当前位置:文档之家› 搅拌设备设计的几点体会

搅拌设备设计的几点体会

搅拌设备设计的几点体会
搅拌设备设计的几点体会

格栅设计

格栅设计

一、课程设计的内容 (1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)确定污水处理厂平面和高程布置; (4)绘制主要构筑物图纸。 二、课程设计应完成的工作 (1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明; (2)确定主要处理构筑物格栅的尺寸,完成设计计算说明书; (3)绘制主要处理构筑物格栅的设计图纸。

目录 1总论 (2) 1.1污水处理的必要性 (2) 1.2设计任务和内容 (2) 1.3基本资料 (2) 1.3.1格栅的作用 (2) 1.3.2格栅的种类 (2) 1.3.3格栅的工艺参数 (2) 1.3.4待处理污水的各项指标及出水指标要求 (3) 2污水处理工艺流程 (4) 2.1污水处理方法 (4) 2.1.1基本原理及优点 (4) 2.1.2存在问题 (4) 2.2处理工艺流程 (4) 3 处理构筑物设计——格栅设计 (5) 3.1格栅种类选择 (5) 3.2格栅设计计算 (5) 结论 (8) 参考文献 (9)

1总论 1.1污水处理的必要性 随着工农业生产的迅速发展和人民生活水平的不断提高,用水紧张和污水排放的问题已越来越突出。污水未经处理直接排放,加重了对环境的污染。在国家可持续发展的新政策下,环境保护已受到各级政府和全国人民的重视,对污水进行彻底的治理以保护人类赖以生存的环境的重要性越来越大,高效节能的城市污水处理技术与工艺已能为国民经济的发展起到较大的推动作用。 1.2设计任务和内容 (1)确定污水处理厂的工艺流程,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)完成格栅三视图 1.3基本资料 1.3.1 格栅的作用 格栅是由一组平行的金属栅条或筛网、格栅柜和清渣耙三部分组成,安装在污水处理厂的端部。格栅主要作用是将污水中的大块污染物拦截出来,否则这些大块污染物将堵塞后续单元的机泵或工艺管线。格栅上的拦截物成为栅渣,其中包括十种杂物,大至腐尸,小至树杈、木料、塑料袋、破布条、碎砖石块、瓶盖、尼龙绳等均能在栅渣中发现。 1.3.2 格栅的种类 (1)按格栅条间距的大小分类:细格栅、中格栅和粗格栅3类,其栅条间距分别为4~10mm,15~25mm和大于40mm。 (2)按清渣方式不同分类:人工除渣格栅和机械除渣格栅两种。人工清渣主要是粗格栅。 (3)按栅耙的位置不同分类:前清渣式格栅和后清渣式格栅。前清渣式格栅要顺水流清渣,后清渣式格栅要逆水流清渣。 (4)按形状不同分类:平面格栅和曲面格栅。平面格栅在实际工程中使用较多。 (5)按构造特点不同分类:抓扒格栅、循环式格栅、弧形格栅、回转式格栅、转鼓式格栅和阶梯式格栅。 1.3.3格栅的工艺参数

搅拌器设计计算

搅拌器设计计算 令狐采学 (作者:纪学鑫) 一、设计数据: 1、混合池实际体积V=1.15m×1.15m×6.5m≈8.60m3 ∴设混合池有效容积V=8m3 2、混合池流量 Q=0.035m3/s 3、混合时间t=10s 4、混合池横截面尺寸 1.15m×1.15m ,当量直径D=πω4L =π 15.115.14??=1.30m 5、混合池液面高度H=24πD V =m ..π036301842 ≈?? ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m 6、挡板结构及装置尺寸()m 54.0036.0m 241361~)(~≈?? ? ??D ;数值根据《给水排水设计手册》表428查得,以下均已此手册作为查询依据。 7、取平均水温时,水的粘度值()s a ?P μ=1.14×103s a ?P 取水的密度3/kg 1000m =ρ 8、搅拌强度 1)搅拌速度梯度G ,一般取500~1000s1。 混合功率估算:NQ=KeQ(kw) Ke 单位流量需要的功率,Ke 一般=4.3~173/s kw m ? ∴混合功率估算:3/s kw 17~3.4m N Q ?=

取搅拌速度梯度1-s 740=G 2)体积循环次数'Z 搅拌器排液量'Q ,213.08.008.1385.0)/(333'=??==s m nd k Q q 折叶桨式,片,245=?=Z θ,流动准数385.0k q 取,见表427查取; n 搅拌器转速) (s /r ;d 搅拌器直径(m) 转速d 60n πν =;线速度v ,直径d ,根据表430查取。 3)混合均匀度 U ,一般为80%~90%。U 取80%。 9、搅拌机的安插形式、加药点设置。 1)立式搅拌机的安插:一般采取中央置入(或称顶部拔出)式。 2)搅拌器的位置及排泄标的目的:搅拌器的位置应避免水流直接影响正面冲击。搅拌器距液面的距离通常小于搅拌器直接的 1.5倍。 二、搅拌器的选用及主要参数 1. 选用折叶桨式 2. 桨叶数2=Z 3. 搅拌器直径0.8m d m 0.867~433.0m 32~31d ==??? ??=,取)()(D 4. 搅拌器螺距d s = 5. 搅拌器层数d H ,取7,(公司取层数4) 6. 搅拌器外缘线速度ν取(1.0~5.0)m/s 7. 搅拌器宽度:b=(0.1~0.25)d=(0.08~0.2)m,取0.11m 三、搅拌器转速及功率设计 1、根据要求的搅拌梯度G 值计算:

水银河堤防工程设计说明

一、工程概况 水银河堤防工程位于陇县水银河下游的城关镇黄崖村,距县城2km。堤防按30年一遇洪水设计,设计洪峰流量243 m3/s。 工程新修堤防770m,其中水银河右岸堤防520m,左岸堤防250m。工程需挖土方19285m3,回填土7510 m3,浆砌石3384 m3,压实砾砂料9936 m3,消耗水泥328T,砂子1350 m3,片石3892 m3,砂砾料9936 m3,投工5667工日。工程预算总投资219.86万元。 工程建成后可确保水银河沿岸城关镇黄崖村357户,1646人以及陕西民爆责任有限公司陇县分公司职工的财产和生命安全,同时保护了河岸两侧的耕地,使人民群众充分利用河堤种植粮食及经济作物,将有效改善人民群众的生活、生产条件,推动两个文明建设,促进区域经济发展起到不可估量的作用,社会效益、经济效益和生态效益显著。 1、基本情况 陇县位于宝鸡市西北部、地理位臵处东径106°26′20″-107°40′20″,北纬34°35′10″-35°52′54″,东西长59.7km,南北宽57.6km,周长248km,总面积2285.2km2。地势西北高,东南低,海拔高程800-2428m。东接千阳,南临宝鸡市陈仓区,北部和西部与甘肃接壤。 水银河属千河二级支流,发源于陇山山脉北麓的河北乡

地区,由陇县县城东北端汇入北河,再汇入千河。水银河干流长16.8公里,流域面积82.15平方公里,河床比降为19.7‰。 水银河流域为北部邱陵区,耕地面积大,林木稀少植被较差,覆盖率低,水土流失面积占总流域面积近一半,每逢暴雨,山洪爆发,泥水下泄,山坡耕地表土被刮,河道两岸良田、公路、村庄被毁,严重威胁着水银河两岸人民群众的生命财产和安全。 2、水文气象 陇县地处中纬度地带,受中亚季风影响,具有明显的干旱大陆性气候特征,多年平均气温10.7?,最高气温40.5?,最低气温-19.9?,最大冻深度土层0.8m。主导风向夏多东南风,冬多西北风,最大风力可达8级2.1m/s,年平均蒸发量810.1mm,多年平均降雨量600.1mm,最大年降雨量810.4.1mm,最小年降雨量426.4mm,在季节分配上也不均匀,汛期七、八、九三个月降雨量均占全年降雨量的50%-70%。 水银河流域河道洪水主要由暴雨产生形成,具有历时短、强度大、泥砂含量大、危害严重的特征。水银河多年平均流量0.32m3/s,年均径流量0.10亿m3。 3、地质地貌 水银河流域在大地构造上属鄂尔多斯台向斜西南缘,河床位于陇新生代山间断陷盆地之中。河谷上游比较狭窄,下

堤防工程设计规范(考题及答案)

《堤防设计规范》题目 1.1级堤防在不允许越浪的情况下,安全加高值是()。 2.松软土基上上防洪墙基地应力的最大值与最小值之比,基本组合不应大于(),特殊组合必应大于()。 3.当软黏土堤基采用铺垫透水材料加速排水固结时,其透水材料可使用()、()(),也可结合使用。在防渗体部位应避免造成渗流通道。 4.对于深层的可液化土层,可采用振冲、强夯、()、()加强堤基排水等方法处理。 5.表层透水堤基处理可采用截水槽、()、()及灌浆截渗等方法处理。 6.防渗墙深度应满足渗透稳定要求。半封闭式和封闭式防渗墙深入相对不透水层的深度不应小于(),当相对不透水层为基岩时,防渗墙深入相对不透水层的深度不应小于()。 7.土堤堤身设计应包括堤身断面布置、填筑标准、堤顶高程、堤顶结构、堤坡与戗台、()、()。 8.防洪墙设计应包括墙身结构形式、基础轮廓尺寸、()、()等。 9.黏性土土堤的填筑标准应按压实度确定。1级地方不应小于()。 10.堤顶超高公式为Y=R+e+A,公式中的R表示()、e表示()。 11.土堤应预留沉降量。沉降量可根据地基地质、堤身土质及填筑密度等因素分析确定,宜取堤高的()。 12.堤顶宽度应根据防汛、施工、管理、构造及其他要求确定。堤顶宽度,1级堤防不宜小于();2级堤防不宜小于()。 13.防浪墙可采用浆砌石、()等结构形式。防浪墙净高不宜超过(),埋置深

度应满足稳定和抗冻要求。 14.堤高超过6.0m时,背水侧宜设置戗台,戗台的宽度不宜小于()m。15.浆砌石、混凝土等护坡应设置排水孔,孔径可为(),孔距可为(),宜采用梅花形布置。 16.高于6m的土堤受雨水冲刷严重时,宜在堤顶、堤坡、堤脚以及堤坡与山坡或其他建筑物结合部设置()。 17.平行堤轴线的排水沟可设在戗台内侧或近堤脚处。坡面竖向排水沟可每隔()设置一条,并应与平行堤轴向的排水沟连通。 18.堤身防渗宜采用均质土堤形式,也可采用心墙、斜墙等型式。防渗材料可采用()、()沥青混凝土、()等材料。堤身排水可采用深入背水坡脚或贴坡滤层。滤层材料可采用砂、砾料或土工织物等材料。 19.防渗体的顶部应高出设计水位()。 20.防洪墙应设置变形缝,钢筋混凝土墙缝距宜为(),混凝土及浆砌石墙宜为10~15m。 21.渗透稳定应进行以下判断和计算:1土的渗透变形类型;2堤身和堤基土体的();3堤防背水侧渗流出逸段的渗透稳定。 22.墙式护岸墙基可采用地下连续墙、()或(),结构可采用()或(),其断面结构尺寸应根据结构应力分析计算确定。 23.背水侧堤坡及地基表面逸出段的渗流比降应()允许比降;当出逸比降大于允许比降,应采取()、()等保护措施。 24.土堤抗滑稳定计算可采用()或简化毕肖普法。当堤基存在较薄软弱土层时,宜采用改良圆弧法。

格栅设计与选型

格栅设计与选型

环科0801 陈得者200806660101 格栅设计与选型 格栅的工艺参数: 过栅流速:v=0.6~1.0m/s 栅前水深:h=0.4m 安装角度:a=45~75° 格栅间隙b:一般15~30mm,最大为40 mm 栅条宽度bs:细格栅3~10mm 中格栅10~40mm 粗格栅50~100mm 进水渠宽:B1=0.65m 渐宽部分展开角度a1=20° 栅前渠道超高h2=0.3m 由于流量非常大,为防止垃圾堵塞格栅,达到去除粗大物质、保护处理厂的机械设备的目的,故选用一粗一细两个格栅。 主要设计参数: 粗格栅

1.栅条的间隙数n 取栅前水深h=0.4m 过栅流速v=0.7m/s 间隙宽度b=0.04m 安装角度a=60°Q=50000m3/d= 0.579 m3/s=579L/s 总变化系数根据流量Q=579L/s,查下表内插得K z=1.38 Q max=1.38Q=1.38×0.579m3/s=0.799 m3/s n=Q max×sina b×h×v = 0.799×sin60° 0.04×0.4×0.7 =66.4 取n=67 2.栅槽宽度B 取栅条宽b s=0.02m B=b s(n-1)+b×n=0.02×(67-1)+0.04×67=4m 3.进水渠道至栅槽渐宽部分长l1 进水渠宽B1=0.65m 渐宽部分展开角度a1=20° l1=B-B1 2tga1= 4-0.65 2tg20° =4.60m 4.栅槽至出水渠道间渐缩部分长l2 l2=l1 2=2.30m 5.通过格栅的水头损失h1

选用锐边矩形栅条断面 由上表可知公式为ζ=β(b s b )4/3 β=2.42 水头增大系数k=3 h 1=kh 0=k ζv 22g sina=k β(b s b )4/3v 22g sina =3×2.42×(0.020.04 )4/3×0.72 2×9.8 ×sin60°=0.062m 6.栅后槽总高度H 取栅前渠道超高h 2=0.3m H=h+h1+h2=0.4+0.046+0.3=0.746m 7.栅槽总长度L L=l 1+l 2+0.5+1.0+H 1tga =4.60+2.30+0.5+1.0+0.4+0.3tg60° =8.81m 8.每日栅渣量W ①当栅条间距为16~25mm 时,栅渣截留量为0.10~0.05m 3/103m 3污水。 ②当栅条间距为40mm 左右时,栅渣截留量为0.03~0.01m 3/103m 3污水。 在栅间隙为0.04m 的条件下,取W 1=0.02m 3/103m 3污水 W=Q max W 1K z 1000 =50000×1.38×0.021.38×1000 =1m 3/d >0.2 m 3/d 由于污水流量和栅渣量都较大,宜采用RAG 型回转耙齿式机械格栅清渣,可以设置两台,一台工作,一台备用。 9.电动机功率P 根据B 和H 查下表可得 P=3kw

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 简图设计参数及要求 容器内夹套 内 工作压力, MPa 设计压力, MPa 工作温 度,℃ 设计温 <100<150 度,℃ 蒸汽 介质有机溶 剂 全容积,m3 操作容积, m3 传热面积, >3 m2 腐蚀情况微弱 推荐材料Q345R 搅拌器型 推进式 式 250 r/min 搅拌轴转 速 轴功率 3 kW 接管表

3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径 当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ;

i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由 选工艺装料系数η=0.6~0.85选取,设计选取η=0.80。 1.4.1夹套高度的计算H2=(ηV-V 封)/V1m=0.758m 1.4.2.夹套筒体高度圆整为2H =800mm 。 1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F 封=1.398。 1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=3.46 1.4.5实际的传热面积F=4.166>3,由《化工设备机械基础》式4-5校核4.166〉3所以传热面积合适。

堤防工程设计思路及水工制图步骤

堤防工程设计思路 (一)水文规划及水工专业 1、了解工程位置及工程河段基本情况,计算各段各频率设计洪水及分期洪水(山区河道可能还需考虑泥石流的影响)。 2、复核地形图与现场地形是否一致,疏理工程河段及上、下游涉河建筑物分布,确定各段水面线计算的起算断面及河道糙率。条件允许的话,可根据调查历史洪水及水位情况反推河道糙率)。 3、计算各起算断面的水位流量关系曲线。 4、计算各频率天然河道水面线,并与现状调查实际洪水情况进行对比复核。 5、根据水工专业初步拟定的堤线及堤防形式(初步拟定的建后断面)计算建后河道水面线。对于建前、建后水力要素变化较大的断面分析其原因及合理性。 6、根据水工专业确定的堤线及堤防形式(最终的建后断面)复核建后河道水面线。 7、根据水工布置计算排涝洪水、坡面洪水等。 8、完成水文章节及第四章“河道设计洪水水面线”及“行洪影响综合评价及结论”报告编制。 (二)水工专业 1、复核地形图与现场地形是否一致,注明及统计工程河段及上、下游涉河建筑物(包括桥、堰、闸等);地质根据外业进度尽快提供

地质参数(包括各类岩土体物理力学指标及中值料斗径)和料场分布情况。 2、复核测量提供的横断面与地形图及现场地形是否一致。 3、水文核算工程河段各频率洪水及起算断面水位流量关系曲线(收到测量成果即可开展);根据水工复核过的地形图及横断面图计算工程河段洪水水面线(含设计洪水水面线,并根据设计需要增加常年洪水位水面线、常水位水面线)。 4、根据常年洪水(一般取2年一遇洪水)及河段纵坡分段计算稳定河宽,结合规划及业主要求初步确定左、右岸堤防轴线;完成总平面布置图(初稿),图中注明整治范围及整治内容,成果发设计群供其他专业使用。地质、施工、移民、环保、水保等专业可根据总平图初稿开展各自的设计工作。 5、根据地质提供的河床中值粒径d50计算河道冲刷深度,并根据水面线计算成果及地质参数进行稳定计算,初步确定分段整治方案,即完成分段典型横断面图,交设计部长、总工办确认后开展下一步设计工作。 6、完成沿河道中心线的纵断面图,并从图中提取各横断面所需左、右岸设计水位(含设计洪水位,并根据设计需要增加常年洪水位、常水位)、设计堤防基础高程、设计堤顶高程(不小于设计洪水位+堤顶超高),完成纵断面图。 7、完成堤防横断面图,转弯段及地形变化较大部位应加密断面;结合横断面图优化堤防轴线,并完成总平面布置图及平面布置分图(在确保堤线顺直的前提下,尽可能减少工程工程及工程投资);根据两岸地形确定设计堤顶高程,并完成平面布置图及左、右岸堤线纵断面图;(对于平面布置有较大调整的一定要告知其他相关专业。) 8、完成堤防工程附属建筑物设计,包括机耕桥、人行桥、穿堤涵管、节制闸等。

城市堤防工程设计论文.doc

摘要:城市堤防工程是城市总体建设的重要组成部分,分析堤防建设与城市建设之间的矛盾,设计中结合各堤 防的实际情况,进行多方案比较、论证,采用合理的设计方案,并充分重视堤防工程对城市景观的影响,结合适宜的景观设计,较好地解决了这些矛盾,最终达到美化与防洪兼顾。 关键词:城区堤防;设计;防洪;美观;和谐 1城市堤防设计新思路城市依江而建,市区的江河沿岸常常是人口集中和经济比较发达的地带。因此,城市堤防对城市的生存和发展起着 至关重要的作用。随着现代化建设的推进,城市多功能、高品位的建设目标和可持续发展的总体要求,即城市堤防不但要具有防洪功能,还要具有景观环境功能,必要时还具有交通、商业等多种功能,走可持续发展之路,实现堤防与自然、堤防与城市相和谐。目前丹东市及丹东附属的县级市的堤防建设已经开始逐渐融入城市堤防建设的新思路。 2城市堤防设计中需考虑的几个问题通过参与设计丹东市凤城市南大河综合治理工程,其工程重要任务是根据凤城市经济发展的新形势,通过本工程的 建设进一步完善凤城市南大河的防洪体系,提高城市的防洪标准,充分利用南大河水体两侧自然的景观形态,建设以独特、唯美的景观展现城市滨水生态景观独居特色的魅力,将南大河滨水生态景观打造成为环境健康舒适、景观优美自然、文化内涵深厚、地域特征鲜明多功能的城市生态滨水廊道。目的是满足防洪要求,兼顾景观,提高流域整体防洪能力,美化该地区人民的生活环境,保护人民群众的生命财产的安全,并改善流域的生态环境。根据工程建设的主要任务 ,结合当地的实际情况应注意以下几个方面的问题: 2.1堤防工程建设必须和城市自然条件、社会环境、经济发展等因素相和谐。堤防建设首先必须服从流域防洪规划 ,堤岸线的布置应保证排洪的需要;同时应与城市总体规划协调,服从城市总体规划所赋予堤防的功能任务。 2.2重视堤防工程对城市景观的影响,可考虑与城市景观设施建设相结合。城市堤防在洪涝期是保护城市的工程设施 ,在非洪水期应该是人们休闲、娱乐、亲水的场所。凤城市南大河滨水生态的建设与远近闻名的凤凰山相结合,不但是当地城市居民休闲游玩的好去处,更是观光者在此接触自然、感受城市美景,与自然、城市和谐相处的好地方。因此 ,应充分注意南大河两岸的生态环境和景观建设,遵循人与自然和谐相处、保持自然、回归自然的原则,使城市堤防工程成为凤城市又一道亮丽的风景线。 2.3合理的堤线布置。防洪堤堤线布置直接关系到整个工程的合理性和建成后所发挥的功用,尤其对工程投资大小 影响重大。堤线布置应根据防洪规划,地形、地势、地貌和地质条件,结合现有及拟建筑物的位置、型式、施工条件和河流历史演变,充分估计下伏层地质状况,经过技术和经济比评后综合分析确定。 2.4与城市基础设施规划相结合。以往在进行城市规划中,城建部门负责市区的排水、道路规划,水利部门负责河 道防洪规划,人为地将城市排水、道路规划与城市防洪规划截然分开。两个部分相互衔接的地方经常会出现许多漏洞 ,相互间不能很好的结合。城市防洪规划与城市基础设施规划二者需全面考虑,统筹安排。堤防建设中应结合考虑城 市 排水工程、污水处理工程、道路与城市防洪工程。3凤城市南大河堤防设计实例 3.1本次工程的主要任务。本次凤城市南大河治理工程主要任务是通过本次工程的修建,使之与南大河上下游已修 建防洪堤衔接,完善凤城市城区段南大河的防洪体系,提高防洪能力。对南大河左右岸加固堤防、修建一级阶梯挡土墙和穿堤建筑物进行统筹安排,使之满足防洪、排涝、护槽固滩的要求,提高流域整体防洪能力,保护人民群众的生命财产的安全,并改善流域的生态环境。同时结合凤城市城东新区的总体规划,结合南大河左右岸场地及周围自然景观,进行合理的景观序列组织,建设南大河滨河公园;充分利用地域自然景观资源和文化景观资源,形成协调的滨水景观结构体系。南大河滨河公园的建成可以充分发挥其社会效益、生态效益和经济效益,促进凤城市建立地区性的生态系统。该城市河流景观将有力地推动凤城市城市健康的发展。 3.2防洪标准及规模。本次工程修建南大河左岸保护凤城市凤凰城街道,右岸保护凤山街道。凤凰城街道总人口11.21万人,其中非农业人口9.54万人,凤山街道总人口 4.89万人。按照现行国家标准《防洪标准》GB50201-94规定 :当城市非农业人口≤20万人时,城市的重要性为一般城镇,城市等级为Ⅳ等,防洪标准为50~20年。本次修建南大河左岸共有企业11家,其中凤城市老窖厂为国家中二型企业,还包括凤城市织布厂、辽东仪表厂、丝绸厂、凤化集团等 ,共有学校2座,分别为城东小学及市农机学校,医院1座为凤城市骨科医院,凤山路及凤华路穿越该区,又根据凤城市城东新区规划图,左岸防洪区分15个区域进行规划,主要有行政办公区、CBD商贸区、文化服务区等,占地面积约 3.67km2。右岸共有企业3家,分别有亦佛实业有限公司、申科公司、蓄电池厂,凤上铁路位于右岸堤后,与之平行。按 照现行国家标准《防洪标准》GB50201-94规定:当工矿企业为中型时,工矿企业等级为Ⅲ级,防洪标准为50~20年。又 根据“爱河流域规划报告”,凤城市按照城市总体发展规划,城区防洪标准为50年一遇。凤城市城市防洪标准为50年。 同时本次工程设计确定防洪标准既按照城市发展需要也应考虑与上下游已建堤防衔接的原则进行选取。从上述保护对象的论述可以看出,右岸防洪区保护对象较少,且较左岸重要程度低,上游已建成堤防已经达到30年一遇洪水标准,按照上下游衔接的原则,右岸防洪区防洪标准按30年一遇设计;左岸防洪区根据凤城市城东新区规划,保护对象较重要,防

格栅的设计计算

格栅的设计计算 (1)栅条的间隙数n Q max、sin X n ehv 式中Qmax --------- 最大设计流量,m3/s ――格栅倾角,度,取=60° h ----- 栅前水深,m,取h=0.4m e ----- 栅条间隙,m,取e=0.02m n――栅条间隙数,个 v ----- 过栅流速,m/s,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核 则:n如五O'2* '歸 23个 ehv 0.02*0.4*1.0 (2)栅槽宽度B 栅槽宽度一般比格栅宽0.2-0.3米,取0.2米 设栅条宽度S=10mm 则栅槽宽度B S(n 1) bn 0.01*(23 1) 0.02*23 0.68n (3)通过格栅的水头损失h g %k

2 0.36 2 0.18m L L 1 L 2 1.0 0.5 H 1 ta n V sin 2g h i ――过栅水头损失, h 0 计算水头损失,m g ----- 重力加速度,9.8 m/ s 2 k ――系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用 k=3 ――阻力系数,与栅条断面形状有关, (-)4,当为矩形断面时, e =2.42。 2 h 1 h o k (-) |—s in k 『2g 0.01 4 1.0 0 2.42*( 冶 si n60°*3 0.02 3 2*9.8 0.13m (4)栅后槽总高度H 设栅前渠道超高 ① 0.3m H h 0 d 0.4 0.13 0.3 0.83m (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度 a =200,进水渠道内的流速为0.77m/s 。 1 B B 1 1 2ta n 1 °68 °45 0.36m 2ta n20° 栅槽与出水渠道连接处的渐窄部分长度 L 2 h o 式中 L 2

搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成 组成:搅拌器电动机 减速器容器 排料管挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面强烈剪切旋涡扩散 主体对流宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。 高粘度过物料混合过程,主要是剪切作用。 电 动 机 减速器 搅 拌 器 容 器 排料管

三、混合效果的度量 1、调匀度I 设A 、B 两种液体,各取体积vA 及vB 置于一容器中, A B A B a b 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品,则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =- I

水利堤防工程设计报告材料

目录 1综合说明 (1) 1.1工程概况 (1) 1.2水文 (2) 1.3 地质 (3) 1.4工程任务 (5) 1.5工程布置及设计 (5) 1.6施工组织设计 (7) 1.7环境保护设计 (7) 1.8工程管理 (8) 1.9工程招标 (8) 1.10工程投资概算 (9) 2水文 (12) 2.1流域概况 (12) 2.2气象 (12) 2.3 基本资料 (14) 2.4 洪水 (14) 3工程地质 (17) 3.1区域地质概况 (17) 3.2堤防的工程地质条件与评价 (20) 3.3天然建筑材料 (21) 3.4 结论与建议 (23) 4工程任务及规模 (24) 4.1 自然及社会经济情况和防洪要求 (24) 4.2 工程建设容 (28) 5工程布置及设计 (29) 5.1 设计依据 (29) 5.2 堤防布置原则 (30) 5.3河相关系分析及已建和拟建建筑物情况 (31) 5.4 稳定河宽计算 (32)

5.5治理段堤线布置 (32) 5.6 河槽断面设计 (35) 5.7 堤防工程设计 (41) 5.8稳定计算 (42) 5.9 排洪涵管设计 (45) 6施工组织设计 (46) 6.1 施工条件 (46) 6.2建筑材料 (47) 6.3施工导流 (49) 6.4主体工程施工 (49) 6.5主要施工指标 (50) 7 环境保护设计 (51) 7.1 防洪工程对环境影响预测评价 (51) 7.2 环境保护措施设计 (52) 7.3综合评价 (53) 7.4 结论 (54) 8工程管理 (55) 8.1管理依据 (55) 8.2管理机构 (55) 8.3工程管理围和保护围 (55) 9 工程招标 (57) 9.1招标依据 (57) 9.2招标围及标段划分 (57) 9.3招标形式 (57) 9.4招标组织形式 (57) 10 工程投资概算 (60) 10.1编制原则和依据 (60) 10.2 工程概算指标 (63)

搅拌器功率计算

搅拌器功率计算 搅拌器功率分为运转功率和启动功率,运转功率是指远转时桨叶克服液体的摩擦阻力所消耗的功率;启动功率是指在启动时桨叶克服液体静止惯性所消耗的功率。 一、 运转功率计算 以平浆式为例: d n P i m 5 3 ???=ρξ转 式中:ξ m --- 常数项; ρ----- 液体密度,kg/m 3; n----- 桨叶转速,r/min; d i ---- 桨叶直径,mm; 根据对运转功率的进一步分析,得出如下结论: 1、 采用倾斜桨叶,在改善结构和降低运转功率方面都是有宜的。 2、 在搅拌跟多液体时,应首先考虑增加桨叶数量,而不应增加桨叶长度。 3、 实际运转功率大于理论功率,这是因为还存在其它阻力,因此应在计算功率的基础 上适当增加。 4、 容器内壁粗糙时,运转的实际功率应比计算功率增加10-30%。 5、 容器内有加热蛇管时,应增加2倍。 6、 容器内有挡板时,应增加2-3倍。 二、 惯性功率计算 d n P i b 4 393.1???=ρ阻 令b/ d i =a;b=a d i .则: d n P i a 5 393.1???=ρ阻 令k=1.93a.为常数项,则: d n P i k 5 3 ???=ρ阻 符号意义同上。 三、 总功率 搅拌器的总功率消耗P W 为: P W =P 转 +P 阻=d n i m k 5 3 )(???+ρξ 以此式计算的功率值在1kw 以上时误差叫小,小于1kw 时则与实际功率有较大出入,将以用一下数值对功率作调整:

当负荷功率≥1kw时,P实=(1.1-1.2)P W 当负荷功率≥0.1kw时,P实=(1-4)P W 当负荷功率≤0.1kw时,P实=10P W 当负荷功率≥0.1kw时,P实=(1-4)P W 如果只对功率作粗略估算,P W=(2-3)P转 电动机应选用防潮型、具有接触环的异步电动机,它具有较大的启动转矩,而一般的三相同步电动机是不适应的。 搅拌器形式适应条件 液体单位体积的平均搅拌功率的推荐值

污水处理厂平面型格栅设计-20141104

工业污水处理厂平面型格栅设计 摘要:工业污水未经处理直接排放,其中可能含有一些大粒度的悬浮物。为了清除污水和雨水泵站以及污水处理厂进水中含有的较大悬浮物,保护后续处理设施的正常运行,以及降低其他处理设施的负荷,需要在污水处理厂的一级处理中设定一个筛滤设备—格栅。格栅是由一组平行的金属栅条或筛网、格栅柜和清渣耙三部分组成,安装在污水处理厂的端部。格栅主要作用是将污水中的大块污染物拦截出来,否则这些大块污染物将堵塞后续单元的机泵或工艺管线。 关键字:平面格栅;机械除渣;工业污水

目录 1 前言 (1) 2 污水处理构筑物设计—格栅设计 (4) 2.1 待处理污水的各项指标及出水指标要求 (4) 2.2 处理工艺流程 (4) 2.3格栅的基本资料 (4) 2.3.1 格栅的分类 (4) 2.3.2 格栅的工艺参数 (5) 2.4格栅设计要点 (6) 2.5 格栅设备的选用 (7) 2.5.1回转式格栅清污机的结构特点 (7) 2.5.2 XHG-I型回转式格栅清污机参数 (7) 2.6 格栅设计计算 (8) 2.6.1 已知条件 (8) 2.6.2 设计计算 (8) 3 结论 (12) 参考文献...................................................................................... 错误!未定义书签。

1 前言 1.1 污水处理设备研究背景 我国污水处理行业突飞猛进,整体发展处于快速成长期,主要表现在污水处理能力迅速扩张、污水处理率稳步提高、污水处理量快速增长等方面。2010年城市污水处理厂日处理能力达10262万立方米,比2009年末增长13.4%,城市污水处理率达到76.9%。截至2011年9月底,全国设市城市、县累计建成城镇污水处理厂3077座,处理能力达到1.36亿立方米/日。城镇污水垃圾处理设施建设推动了环保产业发展,到2020年城市污水处理率将不低于90%,我国污水处理业务市场空间广阔。此外,国家鼓励利用再生水的政策,也将对污水深度处理业务提供广阔的市场空间。我国污水处理建设的严峻形势,县城和建制镇污水处理率较低的现状,为污水处理市场的建设、运营投资均带来巨大投资空间。 在污水处理设备方面,尽管国产一级处理机械设备从无到有引进、消化吸收国外先进技术,有少数产品已接近国际先进水平,但是国产设备普遍地存在材质差,加工精度低,能耗高,产品品种少,设备不配套,可靠性差,以及自动化水平低的问题。在制造工艺水平和规模化生产等方面与国外相比,其差距更大。因此,加速发展污水处理厂一级处理机械设备制造工业,赶超世界先进水平,这对我国控制水体污染,减少投资,降低能耗,提高污水处理厂自动化水平。 在污水处理工艺中,要使排放的污水达到国家规定的排放标准,除了二级处理之外,以及处理的作用也是必不可少的。一级处理的主要方法是物理法,一级处理的常用方法有:筛滤法,沉淀法,上浮法,预曝气法。筛滤法是用来分离污水中呈悬浮状态污染物。常用设备是格栅和筛网。格栅主要用于截留污水中大于栅条间隙的漂浮物,一般布置在污水处理厂或泵站的进水口,以防止管道、机械设备及其他装置的堵塞。格栅的清渣,可采用人工或机械方法。有的是用磨碎机将栅渣磨碎后,再投入格栅下游,以解决栅渣的处置问题。 1.2污水处理格栅的工作原理介绍 污水处理格栅是一种可以连续自动拦截并清除流体中各种形状杂物的水处理专用设备,可广泛地应用于城市污水处理。自来水行业、电厂进水口,同时也

格栅的设计计算

格栅的设计计算 (1)栅条的间隙数n max Q n ehv = 式中 Qmax ——最大设计流量,m 3/s α——格栅倾角,度,取α=600 h ——栅前水深,m ,取h=0.4m e ——栅条间隙,m ,取e=0.02m n ——栅条间隙数,个 v ——过栅流速,m/s ,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核。 则 :max 230.02*0.4*1.0 Q n ehv ==≈个 (2)栅槽宽度B 栅槽宽度一般比格栅宽0.2-0.3米,取0.2米。 设栅条宽度S=10mm 则栅槽宽度(1)B S n bn =-+ 0.01*(231)0.02*23 0.68m =-+≈ (3)通过格栅的水头损失h 10h h k = 2 0sin 2v h g ξα= 43()s b ξβ= 式中 1h ——过栅水头损失,m+ 0h ——计算水头损失,m g ——重力加速度,9.82/m s

k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3 ξ——阻力系数,与栅条断面形状有关,43 ()s e ξβ=,当为矩形断面时,β=2.42。 S=栅条的宽度 b=栅条的间隙 2410()sin 2s v h h k k b g βα== 20430.01 1.02.42*()sin 60*30.022*9.8 = 0.13m = (4)栅后槽总高度H 设栅前渠道超高20.3h m = 120.40.130.30.83H h h h m =++=++= (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度α1=200,进水渠道内的流速为0.77m/s 。 11010.680.450.362tan 2tan 20 B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L 120.360.1822 L L m ==≈ 112 1.00.5tan H L L L α =++++ 式中 1H 为栅前渠道深,12H h h =+ 00.40.30.360.180.5 1.0tan60L +=++++ 2.44m =

搅拌桨叶的选型和设计计算

一、搅拌机结构与组成 组成:搅拌器 电动机 减速器 容器 排料管 挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面 强烈剪切 旋涡扩散 主体对流 宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动 微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。 高粘度过物料混合过程.主要是剪切作用。

三、混合效果的度量 1、调匀度I 设A 、B 两种液体.各取体积vA 及vB 置于一容器中. 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品.则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 混合尺度分 设备尺度 微团尺度 分子尺度 对上述两种状态: 在设备尺度上:两者都是均匀的(宏观均匀状态) 在微团尺度上:两者具有不同的均匀度。 在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均 匀) 如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。 如取样尺寸小到与b 中微团尺寸相近时.则b 状态调匀度下降.而a 状态调匀度不变。 即:同一个混合状态的调匀度随所取样品的尺寸而变化.说明单平调匀度不能反映混合物的均匀程度 四、搅拌机主要结构 1、搅拌器 搅拌器由电动机带动.物料按一定规律运动(主体对流).桨型不同.物料产生的流型不同。 桨作用于物料.物料产生三个方向的速度分量: 轴向分量 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =-I

堤防工程施工组织设计及方案

********** ***工程施工组织设计

****************** 有限公 司

务实创新诚信团结 高效求精 主动进取 建筑理念: 做好每个细节铸造建筑精品 审批: 审核: 制: ****************** ****************** 有限公司 企业精神:

2010 年3 月8 日 ************************** 第一章施工组织方案编制依据 (2) 第一节编制依据 (2) 第二节工程概况 (3) 第三节工程特点及工艺措施 (6) 第二章项目组织管理机构 (10) 第一节管理机构形式 (12) 第二节管理机构职责 (13) 第三节联络协调系统 (14) 第三章施工总平面布置图(临时工程) (17) 第一节施工总平面布置 (17) 第二节临时工程 (17) 第三节生活、办公用房 (19) 第四节预制场布置及砼搅拌站 (19) 第五节供水、供电、通讯方案 (21) 第四章主要施工技术方案 (33) 第一节施工测量控制放线 (33) 第二节堤防挡土墙施工技术方案 (35) 第三节土方工程 (44) 第四节土石方爆破实施方案 (55) 第五章施工控制 (68) 第一节技术控制 (68) 第二节质量要求 (69)

第三节施工临时保护措施 (70) 第六章工程施工总进度及工期保证措施 (72) 第七章施工质量控制措施 (77) 第八章安全保证措施和安全计划 (91) 96第九章文明施工及环境保护 第十章季节性施工措施 (108) 第十一章成品、半成品保护及工程保修 (111) 第十二章施工的协调配合 (113) 第十三章设备计划表 (118) 第十四章材料及劳动力计划 (119)

污水处理厂格栅间的设计

污水处理厂格栅间的设计 1 格栅间形式选择 格栅间主要由进水井、过水渠组成。主要设备包括格栅除污机、栅渣压实机、栅渣输送机及吊运设备。根据格栅底与地面高差、格栅的安装位置,格栅间分为地面式和半地下式(见图1、2)。因为地面式格栅间可将栅渣压实机、栅渣输送机安装在地面上,运行和维护方便,减少工程投资和降低施工难度,所以在满足格栅除污机机械强度、刚度及除污能力的条件下,应优先考虑采用。 2 格栅迎水面设检修平台 通常的设计在格栅的背水面设有清除栅渣的工作台。实际运行中发现,迎水面无检修平台给格栅除污机的维修带来很大的困难,为解决这个问题,在格栅间迎水面增加检修平台(见图1、2),平台宜高出正常水位0.5 m,采用钢筋混凝土材料。 3 过水渠增设排风设施 格栅间过水渠道是有毒有害气体产生和聚集的主要场所,极易发生中毒事故。为消除事故隐患,在格栅间内应增设机械排风系统,取风口设在过水渠道内。在检修前先打开排风机,排除有毒有害气体。 4 屋顶设天窗降低格栅间高度 格栅间内安装起吊设备,用于栅渣起吊外运和格栅起吊检修。由于格栅较高,所需起吊高度较大,增加了格栅间的高度,土建造价高。设计时考虑厂房高度可仅满足栅渣外运的要求,对于格栅检修,可在屋顶设置天窗,天窗的尺寸满足格栅长、宽要求,适当地降低格栅间高度。 5 进水渠格栅预留槽与格栅尺寸相吻合 目前国内一些厂家生产的格栅尺寸小于进水渠的格栅预留尺寸,污水中的部分栅渣会从缝隙之间绕过,影响了除渣效果。设计时将二者间隙控制在2cm以内,保证除渣效果。

6 减少栅渣压实设备 根据国内的污水水质,栅条间隙>25 mm粗格栅清除的栅渣,多数为塑料薄膜等大块杂质,不经压实可收集外运,在格栅间内不需要安装栅渣压实机,但应在栅渣收集箱周围做排水坑和冲洗设施。 7 备用格栅的选用 格栅间设置格栅不宜少于2台。如果格栅底与地面高差小于2.5 m,应选人工清除格栅备用;格栅底与地面高差较大时,人工清除栅渣非常困难,备用格栅也应选用机械格栅。格栅之间应保持1.0~1.5 m的净距,保证格栅除污机安装和维修。 8 细格栅推荐采用阶梯式格栅 阶梯式格栅除污机是从国外引进的一种新型格栅除污设备,其运作特点是没有耙斗,使用成排的阶梯式栅条,靠隔排栅条固定,隔排栅条可移动,运行时栅条向上旋转,将截留的栅渣输送至上一个阶梯,一级一级到达顶部的卸料口。阶梯式格栅是一种自清式棒式细格栅,具有去除污物效率高、耐磨损、体积小、结构灵巧和可提升出水面维修等优点。常见的其他类型细格栅清污机安装就位后,地面以上部分一般有2 m高度,而阶梯式细格栅只需约0.6 m,所需净空较低,可降低厂房高度。 9 工程实例 ①青岛市李村河污水处理厂设计规模17×104m3/d,格栅底距地面8.0m。粗格栅间采用半地下形式,内设机械粗格栅3台,栅条间隙25mm,格栅宽度1.36m,经格栅截留的栅渣由皮带运输机收集、螺旋输送机提升后进入地面的栅渣箱,而且在格栅近水面设置宽度1.0 m的检修平台。4台通风机设在半地下式房间内,取风口设在渠道和房间内,通风机风量8000 m3/h。流经粗格栅的污水由提升泵房提升后进入细格栅间,细格栅间设计3台阶梯式机械格栅,栅条间隙6 mm,格栅宽度1.28 m,细小的栅渣经螺旋压实机脱水后外运。 ②呼和浩特市辛辛板污水处理厂设计规模10×104m3/d,格栅底距地面5.4m。粗格栅间采用地面式,设置机械格栅2台,栅条间隙25mm,格栅宽度2.0m,高度8.4m,设计时在屋顶设2.5m×1.5m的天窗,使格栅间高度由11.5m降低至6.2m。排风机的取风口设在过水渠道内维修人员经常出现的地方,共设2台排风机,通风量8 250m3/h。 陈小燕 (中国市政工程华北设计研究院) 作者通讯处:300074 天津市河西区气象台南路中国市政工程华北设计研究院电话:(022)23342167×2170(收稿日期 1999-05-20)

相关主题
文本预览
相关文档 最新文档