当前位置:文档之家› 四足机器人中各关节的控制

四足机器人中各关节的控制

四足机器人中各关节的控制
四足机器人中各关节的控制

物料分拣机械手自动化控制系统设计

物料分拣机械手自动化控制系统设计 摘要 机械手在先进制造领域中扮演着极其重要的角色。它可以搬运货物、分拣物品、代替人的繁重劳动。可以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因此被广泛应用于机械制造、冶金、电子、轻工和原子能等部门。 本文在纵观了近年来机械手发展状况的基础上,结合机械手方面的设计,对机械手技术进行了系统的分析,提出了用气动驱动和PLC控制的设计方案。采用整体化的设计思想,充分考虑了软、硬件各自的特点并进行互补优化。对物料分拣机械手的整体结构、执行结构、驱动系统和控制系统进行了分析和设计。在其驱动系统中采用气动驱动,控制系统中选择PLC的控制单元来完成系统功能的初始化、机械手的移动、故障报警等功能。最后提出了一种简单、易于实现、理论意义明确的控制策略。 关键词:机械手;可编程控制器;自动化控制;物料分拣

目录 第一章前言 (1) 1.1研究的目的及意义 (1) 1.2主要研究的内容 (1) 第二章控制系统的组成结构和性能要求 (2) 2.1控制系统的组成结构 (2) 2.2控制系统的性能要求 (2) 第三章传感器的选择 (4) 第四章控制系统PLC的选型及控制原理 (6) 4.1 PLC控制系统设计的基本原则 (6) 4.2 PLC种类及型号选择 (10) 4.3 I/O点数分配 (10) 4.4 PLC外部接线图 (11) 4.5机械手控制原理 (12) 第五章 PLC程序设计 (14) 5.1总体程序框图 (14) 5.2初始化及报警程序 (15) 5.3手动控制程序 (16) 5.4自动控制程序 (16) 第六章总结与展望 (19) 参考文献 (20) 谢辞 (21)

机器人控制器的现状及展望概要

第21卷第1期1999年1月 机器人ROBO T V o l.21,N o.1 Jan.,1999机器人控制器的现状及展望α 范永谭民 (中国科学院自动化研究所北京100080 摘要机器人控制器是影响机器人性能的关键部分之一,它从一定程度上影响着机器人的发展.本文介绍了目前机器人控制器的现状,分析了它们各自的优点和不足,探讨了机器人控制器的发展方向和要着重解决的问题. 关键词机器人控制器,开放式结构,模块化 1引言 从世界上第一台遥控机械手的诞生至今已有50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了3代[1]: (1可编程的示教再现型机器人;(2基于传感器控制具有一定自主能力的机器人;(3智能机器人.作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一.它从一定程度上影响着机器人的发展.目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步,使得机器人的研究在高水平上进行,同时也为机器人控制器的性能提出更高的要求. 对于不同类型的机器人,如有腿的步行机器人与关节型工业机器人,控制系统的综合方法有较大差别,控制器的设计方案也不一样.本文仅讨论工业机器人控制器问题. 2机器人控制器类型

机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置,它是机器人的心脏,决定了机器人性能的优劣. 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型. 211串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理.对于这种类型的控制器,从计算机结构、控制方式来划分,又可分为以下几种[2]. (1单CPU结构、集中控制方式 用一台功能较强的计算机实现全部控制功能.在早期的机器人中,如H ero2I,Robo t2I等,就采用这种结构,但控制过程中需要许多计算(如坐标变换,因此这种控制结构速度较慢. (2二级CPU结构、主从式控制方式 一级CPU为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补,并定时地把运算结果作为关节运动的增量送到公用内存,供二级CPU读取;二级CPU完成全部关节位置数字控制.这类系统的两个CPU总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系.对采用更多的CPU进一步分散 α1998-09-03收稿 67机器人1999年1月 功能是很困难的.日本于70年代生产的M o tom an机器人(5关节,直流电机驱动的计算机系统就属于这种主从式结构. (3多CPU结构、分布式控制方式

(完整版)基于plc的机械手控制系统设计

前言 随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,已愈来愈引起人们的重视。 机械手是在机械化、自动化生产过程中发展起来的一种新型装置。近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。 机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用,生产中应用机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。 本文将通过西门子PLC控制机械手,PLC是可编程控制器(Programmable Logic Controller)的简称,是在继电顺序控制基础上发展起来的以微处理器为核心的通用的工业自动化控制装置。随着电子技术和计算机技术的迅猛发展,PLC的功能也越来越强大,更多地具有计算机的功能。目前PLC已经在智能化、网络化方面取得了很好的发展。该系统利用西门子PLC,在步进电机驱动下,完成对机械手在搬运过程中的下降、夹紧、上升、右旋、下降、放松、上升、左旋等全过程自动化控制,并对非正常情况实行自动报警和自动保护,实现企业的机电一体化,提高企业的生产效率。

四足机器人步行腿运动学正反解

四足机器人步行腿的运动学正反解摘要:本文设计的步行腿具有3个驱动关节,分析了该步行机器人的机构及其等效简化,给出了运动学正反解,正解问题要比反解问题复杂很多。该分析方法准确率高,为步行腿的运动空间、轨迹规划和位置控制奠定了基础。 关键词:步行腿运动学正反解 abstract: in this paper, the design of walking legs with three drive joint analysis of the institutions of the walking robot and its equivalent simplified kinematics and inverse solution positive solution of the problem is much more complex than the inverse solution. the analytical method with high accuracy, and laid the foundation for walking space for the movement of the legs, trajectory planning and position control. keywords: walking legs kinematics positive and negative solution 0 前言 四足机器人的行走机构是步行腿,它是步行机器人中最为重要也是最复杂的构件[1],步行腿的灵活度这届决定了步行机器人的行走姿态和完成任务的复杂程度。本文设计的步行腿具有三个驱动关节,采用混连机构设计。给出了步行腿的运动正解和反解,是整个四足步行机器人系统设计的基础,也是机器人运动空间分析和尺

新型四足机器人步态仿真与实现

M ac hine B uilding A uto mation,Jun 2008,37(3):21~23,33 作者简介:马东兴(1982— ),男,江苏省丹阳市人,在读硕士研究生,主要从事虚拟样机和四足机器人技术研究。 新型四足机器人步态仿真与实现 马东兴,王延华,岳林 (南京航空航天大学机电学院,江苏南京210016) 摘 要:研究一种背部带关节的新型四足机器人,通过三维建模软件Pr o /E 和机械系统动力学 仿真分析软件ADAMS 建立了四足机器人虚拟样机,规划了四足机器人的步态,并且利用AD 2AM S 仿真软件对该四足机器人进行了步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度控制。仿真与实验结果表明四足机器人能够根据设计步态实现直线行走。 关键词:四足机器人;步态仿真;舵机;单片机中图分类号:TP24 文献标识码:A 文章编号:167125276(2008)0320021203 Ga it S i m ul a ti on and I m plem en t a ti on of a New Quadruped Robot MA Dong 2xing,WANG Yan 2hua,Y UE L in (Co ll ege o f M echan i ca l and E l ec tri ca l Eng i nee ri ng,N a n ji ng U n i ve rs ity o f Ae r o na u ti c s & A s tr o na u ti c s,N a n ji ng 210016,C h i na ) Abstract:A new qua drup e d r obo t w ith w a ist 2j o i nt is d iscu sse d i n this p ap e r .The virtua l p r o t o type o f quad rup ed r obo t is c re a te d by P r o /E a nd ADAM S a nd the ga it o f the r obo t is p l a nne d.The ga it s i m ul a ti o n of the qua drupe d r o bo t is do ne by ADAM S virtua lp r o t o ty 2p i ng so ft w a re.M e a nw hil e ,w e succe s sfull y con tr o l fi ve rudde r se rvo s by a s i ngl e AT89C52SCM a nd a lso rea li ze the ve l o c ity co ntr o l of the rudde r se rvo.The s i m ul a ti o n a nd e xp e ri m e nta l re sults show tha t the qua drup e d r o t w ith w a is t 2j o i n t ca n w a l k s tra i ght s te a dil y thr ough the de s i gned ga it . Key words:qua drup e d r obo t;ga it s i m ul a ti o n;rudde r se rvo;SCM 0 引言 与轮式机器人或履带式机器人相比,由于足式机器人的立足点是离散的点,可以在可能到达的地面上选择最优的支撑点,足式机器人对崎岖路面也具有很好的适应能力,因此足式机器人受到各国研究人员的普遍重视,目前已成功开发了多款足式机器人。例如日本东京工业大学 研发的TI T AN 2V III [1] 机器人,每个腿具有3个自由度,其 中大腿关节具有前后转动和上下转动2个自由度,膝关节具有1个上下转动自由度。采用新型的电机驱动和绳传动。上海交通大学马培荪等人研制的JT UWM 2III 四足机器人[2, 3] ,腿为开链式关节型结构,膝关节为一纵摇自由 度,髋关节为纵摇和横摇2个自由度。每一腿有3个自由度,共12个自由度。机体重心较高,与哺乳类动物相似,适应于动态行走。华中科技大学研发的“4+2”多足步行机器人[4, 5] ,其腿部件由髖关节、大腿关节、小腿关节和踝 关节四部分组成,大、小腿关节之间由线轮传动,每一腿有 3个自由度。但是先前研制的机器人的本体大多是一个 刚性整体,没有考虑机器人的背部关节。 因此,在分析卡内基梅隆大学(Carnegie Mell on Uni 2 versity )研制的RGR 仿壁虎机器人[628] ,以及韩国庆北大学(Kyungpook Nati onal University )设计的E L I RO 2II 四足步行机器人的基础上[9, 10] ,研究了一种新型四足机器人。 该机器人与传统的足式机器人相比,其机器人本体不再是 一个单一的刚性整体,而是在本体上用一个主动关节将机 器人的本体分为前后两个部分,通过背部主动关节的运动来实现四足机器人的直线行走。通过机械系统动力学仿真分析软件(aut omatic dynam ic analysis of mechanical sys 2te m s,ADAMS )对该四足机器人虚拟样机进行步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度变化,四足机器人的直线行走平均速度达到12.14mm /s 。 1 四足机器人虚拟样机 1.1 四足机器人结构 传统的四足机器人每个腿有2个或3个自由度,本文研究的四足机器人结构简单,每个腿只有1个自由度,但是在机器人背部增加了1个自由度。四足机器人的结构如图1所示。该四足机器人有5个主动关节(图中关节1至关节5)和1个被动关节(6点),各关节的运动方向如图1所示。主动关节由舵机驱动。z 轴正方向为四足机器人前进方向。关节1至关节4四个主动关节可以使各腿在xoy 平面上下摆动。关节5可以使前后本体在xoz 平面转动。 1.2 四足机器人接触力 当足与地面之间发生接触时,这两个物体就在接触的 ? 12?

多关节机械手控制系统

摘要 随着微处理器、计算机、数字通信技术的迅速发展,计算机控制已广泛的应用在各种工业控制领域,为了满足生产设备和自动化的必须有高度可靠性和灵活性的要求,可编程控制器的出现满足了这一要求,它是以微处理器为基础的通用工业装置。 可编程控制器,简称PLC,它的应用广泛,功能强大,使用方便,已成为当今工业自动化的重要支柱之一,在工业生产的所有领域中得到充分的利用。 PLC已广泛的应用在各种生产设备和生产过程自动控制过程中,PLC在其他领域,例如在民用或家用的自动化设备中的到迅速的发展。 关键词:PLC机械臂旋转传感器梯形图 目录 摘要 (1) 1.多关节机械手简介 (2) 2.多功能机械手控制系统的功能要求 (2) 3.硬件系统配置 (4) 3.1. PLC选型 (4) 3.2. PLC的I/O资源配置 (5) 4.软件系统设计 (6) 4.1. 总体流程设计 (6) 4.2. 梯形图设计 (6) 4.3. 主程序初始化梯形图 (6) 4.4. 机械手运转过程梯形图 (8) 4.5. 步进电机脉冲程序梯形图 (11) 5.总结 (13) 6.致谢 (14) 7.参考文献 (14)

多关节机械手控制系统 1.多关节机械手简介 在工业生产和其他领域的木屑工作中,人们经常那个处于高温或有毒等对人体有伤害的环境中从事重复的劳动,这样生产成本不但高,而且会危及人们的生命安全。随着工业自动化的发展、生产效率的提高和劳动强度的增大,机械手的出现使得这些问题得到很好的解决,把人们从繁重的劳动中解放出来,处理更加复杂的生产过程,既能提高产品质量,又可以使人们受到跟小的伤害。机械手一般由耐高温、耐腐蚀的材料制成,多用于恶劣的生产环境,以及要求精度较高的工作场合。 机械手的出现和发展已经使传统工业发生了根本的变化,从手工。机械式的生产跨越到自动化、智能化的生产。一般的工业机器人指的就是一个机械臂带动一个简单的夹紧机构组成,此类机器人用来完成大范围的工件转移或者加工,且不能实现精细操作的功能,同时由于传统机器人的各个不见的尺寸通常较大,其运动定位的精度就不高,所以无法进行装备及微小操作。普通机械手手抓结构多为夹钳式、托持式、吸附式等,只能用来抓握形状规则而且固定的工件,其抓握能用性非常有限。而多关节机械手则利用关节连接两个相连的杆体,即连杆,关节提供连杆之间的相对运动,在这个机构中关节多是其中一个特点,正是由于关节多,所以抓握功能远远强于传统的夹钳式等机械手。它可以完成对不同形状。不规则工件的抓握 2.多功能机械手控制系统的功能要求 传统的机械手用继电器控制,由于其线路复杂、维护困难、可靠性差等缺点,无法免租机械手的控制需求。可编程控制器(PLC)的出现使得这一问题得到解决,PLC控制,具有结构简单、控制方便、可靠性高、编程简单、功耗低和改造方便的特点。传统的机械手无法完成精确的操作工作,所以PLC控制的多关节机械手的应用逐渐广泛起来,并且能够完成动作要求精度高的工作。 在机械行业中,大部分产品的装备不是采用工人装备的形式就是采用传统的继电器控制系统,工人劳动强度大,产品质量得不到保证,同时继电器经过长期使用后,容易发生故障,维修工作量大,而且生产控制灵活性差、控制过程复杂、控制过程不易改变。在装备线上采用PLC控制可以完成精确定位的要求,提高产品质量、降低工人工作量。此外由于PLC编程简单、组合灵活、可靠性高、控制灵活度高,可根据控制流程的不同,方便的改变控制顺序来满足工艺要求。 其动作过程为:

示教机械手控制系统设计

百度文库- 让每个人平等地提升自我 0前言 / 机械手的积极作用正日益为人们所认识,其一,它能部分地代替人的劳动并能达到 生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送。因为,它能大大地 改善工人的劳动条件,加快实现工业生产机械化和自动化的步伐。因此,受到各先进单 位的重视并投入了大量的人力物力加以研究和应用。尤其在高温、高压、粉尘、噪声的 场合,应用得更为广泛。在我国,近代几年来也有较快的发展,并取得一定的成果,受 到各工业部门的重视。在生产过程中,经常要对流水线上的产品进行分捡,本课题拟开 发物料搬运机械手,采用的德 结束语 目录 0前言 0 1 课程设计的任务和要求 ...................................................................... 1 课程设计的任务 ............................................................................ 1 课程设计的基本要求 (3) 2总体设计 (3) PLC 的选型 端子分配图 3 PLC 程序设计 设计思想... 顺序功能图 4程序调试说明 参考文献

国西门子S7-200系列PLC对机械手的上下、左右以及抓取运动进行控制。我们利用可编 程技术,结合相应的硬件装置,控制机械手完成各种动作。 机电传动以及控制系统总是随着社会生产的发展而发展的。单就机电而言,它的发展大体上经历了成组拖动,单电动机拖动和多电动机拖动三个阶段。所谓成组拖动,就是一台电动机拖动一根天轴,再由天轴通过皮带轮和皮带分别拖动各生产机械,这种生产方式效率低,劳动条件差,一旦电动机放生故障,将造成成组机械的停车;所谓但电动机的拖动,就是用一台电动机拖动一台生产机械,它虽然较成组拖动前进了一步,但当一台生产机械的运动部件较多时,机械传动机构复杂;多电动机拖动,即是一台生产机械的每一个运功部件分别由一台电动机拖动,这种拖动的方式不仅大大的简化了生产 机械的传动机构,而且控制灵活,为生产机械的自动化提供了有利的条件。 、1课程设计的任务和要求 课程设计的任务 1)示教机械手控制系统设计 2)示教机械手系统示意图如下图所示

机器人控制原理

第二章机器人系统简介 2.1 机器人的运动机构(执行机构) 机器人的运动机构是机器人实现对象操作及移动自身功能的载体,可以大体 分为操作手(包括臂和手)和移动机构两类。对机器人的操作手而言,它应该象 人的手臂那样,能把(抓持装工具的)手依次伸到预定的操作位置,并保持相应 的姿态,完成给定的操作;或者能够以一定速度,沿预定空间曲线移动并保持手 的姿态,并在运动过程中完成预定的操作。移动机构应能将机器人移动到任意位置,并保持预定方位姿势。为此,它应能实现前进、后退、各方向的转弯等基本 移动功能。在结构上它可以象人、兽、昆虫,具有二足、四足或六足的步行机构,也可以象车或坦克那样采用轮或履带结构 2.1.1 机器人的臂结构 机器人的臂通常采用关节——连杆链形结构,它由连杆和连杆间的关节组 成。关节,又称运动副,是两个构件组成相对运动的联接。在关节的约束下,两 连杆间只能有简单的相对运动。机器人中常用的关节主要有两类: (1) 滑动关节(Prismatic joint): 与关节相连的两连杆只能沿滑动轴做直 线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或 平行。 (2)转动关节(Revolute joint): 与关节相连的两连杆只能绕关节轴做相对 旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂 直。 杆件和关节的构成方法大致可分为两种:(1) 杆件和手臂串联连接,开链机 械手(2) 杆件和手臂串联连接,闭链机械手。 以操作对象为理想刚体为例,物体的位置和姿态各需要3 个独立变量来描 述。我们将确定物体在坐标系中位姿的独立坐标数目称为自由度(DOF(degree of freedom))。而机器人的自由度是由有关节数和每个关节所具有的自由度数决定的(每个关节可以有一个或多个自由度,通常为1 个)。机器人的自由度是独立的单独运动的数目,是表示机器人运动灵活性的尺度。(由驱动器能产生主动 动作的自由度称为主动自由度,不能产生驱动力的自由度称为被动自由度。通常 开链机构仅使用主动自由度)机器人自由度的构成,取决于它应能保证完成与目 标作业相适应的动作。分析可知,为使机器人能任意操纵物体的位姿,至少须 6DOF,通常用三个自由度确定手的空间位置(手臂),三个自由度确定手的姿态(手)。比较而言,人的臂有七个自由度,手有二十个自由度,其中肩3DOF,肘2 DOF,碗2DOF。这种比6 还多的自由度称为冗余自由度。人的臂由于有这样的冗余性,在固定手的位置和姿态的情况下,肘的位置不唯一。因此人的手臂能灵 活回避障碍物。对机器人而言,冗余自由度的设置易于增强运动的灵活性,但由 于存在多解,需要在约束条件下寻优,计算量和控制的难度相对增大。 典型的机器人臂结构有以下几种: (1)直角坐标型(Cartesian/rectanglar/gantry) (3P) 由三个线性滑动关节组成。 三个关节的滑动方向分别和直角坐标轴x,y,z 平行。 工作空间是个立方体 (2)圆柱坐标型(cylindrical)(R2P) 由一个转动关节和两个滑动关节组成。 两个滑动关节分别对应于圆柱坐标的径向和垂直方向位置,一个旋 转关节对应关于圆柱轴线的转角。 工作区域为矩形截面的旋转体。 (3) 球坐标型(spherical) (2RP) 两个转动关节和一个滑动关节分别实现手的左右,上下及前后运动。 工作区域是扇形旋转体。 (4)关节坐标型(articulated/anthropomorphic)(3R)

机器人三种控制方式的实现

机器人的位置PD 控制、直接力控制、阻抗控制 对于机器相关控制问题,笔者采用一种位置控制的算法——角度的PD 控制实现,之后探讨了机器人的两种力控制方式——直接力控制与阻抗控制。 1.1 机器人模型的建立 为了读者更简单的理解这三种控制方式,笔者采用二连杆模型,在Matlab/Simmechanics 中建立机器人的模型,设置好相关环境参数——重力加速度设定为-9.8m/s2,连杆的重心位于连杆的中间。 1.2 角度的PD 控制 对于机器人的位置控制方式,采用最简单的PD 控制。分别在机器人的肘关节与腕关节处各安装一个角度传感器用来检测肘关节与腕关节处的转角。角度PD 控制的控制律如式1.1所示: ()()()=+P D de T G K e K K dt θθθθ++ 式中,T 为机器人肘关节与腕关节处的输入力矩,第一项为补偿机器人的重力,可以成静态重力补偿项,第二项与第三项为PD 控制项,最后一项用于消除系统的动态误差。搭建的角度PD 控制的simulink 框图见下载处。 1.3机器人的直接力控制 机器人的直接力控制的效果是让机器人顺应外力的运动,这种控制方式多用于穿戴式外骨骼,例如伯克利大学的BLEEX 就是采用的这种控制方式最为其穿戴控制方式。 具体的控制框图如图所示。 图1.1 机器人的直接力控制 直接力控制控制律如式1.2所示: ()() T a D T J K G θτθθ=-+ 式中,()J θ表示机器人的雅克比接矩阵,τ 为加载与机器人上的合外力。 1.4机器人的阻抗控制

将阻抗控制应用于机器人当中的效果可以从两方面进行阐述:一是可以牺牲一定的位置误差来控制机器人与环境的接触力在系统设的范围内;二是将位置误差通过阻抗公式转换为控制机器人运动的力矩从而消除位置误差。 阻抗控制的控制律如式1.3所示。 ()()()()1 111,T a d e T D J X M Bd x Kdx J J D J M F C G θθθθθθθ----??????=++---++ ? ????????? 其中,M ,B ,K 表示期望的惯性、阻尼与刚度矩阵,具体的值需要根据模型进行调整。 天太冷啦。写的太简单,simulink 框图链接如下。 链接: https://https://www.doczj.com/doc/378722657.html,/s/1nwpuZsX 密码: 5xkb 链接: https://https://www.doczj.com/doc/378722657.html,/s/1nwpuZsX 密码: 5xkb 链接: https://https://www.doczj.com/doc/378722657.html,/s/1smq8LWx 密码: mxcq

一种取件式平面多关节机械手的研究与计算

第1章绪论 1.1 引言 工业机器人的出现和高速发展是社会、经济发展的必然,是为提高社会的生产水平和人类的生活质量,让机器人替人们干那些人们不愿干、干不了、干不好的工作。我国对于工业机器人的定义为:“一种自动化的机器,所不同的这种机器具备一些与人或者生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。1920年捷克作家卡雷尔·查培克在其剧本《罗萨姆的万能机器人》中最早使用机器人一词,剧中机器人“Robot”这个词的本意是苦力,即剧作家笔下的一个具有人的外表,特征和功能的机器,是一种人造的劳力。它是最早的工业机器人设想。 20世纪40年代中后期,机器人的研究与发明得到了更多人的关心与关注。50年代以后,美国橡树岭国家实验室开始研究能搬运核原料的遥控操纵机械手,如图0.2所示,这是一种主从型控制系统,主机械手的运动。系统中加入力反馈,可使操作者获知施加力的大小,主从机械手之间有防护墙隔开,操作者可通过观察窗或闭路电视对从机械手操作机进行有效的监视,主从机械手系统的出现为机器人的产生为近代机器人的设计与制造作了铺垫。 1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1959年,美国发明家英格伯格与德沃尔制造出世界上第一台工业机器人Unimate以来,从此工业机器人在现代化社会工业生产的环节中的占比与日俱增。同时伴随着新一轮工业革命及科技革命的到来,各国对于工业现代化都提出了更高的要求,德国提出了“工业4.0”美国提出了“先进制造业国家战略计划”,并采取多种措施“吸引制造业回流”,英国提出了“高价值制造业战略”,日本提出了“产业复兴计划”、法国提出了“新工业法国”等。中国作为全球制造业中心,更要做好充分准备,提升中国制造业的国际竞争新优势,打造中国的工业现代化、做大做强中国制造,对此,我国提出了“中国制造2025”战略。在这场全球聚焦的科技革命中,机器人由于其安全,高效,智能,高精度及稳定性必将在这场革命中发挥巨大的作用。

外文翻译---四足机器人的步态适应

附录 Gait Adaptation in a Quadruped Robot 1. Introduction A short time after birth a foal can walk and then run. It is remarkable that the animal learns tocoordinate the many muscles of the legs and trunk in such a short period of time. It is not likely that any learning algorithm could program a nervous system ab initio with so few training epochs. Nor is it likely that the foal?s locomotor controller is completely determined before birth. How can this a- bility be explained? How can this ability be incorporated into the control system of a walking machine? Researchers in biology have presented clear evidence of a functional unit of the central nervous system, the Central Pattern Generator (CPG), which can cause rhythmic movement of the trunk and limb muscles(Grillner and Wall′en, 1985). In adult animals, the output of these cells can generate muscle activity that is very similar to activity during normal walking, even when sensory feedback has been eliminated (Grillner and Zangger, 1975). The CPG begins its ac- tivity before birth, although its activity does not appear to imitate the details of a particular walking animal, it is apparently correlated with the animal?s class, i.e., amphibian, reptile, mammal, etc. (Bekoff, 1985; Cohen, 1988).Apparently, the basic structure of the CPG network is laid down by evolution. How is this basic structure adapted to produce the detailed coordination needed to control a walk- ing animal? The answer to this question is important to robotics for the following reason. CPGs have been well studied as a basic coordinating mechanism (Cohen et al., 1982; Bay and Hemami, 1987; Matsuoka, 1987; Rand et al., 1988; Taga et al., 1991; Collins and Stewart, 1993; Murray, 1993; Zielinska, 1996; Jalics et al., 1997; Ito et al., 1998; Kimura et al., 1999). However, the details of how this system can automatically adapt to control a real robot are not clear. A good goal would be to describe a general strategy for matching a generic CPG to a particular robot in real-time, with a minimal amount of interaction with the environment.

多关节工业机械手PLC控制系统设计()

摘要:随着社会和科学技术的发展,工业生产的操作方式也发生着革命性的变化,从手工作坊式的劳动,逐渐演变成自动化、智能化的生产方式,人类也逐渐无法完成某些生产过程,所以为了适应生产的需要 出现了特殊的生产工具——机械手。与此同时也出现了一些新的生产活动,在这些生产活动中,有些是属于高 危险的,对人体伤害较大,有些领域不适宜人类工作,机械手则正好适应这类工作。 在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程 度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并 且劳动强度极大的工作,工作方式一般采取示教再现的方式。 机械手是模仿着人手部的部分动作,按照给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。本文对多关节工业液压机械手的结构进行了详细研究。关键词:三自由度,机械手,PLC 系统 Abstract :As society and the development of science and technology ,Industrial production operation mode has also undergone a revolutionary change, from manual mill of labor, gradually evolved into automatic and intelligent mode of production and human also gradually unable to complete some production process, so in order to adapt to the needs of the production of the appeared special production tools - manipulator.Meanwhile also appeared a few new production activities in these production activities, some are belong to high risk, to human body harm is larger, some areas not suitable for human work is just, manipulator to meet this kind of work. In today's large-scale manufacturers, enterprises to improve production efficiency and ensure product quality, universal attention production process automation degree, industrial robots as an important member of automatic production line, gradually the enterprise recognizes and adopted. Industrial robot technology level and USES degree in a certain extent reflect a nation industrial automation level, at present, the industrial robot main bearing welding, spraying, handling and stacking repeatability and the intensity of labor etc greatly, work normally take the reappearance of the demonstration teaching way. Manipulator is imitating the people hand movement, according to a given part of the program, track and requests to realize the acquirement, handling and operation of automatic mechanical device. In this paper, three doff industrial hydraulic structure of the manipulator are studied. Keywords: three doff, manipulator, PLC system

四足机器人设计报告

四足机器人设计报告 摘要:本文介绍了四足机器人(walking dog)的设计过程,其中包括控制系统软硬件的设计、传感器的应用以及机器人步态的规划。 一、本体设计: walking dog的单腿设置髋关节和踝关节两自由度,能在一个平面内自由运动(见图1.1)。采用舵机作为机器人的关节驱动器,其单腿结构图见(图1.2)。为了便于步态规划,设计上下肢L1、L2长均为65mm。四肢间用铝合金框架连接,完成后照片见(图1.3)。walking dog 的每只脚底均有一个光电传感器,能有效检测脚底环境的变化。walking dog的头部为一个舵机,携带光电反射式传感器,能探测前方180度75cm内的障碍物。 图1.1 四足机器人模型图1.2 单腿结构 图1.3:完成后照片 二、控制系统设计 为了使机器人能灵活地搭载各种传感器以及实现不同的步态,将底层驱动单元与上层步态算法平台分开。因为walking dog的各关节均为舵机,特设计了16路舵机驱动器作为底层驱动单元,用来驱动机器人全身各关节。并设计了上层算法平台,将各关节参数通过UART 实时地发送到底层驱动单元。图2.1为系统框图。

图2.1:系统框图 1、底层驱动单元设计 图2.2给出了舵机的工作原理框图,电动机驱动减速齿轮组,并带动一个线性的电位器作位置检测,控制电路将反馈电压与输入的控制脉冲信号作比较,产生偏差并驱动直流电动机正向或反向转动,使齿轮组的输出位置与期望值相符。 图2.2:舵机工作原理框图 针对舵机这一特性,设计底层驱动器的系统结构图见图2.3。Mage8的16位定时器分时产生16次定时中断,中断子程序产生移位脉冲,通过4N25光偶隔离输入到移位寄存器,实现各路PWM信号高电平部分的分时产生。图2.4为定时产生脉冲的中断处理流程,图2.5例举了产生4路PWM信号的波形图。实际电路原理图见附录1。 图2.3:16路舵机驱动器结构图

多关节机器人实用通信系统的构建

?28?《机床与液压》2004.No.7 多关节机器人实用通信系统的构建+ 徐开芸,饶华球 (南京工程学院,江苏南京210013) 摘要:介绍了多关节机器人实用通信系统的设计过程,采用主从控制方式,实现三级计算机结构多cPu并行工作。利用Vc++6.0中Mscomm控件(Micmsoftcommunicationcontr01)实现第一级(Pc机)与第二级(89c51单片机)之间的串行通信,利用汇编语言通过内部总线实现第二级与第三级(89c2051单片机)之间的并行通信,从而完成整个机器人系统的通信控制。经自行研制的教学工业两用型机器人(NGR01)实际使用表明,该通信系统能够长时间可靠、稳定运行。 关键词:机器人;通信系统;Vc++;单片机 中图分类号:TP242文献标识码:B文章编号:1001—388l(2004)7—028—4 Co施trIlctionofPmcticalCommunicationSystemUsedforMum一.iointRobot XUKai—yun,RAOHua—qiu (AutomaticDepartmentofNanjingInstituteof7rechnology,Nanjing210013,China)Abstract:Thedesignmethodofcommunicationsystemusedformulti—jointTobotwasintmduced.Thesystememploysmain—slavecontmlmo(1e,andthree1evelcomputersworksparalleIly.Theserialcommunicationbetweenthefirs卜levelcomputer(PC)andthesecond—levelmicrocomputer(89C51)adoptstheMSCommofVC++6.0.Theintemalparallelbuscommunicationbe—tweenthesecond—IevelaIldthethree—level(89C2051)usestheassemblylanguage.Theaboveconstmctionaccomplishestllewholecommunicationcontml,whichis印pliedinthedevelopedmbotNGR01usedforeducationandindustry.711le11lnningresultsdemonstratethatthecommunicationsystemisreasonable,reliableandstable. Keywords:Robot;Communicationsystem;VC++;Single—chipmicmcomputer 0引言直平面内运动时,可以通过肩关节和肘关节旋转来实机器人作为一种能够进行编程并在自动控制下执现,它们复合在一起可以改变机器人手指的位置,而行操作和移动作业任务的机械装置,它是一个典型的其姿态可以通过手腕(摆腕和旋腕)的运动来实现。高技术密集型机电一体化产品。从20世纪60年代问由于这种机器人的工作空间形成球面的大部分,故也世以来,已发展成为自动化领域的一大分支。特别是称之为关节式球面机器人。 进入上世纪80年代以后,在信息技术、控制技术、 人工智能和传感技术的支持下,机器人己远远超出了 服务于制造业的范围,并被广泛地应用于非制造业。 我国将后者称之为特种机器人,而国外一般称为先进 机器人(advancedrdbot)。也就是说,非制造业机器 人与结构化环境下作业的工业机器人相比,前者与环 境的交互作用更加复杂、控制更加困难,要求的智能 程度更高,是更先进的机器人。 显然,随着机器人复杂程度的提高,其控制技术 难度也越来越大,目前较多采用了多cPu并行工作 方式,这样它们之间的通信问题就变得非常重要了。下面结合我们自行研制的多关节教学工业两用型机器人¨。一NGR01来介绍一种实用通信系统体系结构,并重点说明三级计算机之间的通信实现方法。 1NGR01型机器人 如图1所示NGR01型机器人外形,它由腰、肩、肘、摆腕、旋腕共五个关节和一个电动手指组成,全部采用铝材加工而成,通过谐波齿轮减速和同步齿形带传动。这样,当要求机器人在水平面上运动时,可以通过腰关节绕底座旋转来实现,当要求机器人在垂 图lNGR0l型机器人外形结构 NGR01型机器人采用了间接驱动方式,除腰关节电动机安装在底座内以外,其余电动机均安装在机器人肩关节旁边,然后通过传动链将力矩传递到相应的关节,这样可以减轻机器人本身负载重量及惯性,改善其动态性能,同时还可以通过结构优化设计美化外观。考虑到目前主要将该机器人用于教学场合验证有关原理和演示工作过程,必须兼顾生产成本和动、静态指标等因素。因此,各关节选用了日本三洋公司生产的混合式步进电动机驱动系统。如果选用交流伺 +基金项目:江苏省高校自然科学研究计划项目(99l(JB460006)资助 万方数据

相关主题
文本预览
相关文档 最新文档