当前位置:文档之家› 水热法制备ZnO纳米结构及其应用

水热法制备ZnO纳米结构及其应用

水热法制备ZnO纳米结构及其应用
水热法制备ZnO纳米结构及其应用

水热法制备ZnO纳米结构及其应用

摘要纳米结构的ZnO由于具有优异的光、电、磁、声等性能,已经成为光电、化学、催化、压电等领域中聚焦的研究热点之一。不同纳米结构的ZnO其制备方法多种多样,本文着重综述了水热法制备ZnO纳米结构,并探讨了ZnO纳米结构的生长机理和调控,同时展望了ZnO纳米结构在各领域中的最新应用。

关键词ZnO纳米结构水热法生长机理生长调控应用

引言

氧化锌是一种宽禁带直接半导体材料,室温下其禁带宽度为3.37 eV,激子束缚能为60 meV,可以实现室温下的激子发射,产生近紫外的短波发光,被用来制备光电器件,如紫外探测器、紫外激光器等。另外ZnO还具有很好的导电、导热和化学稳定性能,在太阳能电池、传感器和光催化方面有广泛的应用前景。因此成为国际上半导体材料研究的热点之一。而一维半导体材料更由于其独特的物理特性及在光电子器件方面的巨大潜力,备受人们的关注[1, 2]。将纳米ZnO用于电致发光器件中对提高器件性能很有帮助[3]。在基底上高度有序生长的ZnO 纳米结构可制作短波激光器[2]和Graetzel太阳能电池电极[4],成为人们的研究热点。

目前国内外研究者已成功地合成了多种ZnO纳米结构:Huang等[5]制备出的ZnO纳米铅笔状结构具有尖端和高的比表面积,有望用于场发射微电子器件方面;杨培东[6]、Shingo Hirano[7]小组分别用气相传输法和水热法合成的ZnO纳米线阵列表现出室温紫外激光发射行为,可用来制备紫外纳米激光器;张立德[8]研究小组用简单的热蒸发方法得到了一种ZnO纳米薄片状结构,可用于纳米传感器方面。另外,研究者还制备出ZnO纳米环、纳米带、纳米花和多足状等结构。

合成ZnO纳米结构的方法多种多样,主要有气相沉积法、模板法及催化助溶法、电化学法,其它还有诸如沉淀法、溶胶-凝胶法、多羟基化合物水解法等。近年来水热法制备ZnO纳米结构成为了研究者关注的热点,与其它方法相比,水热法具有设备简单,反应条件温和,可大面积成膜,工艺可控等优点。

1.水热法制备ZnO纳米结构简介及研究新进展

1.1水热法制备ZnO纳米结构简介

水热法是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热加压(或自生蒸汽压),创造一个相对高温、高压的反应环境,使通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种方法。经过十多年的发展,水热法逐步发展成为纳米材料制备最常用的方法之一。由于水热法自身的优点和特殊性,在科技高度交叉的21世纪,水热法已不再局限于晶体生长,而是跟纳米技术、地质技术、生物技术和先进材料技术息息相关,水热法的研究也向深度与广度发展。

目前很多的水热法合成ZnO纳米结构采用在75~250℃的密闭容器中进行。采用的试剂为锌盐、碱或氨水、表面活性剂或分子模板(如乙二胺)等。在这样的低温和简单设备下,同样也得到了质量很好的不同形貌的ZnO单晶[9]。

水热法合成ZnO纳米结构引起人们广泛关注的主要原因是:(l)水热法采用中温液相控制,能耗相对较低,适用性广,既可用于超微粒子的制备,也可得到尺寸较大的单晶。(2)原料相对廉价易得,反应在液相快速对流中进行,产率高、物相均匀、纯度高、结晶良好,并且形状、大小可控。(3)在水热过程中,可通过调节反应温度、压力、处理时间、溶液成分、pH值、前驱物和矿化剂的种类等因素,来达到有效地控制反应和晶体生长特性的目的。(4)反应在密闭的容器中进行,可控制反应气氛而形成合适的氧化还原反应条件,获得某些特殊的物相,尤其有利于有毒体系中的合成反应,这样可以尽可能地减少环境污染。

1.2水热法制备ZnO纳米结构的研究新进展

ZnO纳米结构是水热法制备较多的材料,目前,水热法已经成功地制备了不同形状的ZnO纳米结构,如图1所示。关于ZnO水热制备的SCI论文已达数百篇,它是目前水热合成的材料中形貌特征最丰富的材料。

图1 丰富多彩的ZnO纳米结构:(a)ZnO纳米线阵列、(b)单根ZnO纳米棒、(c)ZnO纳米块、(d)选择性生长的ZnO纳米簇、(e)ZnO纳米片、(f)ZnO纳米花、(g)ZnO纳米带、(h)ZnO纳米絮以及(i)ZnO纳米针状结构。

为了有效控制其形貌与尺寸,研究者采用了各种方法来改进ZnO纳米结构的水热合成工艺,比如添加表面活性剂、络合剂或其他辅助剂是常用的一种手段,这些助剂包括十六烷基四甲基澳化胺(CTAB)、六次甲基四胺(HMT)、十二烷基磺酸钠(SDS)、聚乙烯醇(PV A)、柠檬酸(CA)等。孙灵东等利用CTAB—水—环己醇—庚烷体系在140℃水热处理20小时得到了ZnO的纳米线[10]。而利用HMT 对锌离子的络合作用,可以使得ZnO在较低的温度下(90℃)实现沿着C轴方向生长,从而得到ZnO的阵列[11]。张辉等人利用柠橡酸CA、CTAB、PV A等辅助水热法制备了盘形状、花状等各种形貌的ZnO纳米结构[12]。另外,水热法也可以用来制备ZnO纳米阵列,Guo等人利用水热法合成具有较好排列ZnO纳米柱阵列[13]。

同时,最近研究者对传统水热法进行了一些有效的改进,产生了如下新型的特殊水热法:①磁场水热法,②电化学水热法,③微波水热法,④超声水热法等。这些特殊水热法快速、高效,因而近年来受到越来越多的关注。

2.ZnO纳米结构的生长

2.1水热法制备ZnO纳米结构的生长机理

在水热条件下, ZnO纳米结构的生长(以试剂氯化锌(ZnCl2)、氨水(NH4·OH)、助剂:十六烷基三甲基氯化铵(1631)为例),首先是ZnCl2在溶液中水解生成Zn2+并与NH4·OH溶液中水解生成的氨根离子和OH-相结合生成Zn(OH)2胶体,Zn(OH)2在过量氨根离子存在的条件下水解形成生长基元锌氨络离子(Zn(NH3)42+),然后一部分生长基元通过氧桥合作用形成具有一定结构的ZnO晶核,残余的生长基元在ZnO晶核上继续定向生长,当加入表面活性剂的量不同时生成的ZnO纳米结构的形态不同,如图2所示,水热反应方程如下:ZnCl2 + 2NH4·OH = Zn(OH)2 + 2NH4Cl

Zn(OH)2 + 4NH4·OH = Zn(NH3)42+ + 2OH- + 4H2O Zn(NH3)42+ + 2OH- = ZnO + 4NH3 + H2O

图2 ZnO纳米结构的生长机理示意图

图2为ZnO纳米结构的生长机理示意图,当ZnO晶核形成后,1631的弱碱性可以使ZnCl2更快地水解释放出Zn2+阳离子,当ZnO晶核形成后,1631与晶核结合影响晶核的发育生长,加入少量1631时,得到的产物为比表面积较小的纳米棒自组装而成的多枝状ZnO纳米结构,如图4(a)~(c);当加入1631的量逐渐增加时,得到的产物为比表面积较大的六方柱的团聚体和六方短柱状的颗粒,如图2(d)~(e),表明在ZnO纳米结构的生长过程中,1631对产物的比表面积有着显著的影响,经过分析,表面活性剂1631在ZnO晶核形成后的生长过程中主要有以下4种作用:(1)弱碱性作用,增大溶液的pH值有助于ZnCl2水解释放出Zn2+;(2)吸附作用,表面活性剂吸附在ZnO晶核或粒子的表面可以抑止其二维平面生长;(3)侵蚀作用,当表面活性剂的浓度增大到一定值时,其可侵蚀ZnO晶体的表面,在表面形成一定数量的缺陷,为后来ZnO晶粒提供二次成核的位置;(4)分散作用,表面活性剂可以分散已生长完全的ZnO晶体,防止其团聚。

2.2水热法制备ZnO纳米结构的生长调控

目前水热法制备ZnO纳米结构不仅能合成出各种形状,而且在调控ZnO纳米结构生长方面也取得了很大进步。

首先在生长方向调控上,目前在各种衬底上,采用ZnO籽晶层可以较为容易地控制ZnO纳米棒阵列的纵向生长,得到整齐的阵列,如图1(a)所示。在纳米棒阵列横向生长方面,Wang Z L等引入金属Cr的辅助以及采用RF淀积了较厚的ZnO籽晶层,可以达到70%的纳米棒横向生长,如图3所示[14]。

图3 在Si衬底上,引入金属Cr的辅助以及采用RF淀积了较厚的ZnO籽晶层,水热法在横向所生长的ZnO纳米棒阵列

在密度调控方面,研究发现溶液反应条件,如温度、浓度、pH值、反应时间以及衬底条件都将对所得纳米棒产生影响[15]。Ma等研究发现其中溶液的浓度对所得纳米棒阵列的密度具有决定作用[16],其研究发现溶液浓度由1M/L下降为0.0001M/L,对应的纳米棒的密度也由1010rods/cm2下降为l06rods/cm2。

图4 在Si衬底上,先期对ZnO籽晶层图形化处理,后生长的ZnO纳米图形化结构,采用电子束光刻技术对籽晶层进行图形化处理,从而实现了单根纳米棒生长的控制在纳米棒阵列图形化方面,通过对籽晶层先期图形化处理,可以设计各种图形,如图4[17](a)和(b)所示,另外采用电子束光刻等技术,可以图形化出只够一根纳米棒生长的籽晶颗粒,从而可实现对单根纳米棒生长的控制,如图4(c)所示,

这不仅有利于图形化设计,对调控纳米棒密度等也较为有意义。

在高长径比(>50)纳米棒方面,水热法较难合成出高长径比一维ZnO纳米结构,但Yang等通过在溶液中加入(PEI)来抑制纳米棒侧面的生长,从而得到了长径比高达125的纳米线结构,如图5(a)所示,这对于需要高比表面积的器件,如太阳能电池以及传感器等比较有意义。

图5[17] (a)通过在水热法溶液中引入PEI试剂,生长得到的高长径比ZnO纳米线阵列,(b)在pH=13.2的溶液中所生长得到的二维纳米片结构

在二维ZnO纳米结构方面,如纳米片等,尽管生长原理还没有一致的结论,但Sun等通过调节溶液pH值,既可以得到纳米棒结构(pH=9),还可得到厚度为~20nm、宽度>200nm的二维的纳米片结构(pH=13.2),如图5(b)所示。

由上可以看出,尽管水热法在调控纳米结构方面已有很大进步,但仍处于探索阶段。

3. ZnO纳米结构的性能及应用

纳米线、纳米管、纳米棒、纳米片、纳米阵列、纳米花等形貌各异的ZnO 纳米材料,由于纳米效应,它们的结构和性能与块状材料显著不同,从而体现出特殊的应用潜力,特别是近年在场效应晶体管、肖特基二极管、紫外光探测器、气敏传感器、纳米发电机等领域中的器件应用,引起人们极大的研究兴趣[18]。

3.1化学传感领域

由于金属氧化物表面的氧空位兼具电学活性和化学活性,这些氧空位作为n 型半导体的施主物质时,可显著提高氧化物的电导率。当NO2和O2等分子吸附氧空位上的电荷后,可导致导带耗尽电子,所以处于氧化气氛中的ZnO为高阻状态。当ZnO处于CO或H2等还原气氛中,气体将与表面的吸附氧反应,从而降低表面O2的浓度,最终导致电导率的提高。作为理想的气敏元件,ZnO在特定温度下(约400℃),对多种气体如CO、NH3和H2均显示出较高的灵敏度。最近,Wan等[19]已经通过微电动机械技术制作出ZnO纳米线化学传感器。另据研究表明,由于高比表面积和小晶粒尺寸,一维ZnO纳米结构(纳米线、纳米棒等)相比于二维薄膜结构有着更为优异的灵敏度。此外,氧化锌通过掺杂还可对硫化氢、氟利昂和二氧化硫等气体进行选择性测试。

3.2光学材料领域

ZnO在室温下是直接禁带半导体,禁带宽度为3.37eV,且有较大的激子能(60meV)。与GaN(25meV)相比,ZnO有很强的激子激活能和室温下的热离化能(26meV),使得ZnO在室温下能用较低的能量获得高效的激子发射。杨培东[6]、Shingo Hirano[7]小组分别用气相传输法和水热法合成的ZnO纳米线阵列表现出室温紫外激光发射行为,经过调整后还能发射从蓝色到深紫外的光。此外,Huang[20]等相继报道了室温下ZnO纳米线阵列的紫外激光发射,其激光发射的阈值通常在40~100KW/cm2之间,并且ZnO晶体的结晶性越高,阈值越低。所以,ZnO很可能成为蓝光和紫外光区域间的光学材料的主角。

3.3催化及光催化领域

由于纳米结构的氧化锌尺寸小、比表面积大、表面的键态与颗粒内部的键态不同、表面原子配位不全等诸多因素,致表面活性位置增多,形成了凸凹不平的原子台阶,加大了接触面,因此纳米结构氧化锌比普通氧化锌具有更高的催化活性及光催化活性。最近,研究者用简单的一步水热法在离子液体中合成出形貌各异的ZnO纳米结构,并且系统考察了各种结构纳米ZnO对罗丹明B的光降解催化能力,发现分散良好的均质ZnO纳米颗粒和纳米线展示了最佳的光催化活性。研究认为纳米结构的氧化锌(尤其是氧化锌纳米纤维)是极具前景的光催化材料。

3.4压电领域

高密度、c轴取向生长的ZnO薄膜是一种良好的压电材料,能够用来制备高频声光器件及声光调制器等压电转换器材料。作为一种压电材料,ZnO薄膜高频特性优异,故可在大容量、高速率光纤通信的光纤相位调制、高频滤波器、谐振器、光波导、并行光信息处理等民用及军事领域得到广泛的应用。

此外,由于氧化锌纳米材料可以吸收和散射紫外线,在日用化工及医药领域有广泛的应用,如化妆品的防晒剂;添加到纤维中,使其具有防臭、抗菌、抗紫外线的功能;在医药领域常常被添加到药品中辅助治疗。由于氧化锌纳米材料具有粒径小、比表面积大、分散性好、疏松多孔和流动性好等特点,也被广泛用于制造高速耐磨的橡胶制品。

结语

作为一种新型的纳米材料,ZnO因其独特的光、电、磁、声等性质而使其在众多方面具有广阔的应用前景。本文通过对水热法制备ZnO纳米结构概述了其生长机理和生长调控,展望了纳米结构ZnO在化学传感领域、光学材料领域、催化及光催化领域、压电领域等几个主要领域中的最新应用。目前纳米氧化锌的制备技术已经取得了一些突破,在国内形成了许多有规模的生产厂家,但是纳米结构ZnO的表面改性、粒度分布及应用技术尚未完全成熟,其应用领域的开拓受到了较大限制,并制约了该产业的形成与发展。所以,探索出合成过程相对简单、条件更加温和、适合大量生产一维纳米材料的制备方法仍是人们研究的热点。另外,虽然近年来在纳米ZnO的应用方面取得了较大的进展,但与发达国家的应用水平以及纳米ZnO潜在的应用前景相比,还有许多研究工作要做。我们相信随着制备技术的进一步完善和应用研究的不断深入,纳米ZnO必将成为21世纪大放异彩的新型材料。

参考文献

[1] Duan X, Huang Y, Cui Y, et al, et al. Nature(London), 2001, 409: 66—68.

[2] Huang M H, Mao S, Feick H, et al. Science, 2001, 292: 1897—1900.

[3] 李海玲,王永生,滕枫,等.光谱学与光谱分析, 2004, 24(10): 1172—1175.

[4] Beermann N, Vayssieres L, Lindquist S E, et al. J. Electrochem. Soc., 2000, 147: 2456—2459.

[5] Huang J L,Chen S J,Tseng Y K,et al.ZnO nanopencils:Efficient field emitters.Appl Phys Lett, 2005,87:013110.

[6] Huang M H, Mao S,Yang PD, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001,292:1897.

[7] Hirano S,Ibe K,Kuwabara M,et al.Room-temperature nanowire ultraviolet lasers:An aqueous pathway for zinc oxide nanowires with low defect density.J Appl Phys,2005,98:094305.

[8] Wei Q,Meng G W,Zhang L D,et al.Temperature-controlled growth of ZnO nanostructure: branched nanobelts and wide nanosheets.Nanotechnology,2005,16:2561.

[9 ] Z. Qiu,K.S.Wong,M.WU,W.Lin,and H.Xu, Appl Phys.Lett.2005,84,2739.

[10] J. Zhang,L.Sun,H.Pan,C.Liao,C.Yan,“Zn0 nanowires fabricated by aconvenient route,”New J.Chem.26(2002)33一34.

[11] L.Vayssieres,K.Keis,S.E.Lindquist,A.Hagfeldt,“Purpose-built anitsotropic metal oxide material:3D highly oriented microrod array of ZnO,”J.Phys.Chom.B105(2001)3350一335. [12] H.Zhang,D.Yang,S.Li,“Controllable growth of ZnO nanostructures by citric acid assisted hydrothemal process,”Mater.Lett.59(2005)1696-1700.

[13] M.Guo,P.Diao,S.M.Cai,“hydrothemal growth of well-aligned ZnO nanorods arrays: dependence of morphology and glignment ordering upon preparing conditions,”J.Solid State Chem.178(2005):1864-1873.

[14] Y.Qin,R.Yangand2.Wang.Growth of horizonatal ZnO nanowire arrays onany substrate[J].The Journal of Physieal Chemistry C,2008,112:18734一18736.

[15] 李驰平,张铭,宋雪梅等.ZnO薄膜p型掺杂的研究进展[J].材料导报,2007.21:297一300.

[16] T.Ma,M.Guo,M.Zhang,Y. Zhang and X.Wang.Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays[J].Nanotechnology,2007,18:035605.

[17] 刘书一.ZnO纳米结构的生长及其光电特性的研究[D].上海:复旦大学信息科学与工程学院,2010.

[18] 孟华,梁建,赵君芙等.ZnO纳米结构的CVD制备工艺及其应用[J].材料导报,2011, 3

(25):23-27.

[19] Wan Q,Li Q H,Chen Y J,et al.Fabrication and ethanol senseing characteristics of ZnO nanowire gas sensors[J].Appl Phys Lett,2004,84:3654.

[20] Huang M H,Mao S,et al.Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292:1879.

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

【CN109761639A】纳米多孔硅铝酸盐薄膜材料及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910163412.X (22)申请日 2019.03.05 (71)申请人 南京理工大学 地址 210094 江苏省南京市孝陵卫200号 (72)发明人 姜炜 吕翔 彭诗思 郝嘎子  胡玉冰  (74)专利代理机构 南京理工大学专利中心 32203 代理人 刘海霞 (51)Int.Cl. C04B 38/06(2006.01) C04B 35/18(2006.01) C04B 35/622(2006.01) C04B 35/624(2006.01) (54)发明名称 纳米多孔硅铝酸盐薄膜材料及其制备方法 (57)摘要 本发明公开了一种纳米多孔硅铝酸盐薄膜 材料及其制备方法。所述方法以正硅酸四乙酯、 偏铝酸钠、氢氧化四丙基铵以及水为原料,通过 水热法制备得到硅铝酸盐前驱体溶胶,再通过旋 转涂覆与高温烧结处理工序,制备具有纳米多孔 形貌的连续多孔硅铝酸盐薄膜。本发明的薄膜材 料附着力强,具有较高的孔隙率以及良好的亲水 性能,对物质有较高的吸附性,透光性能良好,膜 厚度在1~2μm之间, 可用作吸附与催化的载体。权利要求书1页 说明书4页 附图4页CN 109761639 A 2019.05.17 C N 109761639 A

权 利 要 求 书1/1页CN 109761639 A 1.纳米多孔硅铝酸盐薄膜材料的制备方法,其特征在于,具体包括如下步骤: 步骤1,将正硅酸四乙酯、氢氧化四丙基铵、偏铝酸钠以及水按质量比为(40~45):(5~6):1:130搅拌混合均匀后,将混合体系置于高温水热反应釜中,其中混合体系体积占反应釜总容积的80%~85%,升温至175~185℃,保温4~6h,自然冷却后,得到固液混合体系; 步骤2,将固液混合体系离心处理,得到溶胶清液,将清液旋涂于洗净的玻璃表面; 步骤3,将涂覆有溶胶的玻璃体系干燥后,在500~550℃下烧结1~3h,自然冷却后,得到纳米多孔硅铝酸盐薄膜。 2.根据权利要求1所述的制备方法,其特征在于,步骤1中,升温速率为4~6℃/min。 3.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的离心速度为8000~10000rpm。 4.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的离心时间为5~10min。 5.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的旋涂速度为2000~3000rpm。 6.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的玻璃为普通玻璃或导电玻璃。 7.根据权利要求6所述的制备方法,其特征在于,步骤2中,所述的导电玻璃为导电玻璃FTO或导电玻璃ITO。 2

水热法制备纳米材料3

水热法制备ZnO纳米棒 10092629 朱晓清 10092632 蒋桢 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式(1) P 1 V=nRT (1) P 2=P (2) P=P 1+P 2 =nRT/V+P (3) 式中:P 1 ——T温度时高压釜内空气的压强; P 2 ——T温度时高压釜内水的压强; P——T温度时高压釜内的总压强; P ——T温度时水的饱和蒸汽压; V——高压釜内气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。 ZnO纳米棒的形成过程可以分为两个阶段:第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH) 2 (4) (CH 2) 6 N 4 +10H 2 O → 6HCHO + 4NH 3 ·H 2 O (5) NH 3·H 2 O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3 ) 4 2+ (7) Zn(OH) 2→ZnO+H 2 O (8) Zn(OH) 42-→ZnO+ H 2 O+2OH- (9) 当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2 白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水

(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 4 2+(见反应式 7),而溶液中生成的Zn(OH) 4 2-为这个过程提供了条件,在这种溶液环境下,一 部分的Zn(OH) 2 胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器:超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂:铜衬底,丙酮,无水乙醇(C 2H 5 OH,分析纯),去离子水,硫酸锌(ZnSO 4 ·7H 2 O, 分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C 6H 12 N 4 ,分 析纯)。 四、实验步骤: 1、铜衬底的清洗 清洗的目的是为了去掉衬底表面的油渍、脏物和表面杂质等,使其表面光亮平滑,避免杂质及缺陷在纳米棒生长过程中对纳米棒的形貌产生影响。具体的清洗过程如下: (1)将大小约为1cm×1cm 的铜衬底放入盛有乙醇的烧杯中,在超声仪中超声 10 分钟。 (2)取出衬底片,放入丙酮中超声10 分钟。 (3)取出衬底片,放入乙醇中超声10 分钟。 (4)最后再用去离子水超声一次,并经流动的去离子水反复冲洗后,用洗耳球 小气流吹干。 2、在铜衬底上制备ZnO纳米棒步骤: 将0.0056 mol硫酸锌溶于35 mL 去离子水中配制成溶液,同时按Zn2 +与OH-摩尔比值1:8将0.056 mol氢氧化钠溶于35 mL去离子水中;在磁力搅拌条件下,将氢氧化钠溶液逐滴滴加到硫酸锌的溶液中; 持续搅拌10 min 后,将0.50 g六次甲基四胺加入到上述溶液中并持续磁力搅拌10 min; 然后将混合溶液转移到内衬为聚四氟乙烯的反应釜中,将第一步中清洗的铜衬底垂直放置(如图1所示)。

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

水热法制备TiO2纳米材料

水热法制备TiO2纳米材料 实验目的:采用水热法,制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。 实验原理:以无水TiCl4为原料制备出的纳米晶是锐钛矿相的, 而用钛酸四正丁酯制备的纳米晶是金红石相的。两者的晶相有所不同, 这是因为无水TiCl4 中加入水后水解剧烈, 已经直接生成了大量的锐钛矿相TiO2。而钛酸四正丁酯中加入水后, 水解速度较慢, 首先生成锐钛相TiO2, 而生成的锐钛矿相TiO2 颗粒较小, 故其反应的活性较大。在水热反应过程中, 如果保温时间足够长, 就有可能由锐钛矿相完全转变为金红石相。采用本方法制备出的金红石相的TiO2 纳米晶相的过程更简单、反应温度更低。 实验药品,器材 无水TiCl4、钛酸四正丁酯、HCl 溶液(12 mol/L) X 射线衍射(XRD)、透射电子显微镜( TEM) 高压反应釜、高速离心机、恒温干燥箱 实验过程:T iO 2 纳米颗粒的制备 (1)以无水TiCl4 为原料取容量为10 mL 的小量筒1 只, 将其放进干燥箱彻底干燥后(因为TiCl4 极易水解)取出, 量取2 mL 的无水TiCl4。把量筒内的无水TiCl4 倒入已经清洗干净、并且已经干燥过的高压反应釜的内衬中。用容量为20 mL的量筒量取20 mL 蒸馏水并快速倒入反应釜的内衬中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 ( 2) 以钛酸四正丁酯为原料 用量筒量取2 mL 的钛酸四正丁酯倒入反应釜的内衬后, 以体积比为1 ∶10 量取20 mL 蒸馏水, 将蒸馏水倒入内衬和钛酸四正丁酯混合后放入烘箱中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 数据记录 参考文献: 夏金德. 水热法制备二氧化钛纳米材料[J].安徽工业大学学报,2007 ,24(2)140- 141. 肖逸帆,柳松. 纳米二氧化钛的水热法制备及光催化研究进展[J].硅酸盐通报,2007, 26(3)523-527

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

液相沉淀法在材料合成中应用进展

液相沉淀法合成纳米粉体的应用进展 材料科学与工程赵小龙2011201307 摘要:液相沉淀法是一种合成纳米粉体最为普遍的方法。本文将介绍液相沉淀法的三种方法:直接沉淀法、共沉淀法和均匀沉淀法。对液相沉淀法合成纳米粉体的沉淀反应过程、洗涤过程、干燥过程以及煅烧过程等环节的控制方法及原理作了详述。由于纳米TiO2粉体具有是优良的光催化活性,且具有极大的商业价值,本文还将介绍一下纳米TiO2粉体制备工艺。 关键词:液相沉淀;控制;洗涤;干燥;煅烧;制备工艺 纳米粉体是指线度处于1 nm~100 nm的粒子聚合体,包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通粉体相比,纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应[1],因而在催化、磁性材料、医学、生物工程、精细陶瓷和化妆品等众多领域显示出广泛的应用前景,成为各国竞相开发的热点。纳米粉体的制备方法很多,可归纳为固相法、气相法和液相法三大类。其中液相化学法是目前实验室和工业上采用最为广泛的合成纳米粉体的方法,包括沉淀法、醇盐水解法、溶胶-凝胶法和水热合成法等[2]。本文主要讨论了液相沉淀法合成纳米粉体的分类、方法、控制过程及原理。 1 液相沉淀法介绍 液相沉淀法是液相化学反应合成金属氧化物纳米材料最普通的方法。它是利用各种溶解在水中的物质反应生成不溶性氢氧化物、碳酸盐、硫酸盐和乙酸盐等,再将沉淀物加热分解,得到最终所需的纳米粉体。液相沉淀法可以广泛用来合成单一或复合氧化物的纳米粉体,其优点是反应过程简单,成本低,便于推广和工业化生产。液相沉淀法主要包括直接沉淀法、共沉淀法和均匀沉淀法。 1.1 直接沉淀法 直接沉淀法是使溶液中的金属阳离子直接与沉淀剂,如OH-、C 2O 2 -4、CO 2 -3, 在一定条件下发生反应而形成沉淀物,并将原有的阴离子洗去,经热分解得到纳 米粉体。直接沉淀法操作简便易行,对设备、技术要求不太苛刻,不易引入其他杂质,有良好的化学计量性,成本较低,因而对其研究也较多,只不过其合成的纳米粉体粒径分布较宽。廖莉玲等[3]以硝酸镁、碳酸钠为原料,用直接沉淀法合成得到纳米氧化镁,其平均粒径为30 nm。文献[4]报道了用一定溶度的ZrOCl 2 和氨水溶液在聚乙二醇水溶液中混合反应,经抽滤、洗涤、干燥、煅烧后得到纳米 ZrO 2 。其中聚乙二醇起到保护胶粒的作用。 1.2 共沉淀法 共沉淀法是在混合的金属盐溶液(含有两种或两种以上的金属离子)中加入合适的沉淀剂,反应生成均匀沉淀,沉淀热分解后得到高纯纳米粉体材料。它是制备含有两种以上金属元素的复合氧化纳米粉体的主要方法。其在制备过程中完成了反应及掺杂过程,因而得到的纳米粉体化学成分均一、粒度小而且均匀。共沉淀法已被广泛用于制备钙钛矿型材料、尖晶石型敏感材料、铁氧体及荧光材料。 文献[5]报道了用Al(NO 3) 3 和ZrO(NO 3 ) 2 混合溶液,加氨水共沉淀制备了一系列Al 2 O 3 含量由低到高的ZrO 2-Al 2 O 3 纳米复合氧化物。焦正等[6]采用喷射共沉淀法制备了 尖晶石型ZnGa 2O 4 纳米晶,晶粒细小均匀,形状完整,粒径小于10nm,无ZnO杂 相峰。

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

纳米相增强金属材料制备技术的研究进展及应用

纳米相增强金属材料制备技术的研究进展及应用 【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。 【关键词】纳米增强制备方法优缺点 随着科技进步,各个领域对于相关材料的性能要求日益提高。纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。 1 纳米增强技术概述 纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。 1.1 机械合金化法 机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。 1.2 内氧化法 内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。 1.3 大塑性变形法 大塑性变形法(Severe plastic deformation)是一种独特的纳米粒子金属及金属合金材料制备工艺。较低的温度环境中,大的外部压力作用下,金属材料发

水热法制备纳米线阵列

水热法制备锥状ZnO纳米线阵列及其光电性研究水热法制备锥状ZnO纳米线阵列及其光电性研究 摘要 ZnO是一种在光电领域中具有重要地位的半导体材料。采用聚乙二醇(PEG(2000))辅助的水热合成法制备出了粒径较为均匀的锥状氧化锌纳团线阵列, 并用SEM、XRD对其进行了表征。实验结果表明,表面活性剂(PEG22000)和氨水的加入量对ZnO纳米线阵列的形貌有直接的影响;分析出了不同体系中的化学反应过程及生长行为,研究了衬底状态、生长溶液浓度、生长时间、pH值等工艺参数对薄膜生长的影响,并对薄膜柱晶等特殊形貌晶体的生长机理进行了探讨。研究表明:薄膜的晶粒成核方式主要为异质成核,柱晶的生长方式为层-层生长。生长的ZnO柱晶的尺寸和尺寸分布与晶种层ZnO晶粒有着相同的变化趋势。随着生长液浓度的增加,ZnO棒晶的平均直径明显增大。生长体系长时间放置,会导致二次生长,形成板状晶粒。NH3·H2O生长系统,可以调节pH值来控制薄膜的生长。对于碱性溶液体系,ZnO合适的生长温度为70~90℃,通过调节温度,可以改变纳米棒的生长速率。 关键词:ZnO薄膜,低温,水热法,薄膜生长

HYDROTHERMAL SYNTHESIS OF ZnO NANOWIRE ARRAYSCONE AND OPTOELECTRONIC RESEARCH ABSTRACT ZnO is an important area in the status of photovoltaic semiconductor material.Polyethylene glycol (PEG (2000)) assisted hydrothermal synthesis were prepared by a more uniform particle size of zinc oxide nano cone line array group and use SEM, XRD characterization was carried out. The results show that surfactant (PEG22000) and ammonia addition on the morphology of ZnO nanowire arrays have a direct impact; analyze the different systems of chemical reactions and growth behavior of the state of the substrate, growth concentration, growth time, pH, and other process parameters on film growth, and morphology of thin film transistors and other special column crystal growth mechanism was discussed. The results show that: the film grain nucleation is mainly heterogeneous nucleation, crystal growth patterns column for the layer - layer growth. The growth of ZnO crystal size and column size distribution of ZnO grain and seed layer have the same trend. With the increase in the growth of concentration, ZnO rods significantly increased the average diameter of crystal.Growth system extended period of time will lead to secondary growth, the formation of tabular grains. NH3 ? H2O growth system, you can adjust the pH value to control the film growth. The alkaline solution system, ZnO is a suitable growth temperature 70 ~ 90 ℃, by adjusting the temperature, can change the growth rate of nanorods. Key words:ZnO films, low temperature, hydrothermal method, thin film growth

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内 一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有 重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种 物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多 被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备 技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料 的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆, 成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、 醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使 溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有 人把溶胶凝胶法归类为前驱化合物法。 根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。(1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒 不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出 来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来 完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的 水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后 续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成 原始颗粒。这种颗粒的大小一般在溶胶体系中胶核大小的范围内,因而可制得溶胶;另一种方法是由同样的盐溶液,通过对沉淀过程的严格控制,使首先形成的颗粒不致团聚为大颗粒 而沉淀,从而直接得到胶体溶液。 (3)凝胶化过程:缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇,后者逐渐相互连 接成为一个横跨整体的三维粒子簇连续固体网络。在陈化过程中,胶体粒子聚集形成凝胶, 由于液相被包裹于固相骨架中,整个体系失去活动性,随着胶体粒子逐渐形成网络结构, 溶胶也从Newton体向Bingham体转变,并带有明显的触变性。在许多实际应用中,制品的成型就是在此期间完成的。

化学沉淀法制备纳米二氧化硅

化学沉淀法制备纳米二氧化硅 摘要:采用硅酸钠为硅源,氯化铵为沉淀剂制备纳米二氧化硅。研究了硅酸钠的浓度、乙醇与水的体积比以及pH 值对纳米二氧化硅粉末比表面积的影响,并用红外、X射线衍射和透射电镜对二氧化硅粉末进行了表征。研究结 果表明在硅酸钠浓度为0. 4 mol/L,乙醇与水体积比为1B8, pH值为8. 5时可制备出粒径为5~8 nm分散性好的无 定形态纳米二氧化硅。 关键词:沉淀法;纳米SiO2;制备 1 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的材料,其颗粒尺寸小,比表面积大,是纳米 材料中的重要一员。近年来,随着纳米二氧化硅制备技术的发展及改性研究的深入,纳米二氧化硅在橡胶、 塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用[1, 2]。目前,纳米二氧化硅主要制备方法有以硅烷卤化物为原料的气相法[3];以硅酸钠和无机酸为原料的化 学沉淀法[4];以及以硅酸酯等为原料的溶胶-凝胶法[5-7]和微乳液法[8-10]。在这些方法中,气相法原料昂贵, 设备要求高,生产流程长,能耗大;溶胶-凝胶法原料昂贵,制备时间长;而微乳液法成本高、有机物难以去除 易对环境造成污染。与上述三种方法相比,化学沉淀法具有原料来源广泛、价廉,能耗小,工艺简单,易于工 业化等优点,但同时也存在产品粒径大或分布范围较宽的问题,这是由于产品性状在制备过程中受许多可变 因素的影响。近年来,许多研究通过各种控制手段来改善沉淀法产品的性状,如郑典模[11]、贾东舒[12]、孙道 682 研究快报硅酸盐通报第29卷 兴[13]等对反应条件加以分别制得了平均粒径为76 nm、30~50 nm和20~40 nm的二氧化硅,何清玉[14]引入 了超重力技术制得了小于20 nm的二氧化硅。 本文以硅酸钠为硅源,氯化铵为沉淀剂,加入表面活性剂十六烷基三甲基溴化铵(CTAB)和乙醇,通过 化学沉淀法合成了粒径小且分布窄的纳米二氧化硅。 在硅酸钠溶液中,简单的偏硅酸离子并不存在,偏硅酸钠的实际结构为Na2(H2SiO4)和Na (H3SiO4),因 此溶液中的负离子H2SiO2-4为和H3SiO-4。二者在溶液中皆可与氢离子结合生成硅酸。氯化铵是一种强酸 弱碱盐,能缓慢地释放出H+,可以有效避免pH变化过大。另外反应在碱性条件下进行,反应所生成的粒子 带负电,可吸引NH+4和溶液中的Na+形成双电层,通过双电层之间库仑排斥作用,平衡离子表面电荷,从而

水热法

什么叫做超临界水? 超临界流体 任何物质,随着温度、压力的变化,都会相应地呈现为固态、液态和气态这三种物相状态,即所谓的物质三态。三态之间互相转化的温度和压力值叫做三相点。除了三相点外,每种分子量不太大的稳定的物质都具有一个固定的临界点(Critical point)。严密意义上,临界点由临界温度、临界压力、临界密度构成。当把处于汽液平衡的物质升温升压时,热膨胀引起液体密度减少,而压力的升高又使汽相两相的相界面消失,成为一均相体系,这一点即为临界点。当物质的温度、压力分别高于临界温度和临界压力时就处于超临界状态。在超临界状态下,流体的物理性质处于气体和液体之间,既具有与气体相当的扩散系数和较低的粘度,又具有与液体相近的密度和对物质良好的溶解能力。因此可以说,超临界流体是存在于气、液这两种流体状态以外的第三流体。 近几年,超临界流体技术引起了人们的广泛关注,主要是因为它具有许多诱人的特性。例如,超临界流体分子的扩散系数比一般液体高10~100倍,有利于传质和热交换。超临界流体的另一重要特点是可压缩性,温度或压力较小的变化可引起超临界流体的密度发生较大的变化。大量的研究表明,超临界流体的密度是决定其溶解能力的关键因素,改变超临界流体的密度可以改变超临界流体的溶解能力。 在超临界流体技术应用研究方面,首先要求选择适当的化学物质作为超临界流体。它必须具备以下几个条件:①化学性质稳定,对装置没有腐蚀性;②临界温度接近于室温或者接近于反应操作温度,太低和太高都不合适;③操作温度要低于被萃取物质的分解、变性温度;④临界压力要低,以便减少动力费,使成本尽可能降低;⑤要有较高的选择性,以便能够制得高纯度产品;⑥要有较高的溶解度,以便减少溶解循环量;⑦价格便宜,来源方便。 在环境保护中,常用的超临界流体有水、二氧化碳、氨、乙烯、丙烷、丙烯等,由于水的化学性质稳定,且无毒、无臭、无色、无腐蚀性,因此得到了最为广泛的应用。 (2)超临界水及其特征 在通常条件下,水始终以蒸汽、液态水和冰这三种常见的状态之一存在,且是极性溶剂,可以溶解包括盐类在内的大多数电解质,对气体和大多数有机物则微溶或不溶,水的密度几乎不随压力而改变。但是如果将水的温度和压力升高到临界点(Tc=374.3℃,pc=22.05Mpa)以上,则就会处于一种既不同于气态也不同于液态和固态的新的流体态--超临界态,该状态的水即称之为超临界水。水的存在状态如图11-4所示。在超临界条件下,水的性质发生了极大的变化,其

水热法制备纳米材料3

水热法制备ZnO纳米棒 xxxx 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式 (1)P1V=nRT (1)P2=P0(2) P=P 1+P 2=nRT/V+P0(3) 式中:P1——T温度时高压釜内空气的压强; P 2——T温度时高压xx的压强; P——T温度时高压釜内的总压强; P 0——T温度时水的饱和蒸汽压; V——高压xx气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。

ZnO纳米棒的形成过程可以分为两个阶段: 第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH)2(4)(CH 2) 6N 4+10H 2O →6HCHO + 4NH 3·H 2O (5) NH 3·H 2O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3) 42+ (7)Zn(OH) 2→ZnO+H 2O (8)Zn(OH) 42-→ZnO+ H

2O+2OH- (9)当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 42+(见反应式7),而溶液中生成的Zn(OH) 42-为这个过程提供了条件,在这种溶液环境下,一部分的Zn(OH) 2胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器: 超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂: 铜衬底,丙酮,无水乙醇(C 2H 5OH,分析纯),去离子水,硫酸锌(ZnSO 4·7H 2O,分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C

相关主题
文本预览
相关文档 最新文档