 的平衡。在物体内,通过任意点M,用三组与坐标轴平行的平面截取一正六面体单元,单元的棱边分别与x,y,z轴平行,棱边分别长d x,d y,d z。

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

常微分方程总结

(1) 概念 微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。如: 一阶:2dy x dx = 二阶:220.4d s dt =- 三阶:32243x y x y xy x ''''''+-= 四阶:()4410125sin 2y y y y y x ''''''-+-+= 一般n 阶微分方程的形式:()() ,,,,0n F x y y y '=。这里的()n y 是必须出现。 (2)微分方程的解 设函数()y x ?=在区间I 上有n 阶连续导数,如果在区间I 上, ()()()(),,0n F x x x x ?????'≡???? 则()y x ?=称为微分方程()(),,,,0n F x y y y '=的解。 注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。 函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。 导数→导函数简称导数,导数表示原函数在该点的斜率大小。 导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。 函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()0 0lim x x f x f x →=则称函数()f x 在点0x 连续。 左连续:()() ()000lim x x f x f x f x --→== 左极限存在且等于该点的函数值。 右连续:()() ()000lim x x f x f x f x ++→== 右极限存在且等于该点的函数值。 在区间上每一个点都连续的函数,叫做函数在该区间上连续。如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。 函数在0x 点连续?()()()()000 0lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点0x 有定义 2、()0 lim x x f x →极限存在

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

平衡微分方程与切应力互等定理

第二章应力状态分析 一. 内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。 应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二. 重点

1.应力状态的定义:应力矢量;正应力与切应力;应力分量; 2.平衡微分方程与切应力互等定理; 3.面力边界条件; 4.应力分量的转轴公式; 5.应力状态特征方程和应力不变量 三.知识点 体力、应力矢量、应力分量、平衡微分方程、面力边界条件、主平面与主应力、主应力性质、截面正应力与切应力、三向应力圆、八面体单元、偏应力张量不变量、面力、正应力与切应力、应力矢量与应力分量、切应力互等定理、应力分量转轴公式、平面问题的转轴公式、应力状态特征方程、应力不变量、最大切应力、球应力张量和偏应力张量 §2.1 体力和面力 学习思路: 本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

常微分方程考研讲义第三章一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解 的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程

2dy y dx = 过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y , 2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=,在区间0||x x h -≤上连续,而且满足初始条件 00()x y ?= (3.3)

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

流体的平衡微分方程及其积分

流体的平衡微分方程及其积分 一、流体平衡微分方程——欧拉平衡方程 如图所示,在平衡流体中取一微元六面体,边长分别为d x ,d y ,d z ,设中心点的压强为p (x,y,z )=p ,对其进行受力分析: 根据平衡条件,在x 方向有0F x =∑,即: 0zX y z y x p 21z y )21=+)+-((d dxd d d dx p d d dx x p p ρ????- 01X =-x p ??ρ 式中:X ——单位质量力在x 轴的投影 流体平衡微分方程(即欧拉平衡微分方程): ?????????=??-=??-=??- 010101z p Z y p Y x p X ρρρ 物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量力分量彼此相等。 压强沿轴向的变化率(z p y p x p ??????,,)等于轴向单位体积上的质量力的分量(ρX ,ρY ,

ρZ )。 二、平衡微分方程的积分 将欧拉平衡微分方程中各式,分别乘以dx 、dy 、dz ,整理: Zdz)Ydy (Xdx dz z p dy y p x ++=??+??+??ρdx p 因为p = p (x,y,z ) ∴ Zdz)Ydy (Xdx dp ++=ρ ρ为常量; Xdx +Ydy +Zdz 应为某函数W =F (x ,y ,z )的全微分: dz z W dy y W dx x W dz dy dx d ??+??+??=++=)Z Y (X W dW dp =ρ 平衡流体中压强p 的全微分方程 积分得:p=ρW +c 假定平衡液体自由面上某点(x 0,y 0,z 0)处的压强p 0及W 0为已知,则: c =p 0-ρW 0 ∴ p=p 0+ρ(W-W 0) 欧拉平衡微分方程的积分 三、帕斯卡定律 处于平衡状态下的不可压缩流体中,任意点M 处的压强变化值△p 0,将等值地传递到此平衡流体的其它各点上去。 说明:只适用于不可压缩的平衡流体; 盛装液体的容器是密封的、开口的均可。 四、等压面 平衡流体中压强相等的各点所组成的面。 等压面:dp =ρ(Xdx +Ydy +Zdz )=0 ρ为常量,则:Xdx +Ydy +Zdz =0 即:质量力在等压面内移动微元长度所作的功为零。 等压面的特征:平衡流体的等压面垂直于质量力的方向 只有重力作用下的等压面应满足的条件: 1.静止; 2.连通; 3.连通的介质为同一均质流体;

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

常微分方程考试大纲

常微分方程考试大纲 Ⅰ. 课程性质 本课程是高等师范院校数学与应用数学专业和信息与计算科学专业的一门重要的核心基础课,是进一步学习泛函分析、数学物理方程、微分几何的必要准备,本身在工程力学、流体力学、电路振荡分析、工业自动控制以及化工,生物、医学、经济、管理等领域有广泛的应用。通过本课程的学习,不仅为后续课程打下基础,而且以穿插其中的在历史上成功利用微分方程解释实际现象的著名范例来培养学生用数学理论解决实际问题的意识和初步能力。是数学系数学与应用数学、信息与计算科学两个本科专业的必修课。 Ⅱ. 课程设置目的与要求 通过常微分方程的教学,使学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和基本方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的了解,培养学生分析问题和解决问题的能力,为学生学习数学的其它课程和物理学等有关课程打下基础,从而有助于学生胜任中学数学教学,为实施素质教育提供建模思想方面的训练和准备。 Ⅲ. 课程内容与考核目标 第一章 绪论 (一)学习目的和要求 通过本章的学习,掌握从实际问题建立常微分方程模型的基本过程和常用方法,理解初值条件的实际含义。掌握微分方程的基本概念,特别是解、通解、初值问题、特解等概念及其关系。理解一阶常微分方程的积分曲线与方向场之间的关系,并初步了解其中所包含的定性思想。 (二)课程主要内容 1.微分方程:某些物理过程的数学模型 2.基本概念 (1)常微分方程和偏微分方程。

(2)线性和非线性。 (3)解和隐式解。 (4)通解和特解。 (5)积分曲线和方向场。 (三)考核知识点 1.微分方程的数学模型。 2.微分方程的基本概念。 (四)考核要求 1.微分方程:某些物理过程的数学模型 (1)理解:微分方程的数学模型。 2.基本概念 (1)理解:微分方程的基本概念。 第二章 一阶微分方程的初等解法 (一)学习目的和要求 通过本章的学习,掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法。理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程。掌握四类典型的一阶隐方程的解法。 (二)课程主要内容 1.变量分离方程与变量变换 (1)变量分离方程。 (2)可化为变量分离方程的类型、应用举例。 2.线性方程与常数变易法 3.恰当方程与积分因子法 4.一阶隐方程与参数表示 (三)考核知识点 1.变量分离方程与可化为变量分离方程的解法。 2.线性方程的常数变易法。 3.恰当方程与积分因子法。 4.一阶隐方程的参数方法。 (四)考核要求

典型例题第三章一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数 b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值 a ab b 21 2= 。

常微分方程平衡点及稳定性研究

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。 关键词:自治系统平衡点稳定性全局吸引性 Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

平衡微分方程的适用范围

1、 平衡微分方程的适用范围 弹性力学、塑性力学、弹塑性力学。 2、 张量:怎样判断? (1)商判则:和任意矢量点积为K-1阶张量的量一定为K 阶张量。 (2)能否满足分量转换规律是判断某个数的集合是否表示一个张量的基本准则。 3、n 维张量的举例 标量零阶张量,矢量为一阶张量,应力、应变为二阶张量,应力、应变之间的弹性关系可用四阶张量表示。 4、▽的意义? ▽为一个梯度,▽2为调和算子(拉普拉斯算子),▽4为重调和算子。 5、柯西应变张量与格林应变张量的区别? 柯西应变张量适用于线弹性小变形,格林应变张量适用于任何情况。 6、任意斜面上的应力的本质是? 平衡微分方程和转轴公式。 7、如何描述正应变,剪应变,体积应变,应力的球张量,应力的偏张量? 对于各向同性材料,正应力引起正应变,引起线元长度变化;剪应力引起剪应变,引起角度的变化;应力的球张量,只引起体积变化,不会引起形状的变化;应力的偏张量,只引起形状变化,不会引起体积的变化。 8、 动力学的平衡微分方程如何表示?(达朗贝尔原理) 根据达朗贝尔原理,把惯性力当作体力来满足力平衡和力矩平衡条件。 9、转轴公式的理论依据:柯西公式。 10、等效应力、等效应变物理意义、公式: 等效应力将6个应力分量的对变形体的作用,等效于一个单向拉伸力的作用;等效应变将6个应变分量等效于一个单向拉伸力所产生的应变。利用实验,就可以直接建立等效应变与等效应力的数值关系 11、体积不可压(v=1/2): 从体积弹性模量() ν213-=E K 来看,当5.0=ν时,K 趋向于无穷大,也就是说体积变化无限小,即表示体积不可压缩。 12、为什么等值拉压是纯剪切 等值拉压时,线元只有角度发生变化,长度有发生变化,故等值拉压是纯剪切。 13、里茨和伽辽金法的物理思想 均是利用利用最小势能原理,寻找满足约束边界条件的试验函数。 14、弹性力学为什么可用逆解法、半逆解法: 解的唯一性定理表明,无论用什么方法求得的解,只要能满足全部基本方程和边界条件,就一定是问题的真解。 15、叠加原理建立在什么条件下: 基本方程和边界条件满足线弹性条件,举例:在线弹性条件下,复杂问题可通过简单叠加处理。 16、圣维南原理的思想: 在物体内,距外加载荷作用处相当远的各点的应力状态,在外载荷的合力和合力矩相同时,与外载荷的具体分布形式关系很小。

高等数学常微分方程的基础知识和典型例题

常微分方程 一、一阶微分方程的可解类型 (一)可分离变量的方程与一阶线性微分方程 1.(05,4分)微分方程_________.1 2ln (1)9 xy y x x y '+==-满足的解为 2222223332.+ln ,=ln . 111 ln ln ln . 339 111 (1)0ln . 939 dx x dy y x e x dx x d x x x dx x x xdx C xdx C x x x y C y x x x ?==+=+-=-=?=-??分析:这是一阶线性微分方程原方程变形为两边乘得 (y)= 积分得 y=C+由得 2.(06,4分) (1) y x x -'————.微分方程y = 的通解为 111 (1).ln ln .,C x x dy dx y x x C y e x e y x y Cxe C --=-=-+==分析:这是可变量分离的一阶方程,分离变量得 积分得,即因此,原微分方程的通解为 其中为任意常数. (二)奇次方程与伯努利方程 1.(97,2,5分)2 2 2 (32)(2)0x xy y dx x xy dy +-+-=求微分方程的通解. 22223122+1-23 , 1ln 13ln ,1=..y xu dy xdu udx u u dx x u du u du dx u u x u u x C u u Cx y C u x xy y x x -=-+-+-=-++-= +-=解:所给方程是奇次方程.令 =,则=+.代入原方程得 3(1-)+(1-2)=0. 分离变量得 积分得 即以代入得通解 2.(99,2,7分) 1(0(0),0 x y dx xdy x y =?+-=>??=??求初值问题的解.

偏微分方程理论学习中国科学技术大学

偏微分方程理论学习 一. 偏微分方程发展简介 1. 常微分方程 十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。 2. 偏微分方程 偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程 其中k 是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程 ??? ????<<=>==??=??,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x , 其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为 为了满足初始条件,必须有

常微分方程中常用的解题方法

常微分方程中常用的解题方法 1、变量分离法,一阶常微分方程求解有两个重要的方法:一是变量分离方法, 二是全微分方程及积分因子的方法。其中前者是通过适当的变形及变换,将自变量、自变量的微分和因变量的微分分别置于方程的两端,然后分别进行积分即可得方程的通解后者则是寻求适当的积分因子,将方程化为通解的恰当方程,进一 步得通解。如求方程 d d 的通解。 y=0是解,若y ≠0,分离变量,得 ln|y|=x^2+c 。所以原方程通解 (c ∈R) 2、积分因子的方法 ,形如M(x,y)dx+N(x,y)dy=0 的一阶微分方程,因为其 中X 和Y 的地位对等性,所以较之于一阶微分方程的常见形式 更具有一般性。若该方程中有 则存在u(x,y),使得 du(x,y)=M(x,y)dx+N(x,y)dy ,此时,该方程称为恰当微分方程,其通解为u(x,y) =c 。 当然大部分的方程并不是恰当微分方程,但是我们可以寻求与其通解的恰当微分方程,即可以寻求积分因子μ(x,y) ,使得通解方程μM(x,y)dx+μN(x,y)dy=0为恰当方程。积分因子的方法为求解一般的一阶微分方程提供了一种全新的思路。例 如求解ydx+(y-x)dy=0 解: 如μ(y)的积分因子,代入,得 ,故与原方程通解的恰当方程为 3、待定系数的方法,待定系数的方法是大学数学分析类学科中应用较为广 泛的一种方法。在常微分方程中,该方法主要体现在已利用定性分析、解的结构 或其他方法确定了解的形式, 但是其中具体系数未定,这时我们往往将形式解代入微分方程,进一步求得系数或系数函数。应用该方法的关键在与确定的形式。 例如,求解方程 λ =+-1 ,

相关主题
文本预览
相关文档 最新文档