当前位置:文档之家› 微生物发酵法提取甲壳素的国内外进展

微生物发酵法提取甲壳素的国内外进展

微生物发酵法提取甲壳素的国内外进展
微生物发酵法提取甲壳素的国内外进展

食 品 科 技FOOD SCIENCE AND TECHNOLOGY 2012年 第37卷 第3期

生物工程· 40 ·甲壳素(Chitin)是自然界中唯一带正电荷的天然高分子聚合物,学名为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡萄糖(C 8H 13NO 5)n。它的来源极为广泛,主要存在于甲壳动物外壳、软体动物内骨骼、昆虫表皮、菌类及藻类等微生物的细胞壁中。每年地球上的生物合成量约为100亿t,是产量仅次于纤维素的第二大可再生资源,也是除蛋白质外数量最大的含氮天然有机高分子。甲壳素收稿日期:2011-08-11 *通讯作者

作者简介:程倩(1986—),女,湖北天门人,博士研究生,研究方向为食品科学。

性能独特、组织相容性良好、可生物降解,其开发应用已涉及工业、农业、国防、化工、环保、食品、医药、保健、美容、纺织等诸多领域。目前,工业上用来生产甲壳素的主要原料是水产加工厂废弃的虾壳和蟹壳,其甲壳素的含量一般在15%~40%,蛋白质含量为20%~40%,碳酸钙含量为20%~50%。制备甲壳素的方法主要包括脱盐、脱蛋白、脱色等3个步骤,即采用稀盐酸程 倩1,吴 薇2,籍保平1*

(1.中国农业大学食品科学与营养工程学院,北京 100083;

2.中国农业大学工学院,北京 100083)

摘要:甲壳素是含氮天然有机高分子,具有优良的生物活性、安全性和降解性,在农业、化工、环保、食品、医药等行业有着巨大的应用前景。甲壳素制备方法主要有传统的酸碱法以及新兴的微生物发酵法。对微生物发酵法提取甲壳素的国内外研究进行综述,并探讨了微生物发酵的问题及今后的研究方向。

关键词:甲壳素;发酵;提取;进展

中图分类号:TS 201.3 文献标志码:A 文章编号:1005-9989(2012)03-0040-04

Progress on the extraction of chitin by microbial fermentation

CHENG Qian 1, WU Wei 2, JI bao-ping 1*

(1.College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083; 2. College of Engineering, China Agricultural University, Beijing 100083 )Abstract: Chitin is a nitrogen-containing natural organic polymer, possesses excellent biological activity, safety and degradability, and has a great prospect in agriculture, chemical industry, environmental protection, food, pharmaceutical and other industries. The traditional acid-base method and the emerging microbial fermentation are two main methods for chitin preparation. In this paper, the advance of the extraction of chitin by microbial fermentation at home and abroad was illuminated. At last, the method of fermentation was also discussed.

Key words: chitin; fermentation; extraction; progress

微生物发酵法提取甲壳素的国内外研究进展

微生物发酵工艺

第六章微生物发酵制药工艺 6.1 微生物发酵与制药 6.2 微生物生长与生产的关系 6.3 微生物生产菌种建立6.4 发酵培养基制备 6.4 发酵培养基制备 ? 概念(medium)供微生物生长繁殖和合成各种代谢产物所需要 的按一定比例配制的多种营养物质的混合物。 ? 培养基的组成和比例是否恰当,直接影响微生物的生长、生产和工艺选择、产品质量和产量。 6.4.1 培养基的成分 碳源 氮源无机盐水生长因子 前体与促进剂 消泡剂 1、碳源(carbon sources) 概念: 构成微生物细胞和代谢产物中碳素的营养物质。作用:为正常生理活动和过程提供能量来源,为细胞物质和代谢产物的合成提供碳骨架。 碳源种类 糖类:葡萄糖、淀粉、糊精和糖蜜 脂肪:豆油、棉籽油和猪油醇类:甘油、乙醇、甘露醇、山梨醇、肌醇蛋白类:蛋白胨、酵母膏速效碳源:糖类、有机酸 迟效碳源:酪蛋白水解产生的脂肪酸 2、氮源(nitrogen sources) 概念:构成微生物细胞和代谢产物中氮素的营养物质。 作用:为生长和代谢主要提供氮素来源。种类:无机氮源、有机氮源 有机氮源 几乎所有微生物都能利用有机氮源 黄豆饼粉、花生饼粉 棉籽饼粉、玉米浆、蛋白\胨、酵母粉、尿素 无机氮源 氨水、铵盐和硝酸盐等。氨盐比硝酸盐更快被利用。 工业应用:主要氮源或辅助氮源;调节pH值生理酸性物质:代谢后能产生酸性残留物质。(NH4)2SO4利用后,产生硫酸 生理碱性物质:代谢后能产生碱性残留物质。硝酸钠利用后,产生氢氧化钠。 3、无机盐和微量元素 ? 概念:组成生理活性物质或具有生理调节作用矿物质 ? 作用方式:低浓度起促进作用,高浓度起抑制作用。? 种类:盐离子 磷、硫、钾、钠、镁、钙,常常添加 铁、锌、铜、钼、钴、锰、氯,一般不加。 4、水 菌体细胞的主要成分。 营养传递的介质。良好导体,调节细胞生长环境温度。培养基的主要成分之一。 5、生长因子(growth factor)

微生物发酵法提取甲壳素的国内外进展

食 品 科 技FOOD SCIENCE AND TECHNOLOGY 2012年 第37卷 第3期 生物工程· 40 ·甲壳素(Chitin)是自然界中唯一带正电荷的天然高分子聚合物,学名为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡萄糖(C 8H 13NO 5)n。它的来源极为广泛,主要存在于甲壳动物外壳、软体动物内骨骼、昆虫表皮、菌类及藻类等微生物的细胞壁中。每年地球上的生物合成量约为100亿t,是产量仅次于纤维素的第二大可再生资源,也是除蛋白质外数量最大的含氮天然有机高分子。甲壳素收稿日期:2011-08-11 *通讯作者 作者简介:程倩(1986—),女,湖北天门人,博士研究生,研究方向为食品科学。 性能独特、组织相容性良好、可生物降解,其开发应用已涉及工业、农业、国防、化工、环保、食品、医药、保健、美容、纺织等诸多领域。目前,工业上用来生产甲壳素的主要原料是水产加工厂废弃的虾壳和蟹壳,其甲壳素的含量一般在15%~40%,蛋白质含量为20%~40%,碳酸钙含量为20%~50%。制备甲壳素的方法主要包括脱盐、脱蛋白、脱色等3个步骤,即采用稀盐酸程 倩1,吴 薇2,籍保平1* (1.中国农业大学食品科学与营养工程学院,北京 100083; 2.中国农业大学工学院,北京 100083) 摘要:甲壳素是含氮天然有机高分子,具有优良的生物活性、安全性和降解性,在农业、化工、环保、食品、医药等行业有着巨大的应用前景。甲壳素制备方法主要有传统的酸碱法以及新兴的微生物发酵法。对微生物发酵法提取甲壳素的国内外研究进行综述,并探讨了微生物发酵的问题及今后的研究方向。 关键词:甲壳素;发酵;提取;进展 中图分类号:TS 201.3 文献标志码:A 文章编号:1005-9989(2012)03-0040-04 Progress on the extraction of chitin by microbial fermentation CHENG Qian 1, WU Wei 2, JI bao-ping 1* (1.College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083; 2. College of Engineering, China Agricultural University, Beijing 100083 )Abstract: Chitin is a nitrogen-containing natural organic polymer, possesses excellent biological activity, safety and degradability, and has a great prospect in agriculture, chemical industry, environmental protection, food, pharmaceutical and other industries. The traditional acid-base method and the emerging microbial fermentation are two main methods for chitin preparation. In this paper, the advance of the extraction of chitin by microbial fermentation at home and abroad was illuminated. At last, the method of fermentation was also discussed. Key words: chitin; fermentation; extraction; progress 微生物发酵法提取甲壳素的国内外研究进展

工业微生物发酵技术汇总

发酵技术指标 沃蒙特发酵技术服务平台 NO 项目英文技术名称名称指标 1他克莫司Tacrolimus 发酵单位:大于 1.0g/L, 发酵周期: 240 小时 , 提取收 率: 60-70% 2西罗莫司Sirolimus\Rapamyci 发酵单位: 1000±200 mg/L,发酵周期: 192hrs ,收率:35- 40% n产品含量:≥ 98% 3乳酸链球菌素Nisin 发酵水平 : 12-15g /L ,发酵时间:16-20小时,收率 :65% 以上。 4霉酚酸mycophenolate 发酵单位: 12g/L 以上,发酵时 间:160 小时,提取得率:mofetil, MMF 75% 5去甲金霉素DMCT,Demethylchlor 发酵单位: 10± 2g/L ,发酵时间: 200 小时,产品收率: 75% tetracycline 6雄烯二酮Androstenedione 发酵时间 96 ± 24 hrs ,每 3- 3.3 公斤植物甾醇可获 得 1 公斤雄烯二酮。 7利福霉素Rifamycin 发酵周期 220 小时,发酵单位大于 20g/L ,收率 65% 86- 羟基烟酸6-Hydroxynicotinic 纯度:≥ 98%,用途说明:用于合成维 生素 A Acid 9L- 缬氨酸Valine 发酵产酸: 60±5 克 /L ,发酵周 期: 60 ± 5 小时,提取 收 率: 65%(医药级) 10 L- 异亮氨酸Isoleucine 发酵产酸: 25-30 克 / 升,发酵周期 : 60-72 小时, 提取收 率: 80% 发酵单位 :35 ± 3g/L ,发酵时间 :33-35 小时,产品 得率 : 饲 11 L- 色氨酸Tryptophan 料级≥ 85%,药品级 ≥ 70%,产品质量 :>98.0%( 纯度 ) , 糖转化率: 18% 12 糖化酶Glucoamylase 发酵周期: 6~7 天,酶 活: 8 万- 10 万 U 13 耐高温淀粉酶Amylase 发酵周期: 140h,酶活: 17 万单位 14 纤维素酶Cellulase 发酵周期: 6~7 天,酶活: 80-100IU 15 超级泰乐菌素Super tylosin 发酵单位: 14000- 16000U/ml 发酵时间: 130-150 小时提 取 收率: 70-75%

微生物制药的一般工艺流程

微生物制药的一般工艺流程 微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。 采样:有针对性地采集样品。 增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。 分离:利用分离技术得到纯种。 发酵性能测定:进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种和产量、耐受最高温度、生长和发酵最适温

利用微生物发酵从虾壳中提取甲壳素的方法与设计方案

本技术公开了利用微生物发酵从虾壳中提取甲壳素的方法。本技术以虾壳为原料,洗净干燥,研磨成粉,然后加入适当浓度的葡萄糖,灭菌后首先接种枯草芽孢杆菌,然后流加适当浓度乙醇并接种醋酸杆菌继续发酵。枯草芽孢杆菌生长产生的蛋白酶降解虾壳中的蛋白质。醋酸杆菌则以乙醇为碳源,上述被枯草芽孢杆菌降解的虾壳蛋白为氮源,生长产生醋酸,溶解虾壳中的矿物质使其变成可溶性的钙等金属离子。本技术公开的甲壳素制备方法将虾壳脱蛋白与脱盐两工艺过程耦合起来,合二为一,操作简单可行,脱蛋白和脱盐效果好,不仅实现了对虾壳的高值化利用,且简化了甲壳素的生产工艺,降低生产成本,减少对环境的污染。 权利要求书 1.一种利用微生物发酵从虾壳中提取甲壳素的方法,其特征在于,包括以下步骤: 步骤S1:虾壳粉碎,得到虾壳粉; 步骤S2:在虾壳粉中添加葡萄糖、酵母膏和水,搅拌均匀后灭菌,得到虾壳培养基质; 步骤S3:在虾壳培养基质中接种枯草芽孢杆菌,35~38℃、160~200rpm条件下发酵48~52h,得到枯草芽孢杆菌发酵基质; 步骤S4:待枯草芽孢杆菌发酵结束后,不更换培养基,直接在上述枯草芽孢杆菌发酵基质中流加浓度5%~7%的无水乙醇,搅拌均匀,得到乙醇发酵基质; 步骤S5:上述枯草芽孢杆菌发酵基质流加乙醇后,不灭菌,接种醋酸杆菌,30~35℃、160~200rpm条件下发酵60~72h,得到醋酸杆菌发酵液; 步骤S6:将醋酸杆菌发酵液进行固液分离,沉淀用水洗至中性,按照固液重量比1:10加入浓度10%的双氧水溶液进行脱色,室温条件下浸泡2h;

步骤S7:脱色后的固体物质经过洗净烘干,得到白色固体甲壳素。 2.根据权利要求1所述的利用微生物发酵从虾壳中提取甲壳素的方法,其特征在于,所述步骤S1具体为:将干燥的虾壳原料进行研磨,过60~80目筛网,得到虾壳粉。 3.根据权利要求1所述的利用微生物发酵从虾壳中提取甲壳素的方法,其特征在于:所述步骤S2中,虾壳粉、葡萄糖、酵母膏的添加量分别为水体积的4%~6%、5%~8%、0.2%~0.5%。 4.根据权利要求1所述的利用微生物发酵从虾壳中提取甲壳素的方法,其特征在于:所述步骤S3中,枯草芽孢杆菌的接种量为虾壳培养基质体积的1%~3%。 5.根据权利要求1所述的利用微生物发酵从虾壳中提取甲壳素的方法,其特征在于:所述步骤S5中,醋酸杆菌的接种量为乙醇发酵基质体积的3~5%。 技术说明书 一种利用微生物发酵从虾壳中提取甲壳素的方法 技术领域 本技术属于食品工业技术领域,涉及一种提取甲壳素的方法,具体涉及一种利用微生物发酵除去虾壳中的蛋白质和矿物质来制备甲壳素的方法。 背景技术

甲壳素(甲壳质)的功效

甲壳素(甲壳质)的功效 甲壳素,又称甲壳质、几丁质,英文名Chitin。甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(Odier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。外观及性质:淡米黄色至白色,溶于浓盐酸/磷酸/硫酸/乙酸,不溶于碱及其它有机溶剂,也不溶于水。甲壳质的脱乙酰基衍生物(Chitosan derivatives)壳聚糖(chitosan)不溶于水,可溶于部分稀酸。甲壳素具有抗癌抑制癌、瘤细胞转移,提高人体免疫力及护肝解毒作用。尤其适用于糖尿病、肝肾病、高血压、肥胖等症,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。 一般通称:甲壳质,甲壳素,(经脱乙酰化后称为)壳聚糖. 英文名称:Chitin. 中文学名:几丁质、甲壳素 化学名称:β-(1→4)-2-乙酰氨基-2-脱氧-D-葡萄糖 别名:壳多糖、几丁质、甲壳质、明角质、聚乙酰氨基葡糖 分子式及分子量:(C8H13NO5)n (203.19)n 性状:外观为类白色无定形物质,无臭、无味。 能溶于含8%氯化锂的二甲基乙酰胺或浓酸;不溶于水、稀酸、碱、乙醇或其它有机溶剂。 自然界中,甲壳质广泛在于低等植物菌类、虾、蟹、昆虫等甲壳动物的外壳、真菌的细胞壁等。它是一种线型的高分子多糖,即天然的中性粘多糖,若经浓碱处理去掉乙酰基即得脱乙酰壳多糖。甲壳质化学上不活泼,不与体液发生变化,对组织不起异物反应,无毒,具有抗血栓、耐高温消毒等特点。脱乙酰壳多糖是碱性多糖,有止酸、消炎作用,可降低胆固醇、血脂。 甲壳素功效:

1、降血脂作用血脂是指血液中脂类的含量。广义的脂类指中性脂肪(甘油和甘油三酯)和类脂质(胆固醇、胆固醇酯和磷脂)。 “甲壳质”可通过几个途径产生驱脂作用。 1)“甲壳质”阻碍脂类的消化吸收:进入肠腔的脂类因难溶于水无法吸收,需经过胆汁酸的乳化作用,将脂肪变成很小的油滴,以此来扩大与胰脂酶的接触面积利于脂肪的消化。肝脏生成的胆汁酸(带负电荷)经胆道排入肠腔非常容易与聚集它周围的甲壳质(带正电荷)结合,形成屏障而妨碍吸收,同时由消化道排出体外。大量的胆汁酸被消耗,从而阻碍脂类的吸收,实现降低血脂。 2)“甲壳质”有利于胆固醇转化:人体内的胆固醇主要来自食物摄入和自身合成。当人们一提到胆固醇往往会谈虎色变,认为胆固醇是造成心脑血管动脉硬化疾病的元凶,因而把胆固醇看成是对人体有害的物质。但是,任何事物都有其相对性,实际上胆固醇也是我们身体不可缺少的物质。他是构成脑、神经、性激素、细胞膜等的重要物质,而脂肪消化吸收时不可缺少的胆汁酸,也是胆固醇转化而来的。因此,胆固醇的值应保持在一个正常的范围之内。少了影响胆汁酸转化引起消化不良;一旦过剩,就会聚集在血管壁上,使血液循环恶化,引发动脉硬化等疾病。 低密度脂蛋白为胆固醇的主要携带者,胆固醇于肝脏转化为胆汁酸,储存于胆囊内,排入十二指肠将参与脂类的消化吸收过程,其后,95%的胆固醇被肠壁吸收入血重新回到肝脏,即所谓的胆汁酸的肝肠循环。小肠内的胆汁酸与甲壳质结合排出体外,使进入肝肠循环的胆汁酸大为减少。人体将肝脏以外的胆固醇运入肝脏,用来制造胆汁酸,最终促成体内胆固醇数量下降,血脂降低。 3)升高血液中高密度脂蛋白的含量 脂类与蛋白结合成脂蛋白,低密度脂蛋白则将胆固醇由肝脏运向周围组织,诱发组织硬化;高密度脂蛋白将周围组织的胆固醇运回肝脏。甲壳质降血脂,使血液中胆固醇含量下降,低密度脂蛋白数量也随之下降,高密度脂蛋白数量上升有助于防止动脉硬化的产生。 2、降血压的作用 1)体液调节作用:造成高血压的原因很多,其中体液内分泌调节占重要地位。实验医学证明,人体过量摄入氯化钠(食盐),使氯离子堆积,导致人体处于高血压状态。其机理为肝脏产生的血管紧张素源在血液中平时不显示活性,在转换酶(ACE)的作用下生成的血管紧张素Ⅰ是一种生理活性较低的中间产物,二次经转换酶(ACE)的作用生成的血管紧张素Ⅱ生理活性极强,作用于中、小动脉内膜使血压升高。氯离子是转换酶(ACE)的激活剂,体内适量的甲壳质溶解后形成阳离子基团与氯离子结合排出体外,削弱了转换酶的作用,血压则无法升高。氯化物Cl¯ Cl¯ —→ACE激活————→ ACE激活————→ ACE激活↓↓↓血管紧张素源兴奋—→血管紧张素Ⅰ兴奋—→血管紧张素Ⅱ 兴奋→入血 2)降血脂同时降血压:甲壳质降低血脂,多量的胆固醇由周围组织运回肝脏,中小动脉内膜沉着的胆固醇数量减少,血脂降低,血管内壁弹性转佳,促使血压下降。 3、降血糖的作用糖尿病是由于胰岛素分泌绝对或相对不足,以及靶细胞对胰岛素敏感性降低造成糖、蛋白质和脂类代谢障碍,继而发生水、电解质代谢紊乱和酮体酸中毒。它是以高血糖为主要特征的内分泌代谢性疾病。 1)促进胰岛素的分泌:胰腺具有双重功能,即分泌消化液和胰岛素,胰岛素是一种激素,主要调节人体的糖代谢。甲壳质通过协调脏器功能促进内分泌,实现对胰腺功能的调节。首先是刺激迷走神经,兴奋大脑皮层的饥饿中枢和血管运动中枢,然后使胰腺的血管扩张,

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工业应用的目的留在脑海里。 一.发酵培养基的成分 现代分离的微生物绝大部分是异养型微生物,它需要碳水化合物、蛋白质和前体等物质提供能量和构成特定产物的需要。其营养物质一般包括碳源、氮源(有机氮源、无机氮源)、无机盐及微量元素、生长因子、前体、产物促进和抑制剂等。另外,在设计培养基时还必须把经济问题和原材料的供应问题等因素一起考虑在内。 此外,还要考虑所筛选的菌种来源的地点环境,比如本实验室长期从事红树林微生物的分离及其研究工作,红树林的环境处于海洋与陆地之间,所以配制培养基所用的水除了一般的去离子水外还包括陈海水。 如果在知道产物结构或者产物合成途径的情况下,我们可以有意识地加入构成产物和合成途径中所需的特定结构物质。我们也可以结合某一菌株的特定代谢途径,加入阻遏或者促进物质,使目的产物过量合成。例如青霉素的合成会受到赖氨酸的强烈抑制,而赖氨酸合成的前体α-氨基已二酸可以缓解赖氨酸的抑制作用,并能刺激赖氨酸的合成。这是因为α-氨基已二酸是合成青霉素和赖氨酸的共同前体。如果赖氨酸过量,它就会抑制这个反应途径中的第一个酶,减少α-氨基已二酸的产量,从而进一步影响青霉素的合成。 二.发酵培养基的设计和优化 由于发酵培养基成份众多,且各因素常存在交互作用,很难建立理论模型;另外,由于测量数据常包含较大的误差,也影响了培养基优化过程的准确评估,因此培养基优化工作的量大且复杂。许多实验技术和方法都在发酵培养基优化上得到应用,如:生物模型、单次试验、全因子法、部分因子法、PlackettandBurman法等。但每一种实验设计都有它的优点和缺点,不可能只用一种试验设计来完成所有的工作。 1.单次单因子法 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题:

酸碱法提取甲壳素的工艺优化

一.前言 甲壳素又名甲壳质、几丁质、甲壳胺等,是一种由N-乙酰-2-氨基-2-脱氧-D-葡萄糖以β-l,4糖苷键连接而成的天然高分子化合物。甲壳素具有良好的化学物理性质:能拉丝、成膜、制粒,能通过化学改良物化性能,能和多种物质(如胆固醇、脂肪、金属离子、蛋白质、肿瘤细胞等)结合,无毒,高黏度,具有生物可溶性【1】,可被广泛应用于食品、医药、农业、环保、生物工程及轻工等领域。。但甲壳素分子中乙酰基的存在及分子间的氢键导致甲壳素不溶于水,从而大大限制了它的应用范围,因此有必要对甲壳素进行脱乙酰处理。壳聚糖(Chitosan)是甲壳素脱乙酰的产物,溶于稀酸,高度脱乙酰化产物可溶于水,是自然界中少见的带正电荷的高分子聚合物。【2】 目前工业化生产甲壳素的原料主要是虾、蟹壳,以质量分数计虾壳中含有20%~30%的甲壳素,20%~30%的蛋白质等有机物,30%~40%的钙等无机物,4%~5%的色素.【3】 本实验旨在以小龙虾虾壳作为原料提取甲壳素,确定甲壳素提取的最佳实验条件。 二.摘要 通过单因素试验和正交试验,探讨了小龙虾虾壳甲壳素提取过程中不同反应条件对脱除虾壳所含蛋白质和无机盐的影响.查文献可知:虾壳中蛋白质脱除的最佳试验条件为8%NaOH、反应时间1 h、反应温度90℃;无机盐脱除的最佳试验条件为1.0 mol/L的HCl溶液、50℃下反应1 h;甲壳素 脱色采用10%过氧化氢溶液在80℃水浴中浸泡2 h.在最佳提取工艺下制 备的甲壳素产品中氮含量为6.7%、灰分含量为1.2%、水分含量为4.0%、脱乙酰度为10%,产品得率为18.2%.【3】 ?龙虾壳的主要成分为碳酸钙与磷酸盐(约占45%),蛋白质(约 占27%),甲壳素(约占22.5%)。先用1.0mol/L的盐酸脱去钙盐和磷酸盐;再用1.0mol/L的氢氧化钠脱蛋白,得到甲壳素;最后用12mol/L的 氢氧化钠脱乙酰基,即得壳聚糖。 ?壳聚糖为一种高分子物质,可通过脱乙酰度DD、黏度(反映 了高分子物质的相对分子质量大小)指标来衡量其质量。

微生物发酵法生产透明质酸

微生物发酵法生产透明质酸 郭学平透明质酸(hyaluronic acid, HA),又名玻璃酸,是一种酸性黏多糖,广泛存在于脊椎动物的各种组织细胞间质中,如皮肤、脐带、关节滑液、软骨、眼玻璃体、鸡冠、鸡胚、卵细胞、血管壁等,其中以人脐带、公鸡冠、关节滑液和眼玻璃体含量较高。透明质酸价格昂贵,在日本有“白金”之称,目前的生产方法有发酵法和提取法两种。 1 透明质酸的发展 1934年美国Meyer等首先从牛眼玻璃体中分离出该物质。20世纪70年代,Balazs等从鸡冠和人脐带提取HA,并配制成眼科手术用黏弹性辅助剂—NIF-HA,开创了HA医学应用的先河。 由于HA优良的保湿和润滑性能,20世纪80年代初开始用于高档护肤化妆品,其需求量大幅度增加。受原料限制,从人脐带和鸡冠提取的HA产量低、成本高,不能满足市场需求。为了寻找HA的新来源,降低生产成本,研究了发酵法生产HA。 工业化发酵生产HA是日本资生堂最早开始研究的,他们借鉴前人对某些链球菌产生HA这一重要发现,利用现代发酵技术和设备,以提高HA产率为目的,对发酵生产HA进行了较全面地研究。80年代中期,日本已有发酵生产的HA上市,价格大大低于从动物原料提取的产品。提取法和发酵法生产HA的比较见表1。 表1 提取法和发酵法生产HA的比较

项目提取法发酵法 存在状态在原料中与蛋白质和其它多糖 形成复合体,分离精制复杂在发酵液中游离存在,分离精制容易 分子量与保湿性小于1.0×106,保湿性差大于1.5×106,保湿性强品质与产量取决于动物原料的品质与数量品质稳定,产量大 价格(化妆品用) 2.2万元/kg 1.6万元/kg 应用价格昂贵,化妆品中的添加量 受到制约 能增加化妆品中的添加量 发酵法生产HA方面的研究主要集中在日本、英国和美国也有少量报道。国内从1980年开始研究从鸡冠和人脐带提取纯化HA,在1990年前后 化妆品用HA和医药用HA先后研制成功并生产。山东省生物药物研究院(原 山东省商业科技研究所)是国内最早从事HA研究开发的单位之一,1990 年该院郭学平等在国内首先开始HA的发酵生产研究,先后完成了小试和中 试实验。发酵法生产HA的研究成功改变了我国HA生产技术的落后局面, 使我国HA的生产进入了新的发展时期。 2 化学结构及理化性质 HA是由(1→3)-2-乙酰氨基-2-脱氧-β-D-葡萄糖-(1→4)-O-β-D-葡糖醛 酸双糖重复单位所组成的直链多聚糖,见图1。

甲壳素的提取

甲壳素的人工提取 学生钟娜江峰房婧婧 指导教师聂金昌马峰 (本文获安徽省教育厅、安徽省科协颁发的二等奖) 摘要甲壳素是21世纪的新材料,它对人类社会的发展与进步有着巨大的作用。在工业、农业、医药、化妆品、环境保护、水处理等领域有极其广泛的用途。蚌埠地区有着广泛的提取甲壳素的资源,但长期以来,不仅未能得到有效利用,而且对环境造成了极大污染。我们蚌埠二中课题组的师生从利用资源和减少环境污染的目的出发,开展了甲壳素的人工提取工作,为开发内陆省份新的甲壳素资源,变废为宝,并为甲壳素衍生物的生产提供稳定的原料来源。 关键词甲壳素甲壳素资源甲壳素衍生物脱盐 一、选题目的 甲壳素又名甲壳质,壳多糖,壳蛋白,是自然界生物所含的一种氨基多糖。它具有无毒、无味、耐晒、耐热、耐腐蚀,不怕虫蛀和碱的浸蚀,可生物降解的特点。它是地球上仅次于纤维素的第二大生物资源,年生物合成量高达100亿吨,可以说是用之不竭的生物资源。这无疑给面临全球资源枯竭危机的人类带来了生机。 甲壳素的可降解性使其有望成为塑料的替代物,从而解决人类所面临的“白色污染”问题,它还可以消除人体内外环境所面临的有毒有害物质对人体的威胁,实现经济社会的可持续发展。 蚌埠地区盛产中华绒毛蟹及大红虾等甲壳类产品,但其甲壳长期不仅未能得到有效利用,而且对环境造成了极大污染。为了合理利用资源,减少环境污染,开发甲壳素资源,给甲壳素衍生物的生产提供稳定的原料来源。我们课题组的师生开展了甲壳素的人工提取工作,并在提取过程中积累经验,为加速其产业化,繁荣地区经济和扩大就业做出贡献。 二、活动过程 我们课题组的师生走访了市水产、环保、卫生、食品及市政等部门,从他们提供的资料推算,蚌埠地区每年可产虾、蟹约两千多吨,虾蟹壳将不低于800吨。据资料显示这些虾蟹壳经过深加工可创经济价值高达近亿元。于是我们从饭店拣来了几千克的蟹壳,洗涤晾干后便开始了提取工作。 ⒈提取工艺 从虾、蟹壳中提取甲壳素的传统方法一般有酸浸脱盐(主要为钙盐)、碱煮脱蛋白和氧化脱色三步。我们针对蟹壳的特点,初步建立了提取甲壳素的工艺流程: 取蟹壳(含其螯)洗涤、晾干、粉碎。称取碎壳100g ,加入2.5mol/L 氢氧化钠溶液(400ml),软皂(8g),持续搅拌6小时,停止搅拌,放置18小时。将壳捞出,再用2.5mol/L 氢氧化钠溶液(400ml),浸泡24小时。 将两次浸泡后的壳捞出,纱布过滤,水洗至中性,稍沥干。加入1mol/L的盐酸溶液(1000ml),搅拌反应30分钟。再将壳捞出,用1mol/L的盐酸液(500ml)搅拌反应30分钟,纱布过滤,大量水洗至中性。挤去水分,晒干即得。得率以粗碎净壳(干燥品)计,平均21%。

微生物发酵制药-总体工艺过程流程

微生物发酵制药 -----总体工艺过程流程 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。 微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 1.分离思路:新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 2.定方案:首先要查阅资料,了解所需菌种的生长培养特性。 3.采样:有针对性地采集样品。 4.增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。

甲壳素人工提取

甲壳素提取工艺 摘要:甲壳素存在于自然界中的低等植物菌类、藻类的细胞,甲壳动物虾、蟹、昆虫的外壳,高等植物的细胞壁等,是从蟹、虾壳中应用遗传基因工程提取的动物性高分子纤维素,被科学界誉之为“第六生命要素”!因此被欧美中日政府认定为机能性免疫物质。在灵芝、冬虫夏草等植物中也含有微量“几丁聚糖”,但含量只在2%-7%之间。甲壳素是宇宙中唯一带正电的阳性食物纤维,地球上存在的天然有机化合物中,数量最大的是纤维素,其次是甲壳素,估计自然界每年生物合成的甲壳素将近100亿吨。甲壳素是地球上数量最大的含氮有机化合物,其次才是蛋白质仅此两点,就足以说明甲壳素的重要性。 纯甲壳素是一种无毒无味的白色或灰白色半透明的固体,在水、稀酸、稀碱以及一般的有机溶剂中难以溶解,因而限制了它的应用和发展。后来人们在研究探索中发现,甲壳素经浓碱处理脱去其中的乙酰基就变成可溶性甲壳素,又称甲壳胺或壳聚糖,它的化学名称为(1→4)-2-氨基-2-脱氧-β-D-葡萄糖,或简称聚胺基葡萄糖。这种壳聚糖由于它的大分子结构中存在大量氨基,从而大大改善了甲壳素的溶解性和化学活性,因此使它在医疗、营养和保健等方面具有广泛的应用价值。甲壳素是地球上存量极为丰富的一种自然资源,也是自然界中迄今为止被发现的唯一带正电荷的动物纤维素。由于它的分子结构中带有不饱和的阳离子基团,因而对带负电荷的各类有害物质具有强大的吸附作用。同样它也能清除人体内的“垃圾”,达到预防疾病、延年益寿的目的。由于甲壳素具有这种独特功能,它被欧美科学家誉为和蛋白质、脂肪、糖类、维生素、矿物质同等重要的人体第六生命要素。 甲壳素具有非常高的医疗保健作用:提高免疫力、无毒抗癌、降低胆固醇、改善消化机能、降血压、减少体内重金属的积蓄的作用。甲壳素在食品和化工领域有很广阔的应用前景,目前市场上甲壳素价格不断地攀高,已达85元/ kg(品级甲壳素) ,发展甲壳素产业有很好的社会和经济效益,孕育着很大的商机和利润。 甲壳素主要从虾、蟹壳中提取,虾、蟹壳中的杂质主要是无机盐、蛋白质。以前的研究报道中均是加入大量酸碱去掉这些杂质,生产过程产生大量的高浓度酸碱废液,严重环境污染。无法投入实际生产应用。为此,提出虾壳、蟹壳的资源化处理法。 关键词:甲壳素环保经济酶解法 传统提取工艺: 从虾、蟹壳中提取甲壳素的传统方法一般有酸浸脱盐(主要为钙盐)、碱煮脱蛋白和氧化脱色三步。针对蟹壳的特点,初步建立了提取甲壳素的工艺流程: 取蟹壳(含其螯)洗涤、晾干、粉碎。称取碎壳100g ,加入2.5mol/L 氢氧化钠溶液(400ml),软皂(8g),持续搅拌6小时,停止搅拌,放置18小时。将壳捞出,再用2.5mol/L 氢氧化钠溶液(400ml),

微生物发酵

廊坊师范学院 《微生物发酵中药》综述 姓名:崔晓光 学号:11070142003 专业:生命科学生物技术 年级:2011级 成绩: 2013年11月7日

【摘要】现代中药发酵技术是在充分吸收了微生物学、生物工程学等学科研究成果的基础上逐渐发展起来的。利用微生物发酵中药比一般的物理或化学炮制手段优越,可较大幅度地提高疗效,降低毒副作用,并为研发新药提供了新的途径,正逐渐成为中药研究的热点。本文综述了目前微生物发酵在中药中的主要应用。【关键词】微生物发酵;中药;应用 【前言】微生物有着非常强大的分解转化物质的能力,并能产生丰富的次生代谢产物,通过微生物的生长代谢和生命活动来炮制中药,可以比一般的物理或化学的炮制手段更大幅度地改变药性,提高疗效,降低毒副作用,扩大适应症。中药发酵制药技术是在继承中药炮制学发酵法的基础上,吸取了微生态学研究成果,结合现代生物工程的发酵技术而形成的高科技中药制药新技术,是从中药(天然药物)制药方面寻找药物的新疗效。传统的中药发酵多是在天然的条件下进行的,而现在的中药发酵制药技术是在充分吸收了近代微生态学、生物工程学的研究成果而逐渐形成的。其先进发酵工艺特点是:以优选的有益菌群中的一种或几种、一株或几株益生菌作为菌种,加入中药提取液中,再按照现代发酵工艺制成产品,它是一种含有中药活性成分、菌体及其代谢产物的全组分发酵液的新型中药发酵加工制剂。 【主体】 一、中药发酵制药的源流 早在千余年前,我国已开始用发酵方法制药,直到现在临床仍在应用的发酵(制品)中药有六神曲、半夏曲、淡豆豉、豆黄等,其工艺均为固体发酵。如半夏曲的制造,明·《本草纲目》记载:“半夏研末,以姜汁、白矾汤和作饼,楮叶包置篮中,待生黄衣,晒干用”。其性味苦辛、平,能化痰止咳、消食积、治泄泻。而未发酵的半夏刚性味辛,有毒,功能燥湿化痰、降逆止呕、消痞散结。清代,按其辅料中药及治疗功能的不同,又制出了皂角曲、竹沥曲、麻油曲、牛胆曲、开郁曲、海粉曲、覆天曲等10种药曲。淡豆豉的发酵工艺另具特色,它是以黑大豆为原料制成的,性味苦寒,具有解表除烦、宣郁解毒功能,其工艺为“用黑大豆二三斗,水浸一宿,沥干黄熟,摊席上..蒿覆,侯黄衣上遍..安瓮中筑实,桑叶盖厚三寸,密封泥..如此七次”。再有用黑大豆制成的豆黄,则性味甘温,能祛湿痒、健脾益气。其发酵工艺为“用黑大豆一斗,黄熟,铺席上以蒿覆之,如氽酱法,待上黄,取出晒干”。未经发酵的黑大豆,则性味苦平,有活血、利水、解毒作用。从上述可以看出,中药发酵的目的主要为改变药物原有性能,产生新的治疗作用(如淡豆豉、豆黄),或增强原有疗效的治疗作用(如淡豆豉、豆黄),或增强原有疗效(如半夏曲),扩大用药品种。由于其疗效确切,至今对六神曲、半夏曲和淡豆豉等仍在进行工艺改进研究,并取得相应成绩。片仔癀的主要成分是三七的微生物发酵物, 建神曲、沉香曲、淡豆豉、半夏曲、红曲、麦芽也都是通过发酵而形成的药物。从某种意义上说,虫草是蝙蝠蛾幼虫经虫草菌、僵蚕是家蚕经白僵菌感染发酵而成的。这些经典药物都是经微生物发酵后产生了新的药理活性,其中虫草是非常名贵的中药。 二、中药发酵技术的研究现状 中药发酵研究开始于80年代,但仅是对真菌类自身发酵的研究,如灵芝菌丝体、冬虫夏草菌丝体、槐耳发酵等,大都是单一发酵。虽有报道加入中药,但也仅是将中药当做菌丝体发酵的菌质,同时研究发现,含有中药的菌质对原发酵物的 功效有影响,只是未见深入研究。目前,已有学者呼吁中药发酵制药可按新药审批

微生物发酵工程

发酵工程,是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。 发酵工程的内容 它是一级学科“轻工技术与工程”中的一个重要分支和重点发展的二级学科,在生物技术产业化过程中起着关键作用。 1)“发酵”有“微生物生理学严格定义的发酵”和“工业发酵”,词条“发酵工程”中的“发酵”应该是“工业发酵”。 (2)工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺被称为“发酵工艺”。为实现工业化生产,就必须解决实现这些工艺(发酵工艺)的工业生产环境、设备和过程控制的工程学的问题,因此,就有了“发酵工程”。 (3)发酵工程是用来解决按发酵工艺进行工业化生产的工程学问题的学科。发酵工程从工程学的角度把实现发酵工艺的发酵工业过程分为菌种、发酵和提炼(包括废水处理)等三个阶段,这三个阶段都有各自的工程学问题,一般分别把它们称为发酵工程的上游、中游和下游工程。 (4)微生物是发酵工程的灵魂。近年来,对于发酵工程的生物学属性的认识愈益明朗化,发酵工程正在走近科学。 (5)发酵工程最基本的原理是发酵工程的生物学原理。 发酵工程是指采用工程技术手段,利用生物(主要是微生物)和有活性的离体酶的某些功能,为人类生产有用的生物产品,或直接用微生物参与控制某些工业生产过程的一种技术。人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,乳酸菌发酵制造奶酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长激素等。 已经从过去简单的生产酒精类饮料、生产醋酸和发酵面包发展到今天成为生物工程的一个极其重要的分支,成为一个包括了微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。现代发酵工程不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。 从广义上讲,发酵工程由三部分组成:是上游工程,中游工程和下游工程。其中上游工程包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。中游工程主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。这里要有严格的无菌生长环境,包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。此外,根据不同的需要,发酵工艺上还分类批量发酵:即一次投料发酵;流加批量发酵:即在一次投料发酵的基础上,流加一定量的营养,使细胞进一步的生长,或得到更多的代谢产物;连续发酵:不断地流加营养,并不断地取出发酵液。在进行任何大规模工业发酵前,必须在实验室规模的小发酵罐进行大量的实验,得到产物形成的动力学模型,并根据这个模型设计中试的发酵要求,最后从中试数据再设计更大规模生产的动力学模型。由于生物反应的复杂性,在从实验室到中试,从中试到大规模生产过程中会出现许多问题,这就是发酵工程工艺放大问题。下游工程指从发酵液中分离和纯化产品的技术:包括固液分离技术(离心分离,过滤分离,沉淀分离等工艺),

微生物发酵

微生物发酵:利用微生物,在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物的过程。 液体发酵是在借鉴抗生素生产工艺的基础上,把菌丝体加入培养基中,将之与药材混合后放置于适温下进行发酵。液体发酵具有较高的物质传递效率,易于实现发酵工艺的自动化控制。固体发酵是以富含多种营养成分的农副产品如麦麸、甘蔗渣、玉米芯等作为发酵营养基质,用一种或多种真菌作为发酵菌种,在一定的温度、湿度条件下进行发酵。固体发酵在发酵过程中既生长菌体,又形成各种次生代谢物质,难以将其分离,统成为菌质。 固态发酵是指没有或几乎没有自由水存在下,在有一定湿度的水下溶性固态基质中,用一种或多种微生物的一个生物反应过程。从生物反应过程中的本质考虑,固态发酵是以气相为连续相的生物反应过程。固体发酵具有操作简便、能耗低、发酵过程容易控制、对无菌要求相对较低、不易发生大面积的污染等优点。 广义:微生物生长于不溶于水的基质,且基质上含有不同量的自由水(free water)。 狭义:微生物生长在潮湿不溶于水的基质进行发酵,在固体发酵过程中不含任何自由水,随著微生物产出的自由水的增加,固体发酵范围延伸至黏稠发酵(slurry fermentation)以及固体颗粒悬浮发酵 固体发酵的优点: 1. 培养基单纯,例如谷物类、小麦麸、小麦草、大宗谷物或农产品等均可被使用,发酵原料成本较经济。 2. 基质前处理较液体发酵少,例如简单加水使基质潮湿,或简单磨破基质增加接触面积即可,不需特殊机具,一般家庭即可进行步骤。 3. 因获得水分可减少杂菌污染,此种低灭菌步骤即可施行的发酵,适合低技术地区使用。 4. 能产生特殊产物,如红麴产生的红色色素是液体发酵的十倍,又Aspergillus 在固体发酵所产生的glucosidase较液体发酵产生的酵素更具耐热性。 5. 固体发酵相当于使用相当高的培养基,且能用较小的反应器进行发酵,单位体积的产量较液体为高。 6. 下游的回收纯化过程及废弃物处理通常较简化或单纯,常是整个基质都被使用,如做为饲料添加物则不需要回收及纯化,无废弃物的问题。 7. 固体发酵可食品产生特殊风味,并提高营养价值,如天培可作为肉类的代用品,其胺基酸及脂肪酸易被人体消化吸收。 固体发酵的缺点: 1. 限于低湿状态下生长的微生物,故可能的流程及产物较受限,一般较适合于真菌。 2. 在较致密的环境下发酵,其代谢热的移除常造成问题,尤其是大量生产时,常限制其大规模的产能。 3. 固态下各项参数不易侦测,尤其是液体发酵的各种探针不适用于固体发酵,pH值、湿度、基质浓度不易调控,Biomass不易量测,每批次发酵条件不易一致,再现性差。 4. 不易以搅拌方式进行质量传递(masss transfer),因此发酵期间,物质的添加无法达到均匀。 5. 由于不易侦测,从发酵工程的观点来看,许多工作都只是在定性或观察性质,故不易设计反应器,难以量化生产或设计合理化的发酵流程。

相关主题
文本预览
相关文档 最新文档