当前位置:文档之家› 沁水盆地煤储层渗透率影响因素研究

沁水盆地煤储层渗透率影响因素研究

沁水盆地煤储层渗透率影响因素研究
沁水盆地煤储层渗透率影响因素研究

沁水盆地构造演化与煤层气的生成

沁水盆地构造演化与煤层气的生成 李明宅杨陆武胡爱梅徐文军 (中联煤层气有限责任公司科技研究中心,北京,100011) 摘要沁水盆地面积约23923km2,蕴藏着丰富的煤炭资源和煤层气资源,是我 国重要的煤层气勘探区。本文主要从盆地演化的角度讨论了煤层的形成及其生气 潜力,认为沁水盆地南部是有利的煤层气勘探区块。 关键词沁水盆地构造演化沁水盆地南受煤层气 1沁水盆地构造演化特征 在影响煤层气生成和保存的众多地质因素中,以构造作用的影响最大,因为盆地的构造特征和构造热演化决定着煤的聚集和生气作用。 1.1构造特征及成煤期后构造发育特征 沁水盆地位于晋中一晋东南地区,为近南北向的大型复式向斜,面积约23923km2。盆地内次级褶皱发育,南部(古县一屯留一线至阳城)和北部(祁县以北)以近南北向褶皱为主,局部近东西、北东和弧形走向的褶皱;中部(祁县至沁源)则以北北东向褶皱发育为特点。断裂以北东、北北东和北东东向高角度正断层为主,集中分布于盆地西北部、西南部及东南部边缘。该盆地处于长期抬升状态,具有内部褶皱发育、断裂不甚发育和煤系地层广泛稳定分布的特点,区别于其西侧的鄂尔多斯盆地和东侧的华北东部断块含煤区,前者煤系沉积后长期持续稳定沉降、上覆地层厚、构造简单,后者煤系沉积后又经历了强烈的块断作用改造。 沁水盆地煤系地层沉积后,历经印支、燕山和喜山三次构造运动改造。印支期本区受侯马一沁水一济源东西向沉积中心的控制,以持续沉降为主,沉积了数千米的三叠纪河湖相碎屑岩,由北向南增厚。三叠纪末的印支运动,使华北地区逐渐解体,盆地开始整体抬升,遭受风化剥蚀。燕山期内构造运动最为强烈,在自西向东挤压应力作用下,石炭系、二叠系和三叠系等地层随山西隆起的上升而抬升、褶皱,形成了轴向近南北的复式向斜,局部断裂并遭受剥蚀。同时,区内莫霍面上拱,局部伴有岩浆岩侵入,形成不均衡的高地热场,使煤的变质程度进一步加深。由于该变质作用是在煤层被抬升、褶皱、剥蚀,上覆静岩压逐渐减小的情况下进行的,因而对煤的割理及外生裂隙的生成、保存等均产生了有别于深成变质作用的影响。喜山期区内受鄂尔多斯盆地东缘走滑拉张应力场作用,在山西隆起区产生北西一南东向拉张应力,发育了山西地堑系,区内形成了榆次—介休一带的晋中断陷,沉积了上千米的上第三系、第四系陆相碎屑岩,其他地区石炭系、二叠系和三叠系等地层继续遭受剥蚀,并在北部和东南部因拉张而形成北东向正断裂,致使沁水盆地定 一36—

沁水盆地煤系地层页岩气储层特征及评价_付娟娟

第23卷第2期2 016年3月地学前缘(中国地质大学(北京) ;北京大学)Earth Science Frontiers(China University of Geosciences(Beijing);Peking  University)Vol.23No.2 Mar.2016 http ://www.earthsciencefrontiers.net.cn 地学前缘,2016,23(2)收稿日期:2015-09-12;修回日期:2015-11- 01基金项目:中国地质调查局项目“沁水盆地及周缘页岩气资源调查评价”(2014- 258)作者简介:付娟娟(1981—),女,博士研究生,工程师,矿产普查与勘探专业。E-mail:juanj uanfu_2012@hotmail.com* 通讯作者简介:郭少斌(1 962—),男,教授,博士生导师,从事层序地层学、储层评价和油气资源评价方面的教学和科研工作。E-mail:g uosb58@126.comdoi:10.13745/j .esf.2016.02.017沁水盆地煤系地层页岩气储层特征及评价 付娟娟, 郭少斌*, 高全芳,  杨 杰中国地质大学(北京)能源学院,北京100083 FU Juanjuan, GUO Shaobin*, GAO Quanfang,  YANG JieSchool of Energy Resources,China University  of Geosciences(Beijing),Beijing100083,ChinaFU Juanjuan,GUO Shaobin,GAO Quanfang,et al.Reservoir characteristics and enrichment conditions of shale gas in theCarboniferous-Permian coal-bearing  formations of Qinshui Basin.Earth Science Frontiers,2016,23(2):167-175Abstract:Qinshui Basin,as one of the most important coal-bearing basins in China,not only has plenty of coaland coal-bed methane resources,but also has a lot of shale reservoirs.However,there is little research on thecharacteristics and potential evaluation of shale gas reservoirs in this basin.In this paper,we studied thecharacteristics of shale gas reservoirs in the Upper Paleozoic of Qinshui Basin,China.Comprehensiveexperimental methods,including X-ray diffraction,NMR,FIB-SEM,microscopic identification of thinsections and nitrogen adsorption etc.were applied to analyze the characteristics of organic geochemistry,rockand mineral composition and pores evolution of organic-rich shale gas reservoirs.On this basis,the explorationand development potential of shale reservoirs in the study area is evaluated.The results show that differenttypes of pores and micro fractures developed here,which provide enough spaces for the storage of shale gas.Mineral pores,mainly including intergranular pores and intercrystalline pores in shapes of plate,triangle orirregular are well developed,whereas only  a small amount of organic pores in shapes of dot or occasional ellipsedeveloped.Porosity has a large specific surface area,which has a range from 2.84m2/g to 6.44m2 /g with anaverage of 4.26m2 /g.The average value of p ore size distribution is between 3.64nm and 10.34nm,whichmeans mainly meso-pores developed.The appropriate ratio of mineral composition,which is composed of57.5%of clay minerals and 41.3%of brittle minerals,is pretty good for the development of mirco-pores,gasabsorption and fracturing.High value of TOC and Ro,caused by abnormal thermal gradient in Mesozoic,provided favorable conditions for shale gas formation and storage.On the whole,though the burial depth isshallow,there is great exploration and development potential for shale gas in the C-P period in the QinshuiBasin because the organic chemical conditions,mineral composition and reservoir characteristics are quitesuitable for the formation and storage of shale g as.Key  words:Qinshui Basin;C-P period;shale gas;reservoir characteristics摘 要:沁水盆地是我国重要的含煤盆地,不仅其煤炭及煤层气资源丰富,在上古生界石炭纪—二叠纪地层中还有大量页岩发育。而目前,针对该地区页岩地层的相关研究极少,该地区页岩气资源是否具有勘探开发潜力有待深入而细致的研究。本文以沁水盆地上古生界石炭系—二叠系海陆交互相页岩储层为研究对象,通过薄片鉴定、X线衍射分析、氩离子抛光-扫描电镜分析、核磁共振、氮气吸附等实验方法,研究了富有机质页岩储层有机质含量、类型、成熟度等有机地化特征以及储集空间类型、物性、矿物组成、孔隙结构等储层特征。在此基础上,对研究区页岩储层的勘探开发潜力进行了评价。结果表明:沁水盆地石炭系—二叠系富有机质页岩储层中发育形态各异的不同类型孔隙及微裂缝。其中,矿物基质孔十分发育,主要包括有呈片状、三角形及

沁水盆地胡底井田地质特征及煤层气赋存规律

沁水煤层气田位于沁水盆地南部晋城地区,主体部分在沁水县境内,共划分为樊庄、潘庄、郑庄三个区块[1] 。寺头断层以西为郑庄区块,以东北部为樊庄区块,南部为潘庄区块(图1)。该区域为我国煤层气产业的重要基地,国内主要产气井多分布在此,研究意义重大。 胡底井田位于樊庄区块的中西部,在沁水县胡底乡蒲池村附近,西以老圪堆、王庄沟、东山一线为界,距沁水县城50km ,东至西岭后、上坟西西部,南抵鸡窝岭、小岭上、七坡、西庄北部,距胡底乡约 1km ,北至吴沟村、楼底、银疙堆一线南部,隶属胡底 乡管辖。井田总体成东西向的长方形,长约6km ,宽 约4km ,北纬35°43′~35°45′15″,东经112°32′44″~ 112°36′44″,面积约20.51km 2。 1区域地质概况 沁水煤层气田位于沁水盆地东南部斜坡,总体构造形态为一马蹄形斜坡带,地层倾角平缓,一般2° ~7°,平均4°左右。断层相对不发育,断距大于20m 的 断层仅在西南部分布,主要有寺头断层以及与之伴生的次一级正断层组成的弧形断裂带,呈北东向-东西向展布。区内低缓、平行褶皱普遍发育,展布方向以北北东向和近南北向为主,褶皱的面积和幅度都很小,背斜幅度一般小于50m ,面积小于5km 2,延伸长度从数百至上千米,呈长轴线型褶皱(图2)。 区内地层由老至新包括下古生界奥陶系中统峰峰组、上古生界石炭系上统本溪组、太原组、二叠系下统山西组、下石盒子组、中统上石盒子组、上统石千峰组、中生界三叠系、新生界新近系及第四系。岩浆活动以燕山期侵入体为主,导致煤岩变质程度增高。 2矿区地质 胡底井田位于晋获褶断带的西侧,区内构造比 作者简介:王凤清(1960—),女,1982年毕业于焦作矿业学院煤田地 质与勘探专业,河南省三门峡黄金工业学校高级讲师、高级工程师,主要从事煤田地质研究。 收稿日期:2011-04-18责任编辑:唐锦秀 沁水盆地胡底井田地质特征及煤层气赋存规律 王凤清 (河南省三门峡黄金工业学校,河南三门峡472000) 摘要:沁水盆地由于其良好的储气条件,多年来一直是国内外煤层气学者的研究对象。胡底井田位于樊庄区块的中西部,通过对其地质特征和煤储层的各项特征研究,探讨了区内煤层气的赋存规律及影响因素,得到以下认识:本区构造简单,煤层较厚且变质程度高,吸附能力强,含气量大,封存条件好,煤层气资源蕴藏丰富;受褶曲构造影响,在井田中部含气量较低,由中部向西含气量逐渐增高,向东含气量先增大后减小,南北方向也呈现起伏性变化;煤层气含量与煤层埋深基本呈正相关变化;煤层埋藏史、水文地质及煤层封盖等条件使本区形成了良好的煤层气富集区。关键词:沁水盆地;胡底井田;煤层气;地质特征;赋存规律中图分类号:P618.11 文献标识码:A Geological Features and CBM Hosting Pattern in Hudi Minefield,Qinshui Basin Wang Fengqing (Henan Province Sanmenxia School of Gold Industry,Sanmenxia,Henan 472000) Abstrac t:Since the favorable gas reserving conditions,the Qinshui Basin is always one of main subjects investigated of CBM researchers both home and abroad in many years.The Hudi minefield is situated in the mid western part of the Fanzhuang sector.Based on geological features and coal reservoir characteristic study,CBM hosting pattern and impact factors in the area have been studied.Thus following cognitions have obtained:structures in the area are simple,coal seams are thick and highly metamorphosed,stronger adsorptive capacity,higher gas content,better sealing and keeping conditions,accordingly abundant CBM resources.Since impacts from folded structures,CBM content in middle minefield is lower,increasing westward,increasing first then decreasing eastward and presents undulating from south to north.Positive correlation has existed between CBM content and coal buried depth.Coal seam accumulation,hydrogeological and seam closing cap conditions made the minefield a favorable CBM enrichment area.Keywords:Qinshui Basin;Hudi minefield;CBM;geological feature;hosting pattern 中国煤炭地质 COAL GEOLOGY OF CHINA Vol.23No.07Jul .2011 第23卷7期2011年7月 文章编号:1674-1803(2011)07-0022-06 doi :10.3969/j.issn.1674-1803.2011.07.06

山西沁水煤层气田地质特征

沁水煤层气田地质特征 1 自然地理环境 沁水煤层气田位于沁水盆地南部北纬36°以南,行政区划隶属于省市,包括、高平、沁水、阳城等县市。区地形为丘陵山地,沟谷发育,切割较深,地面海拔580m~1300m。较大的河流为沁河,其它有固县河等支流常年有水,大多汇入沁河。气候为大陆性气候,昼夜温差较大。 2 构造特征 里必区地形为山地地形,地表条件复杂,山体陡峭,沟谷切割,基岩出露,地表高差大,海拔高度700-1200m,总体构造形态为一北西倾斜坡带,地层平缓,地层倾角一般2°~7°,平均4°。断层不发育,断距大于20m 的断层仅在西南部分布,主要有寺头断层以及与之伴生的次一级断层,呈一组北东向—东西向正断层组成的弧形断裂带。区低缓、平行褶皱普遍发育,呈近南北和北北东向,褶皱的面积和幅度都很小,背斜幅度一般小于50m,延伸长度5km~10km,呈典型的长轴线性褶皱。 3 含煤层简况 沁水区块地层由老至新包括下古生界奥陶系中统峰峰组(O2f)、上古生界石炭系中统组(C2b)、上统组(C3t)、二叠系下统组(P1s)、下石盒子组(P1x)、上统上石盒子组(P2s)、石千峰组(P2sh)、中生界三叠系T、新生界第三系(N)、第四系(Q),其中主要含煤地层石炭系上统组和二叠系下统组,在盆地广泛分布,是本区煤层气勘探主要目的层。 组:为三角洲沉积,一般有三角洲前缘河口砂坝、支流间湾逐渐过渡到三角洲平原相。地层厚度8m~90m,一般60m左右,岩性为灰、深灰

色砂泥岩互层夹煤层。本组一般含煤2层~4层,自上而下编号为1#~4#,其中3#煤单层厚度大,全区分布稳定,总体具有东北厚西南薄的趋势,为组主要煤层。沁水地区为3#煤层发育区,厚度3m~8m,局部夹炭质泥岩和泥岩夹矸1~2层。3#煤层顶板岩性主要为泥岩、粉砂质泥岩,底板主要为粉砂岩和泥岩。泥岩作为煤层顶、底板封盖层有利于煤层气的保存和集聚。 该组底部的K7砂岩,为本组底部的分界标志层,厚度最大可达10m,一般5m左右,以灰、灰白色中—细粒长石石英砂岩及石英砂岩为主,局部可相变为粉砂岩。 组:为一套海陆交互相沉积的复合沉积地层,厚度59m~125m,一般大于70m,岩性为中-细粒砂岩、粉砂岩、粉砂质泥岩、泥岩、灰岩和煤互层,由5个从碎屑岩到石灰岩沉积的垂向层序构成,体现了海退-海进沉积旋回过程。本组含煤层6层~12层,自上而下编号为5#~16#,其中底部15#煤层单层厚度大、分布稳定,是本区主力煤层,厚度5.2m~6.65m。15#直接顶板岩性主要为泥岩或含钙泥岩,底板主要为泥岩。K2石灰岩常常成为15#煤层的直接顶板,造成煤层气运移逸散,使煤层气井产水量增加。 该组底部普遍发育的K1砂岩及中上部数层浅海相石灰岩为其重要的区域对比标志层。 3.1 K1砂岩。

沁水盆地东南缘二叠系上石盒子组地层特征研究

1 区域地质背景 沁水盆地位于山西省东南部,北纬35°-38°,东经 111°00'-113°50',总体呈北北东向延伸,中间窄,呈 哑铃状。盆地东西宽约120km,南北长约330km,总面积逾 423×10km 。古构造带上属于华北地台中带,是在燕山期剪切 挤压不断增强、隆升不断扩大的背景下形成的残余构造盆 地。燕山期,华北地区剪切挤压应力作用不断增强,早-中侏 罗世的大华北盆地逐渐向鄂尔多斯地区退缩,至晚侏罗-早白 垩世的燕山运动中期山西地区已成为隆升区,位于其上规模 最大的复式向斜型沁水盆地最终成型(陈刚等,1998)。 沁水盆地石炭-二叠系的地层平行不整合于奥陶系之 上,自下而上包括湖田段、太原组、山西组、下石盒子组、 上石盒子组、孙家沟组。湖田段为奥陶系灰岩侵蚀面之上一 套铁铝岩层的组合。太原组和山西组为主要含煤岩系,太原 组主要以石灰岩、铝土质泥岩、粉砂岩、粉砂质泥岩及砂岩 为主,厚44.9-193.48m,含多层可采煤层,煤层总厚0- 16.89m,平均7.19m。山西组以砂岩、粉砂岩和泥岩为主, 厚18.6-213.25m,含可采煤层1-2层,总厚0-10m,平均 4.2m。太原组的15号煤层和山西组的3号煤层在全区广泛分 布,横向分布稳定,厚度较大,是该区的主采煤层和煤层气 储层。石盒子组以砂岩、粉砂岩、砂质泥岩、泥岩为主,全 组厚度400-600m,分为5个岩性段,即骆驼脖子段,化客头 段,天龙寺段,神岩段、平顶山段,纵向上底部夹有煤线和 薄煤层,下部主要为黄、绿色砂岩夹泥、页岩,中部以杏黄色夹紫红色泥页岩为主,上部杏黄色与紫色、巧克力色泥岩互层或以后者为主,顶部为黄绿色、灰黄色、灰白色砂岩为主夹杂色泥岩。孙家沟组为石千峰群下部地层,主要由红色、砖红色泥岩,粉砂质泥岩夹长石砂岩组成。 孙 杰 沁水盆地东南缘二叠系上石盒子组地层特征研究 (山西省地质调查院,山西 太原 030006) 图1 沁水盆地位置示意图(图中实线为剖面位置)

沁水盆地地质概况

沁水盆地煤层气赋存区域地质背景 2.1 沁水盆地地质概况 沁水盆地位于山西省东南部(见图1),盆地总面积436.8km2,煤炭资源量29.16万t,具有形成煤层气的丰富物质基础。沁水盆地是我国重要的含煤盆地之一,且据《中国煤层气资源》预测:其煤层气资源量达3.28×1012m3占全国煤层气总资源量的10%左右,是我国煤层气资源勘探的重点区域[9]。 图1 沁水盆地区域构造背景图 盆地现今构造面貌为一近南北向的大型复式向斜,次级褶曲发育。南部和北部以近南北向褶曲为主,局部为近东西、北东和弧形走向的褶皱;中部则以北北东向褶皱发育为特点。断裂以北东、北北东和北东东向高角度正断层为主,集中分布于盆地西北部、西南部及东南部边缘。盆地地层属华北地层区划缺失志留纪、泥盆纪和下石炭世地层。沁水盆地自下而上钻遇的主要地层有峰峰组(O2f)、本溪组(C2b)、太原组(C3t)、山西组(P1s)、下石盒子组(P1x)、上石河子组(P2s)、石千峰组(P2 sh)和第四系(Q)等,其中山西组和太原组为主要含煤层系,3#和15#煤层为煤层气勘探的主要目的层,3#煤层为局部勘探目的层。 根据盆地内的构造发育特征、煤层埋藏深度、煤阶分布、煤层气含量变化等特

沁水盆地煤层气赋存区域地质背景 点,将盆地内石炭——二叠系含煤地层的煤层气富集单元划分为沁南富气区、东翼斜坡带富气区、西翼斜坡带富气区、西山富气区和高平——晋城富气区[10]。沁南富气区总含气面积3630km2,分为樊庄、潘庄、郑庄三个区块[11][12]。 研究区沁水盆地南部煤层气田位于沁水复向斜南部晋城地区,东临太行山隆起,西临霍山凸起,南为中条山隆起,北部以北纬30°线为界连接沁水盆地腹部,面积约3260km2,包括樊庄区块,潘庄区块,郑庄区块等(图2)。据已经取得工业产能的煤层气井资料,计算高产富集区内探明含气面积346km2,地质储量754×108km3[13]。边缘出露地层老盆地内出露较新地层,下古生界在盆地四周出露地表向盆地内部依次出露上古生界、中生界,盆地中部三叠纪地层大面积出露。 图2 沁水盆地南部煤层气田区块位置图 2.2 樊庄区块煤炭地质概况 沁水盆地樊庄区块位于山西省晋城市西北85km处。区块南北长18.53~19.96km 东西宽16.37~19.27km,面积398km2。樊庄区块位于沁水盆地南部斜坡,总体构造形态为一马蹄斜坡带,地带宽阔平缓,地层倾角一般为2°~7°,平均4°左右。区内大

煤储层渗透率影响因素

煤层气储层渗透率影响因素 摘要:煤层气作为一种新型能源,而且我国煤层气储量丰富,因此其开采利用可以很大程度上缓解我国常规天然气需求的压力。煤储层的渗透率是煤岩渗透流体能力大小的度量,它的大小直接制约着煤层气的勘探选区及煤层气的开采等问题。因此掌握煤储层渗透率的研究方法及影响因素,对于指导煤层气开采具有重要的指导意义。本文主要在前人的基础上,从裂隙系统、煤变质程度、应力及当前其他领域的技术对渗透率的研究的理论、认识及存在的问题等进行总结,对煤储层渗透率的预测有一定的理论指导意义。 Abstract: Our country is rich in the CBM which is a new resource. So the development of CBM can lighten our pressure for the requirement of conventional gas.The permeability of the coal reservoir is a measure of fluid’s osmosis permeability, restricting the exploration area and mining of CBM. Therefore, controlling the method of mining and the effect factoring has an important guiding significance for mining .This article is summarized from fracture system,the degree of coal metamorphism, stress for the theory, matters and so on of permeability’s study which is based on the achievement of others,having a great guiding significance for the permeabilityprediction.关键词:煤层气;渗透率;影响因素 1、引言 煤层气是指赋存在煤层中常常以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解在煤层水中的烃类气体[1]。美国是最早开发煤层气并取得成功的国家,其富产煤层气的煤级主要是气、肥、焦煤,即中级煤。我国煤盆地一般都具有复杂的热演化史和构造变形史,构造样式复杂多样,煤储层物性差异较大,孔渗性偏低,富产煤层气的煤级是几个高级煤、无烟煤和贫煤[2]。因此我们不能照搬美国的理论来指导我国煤层气的生产。近十几年来,我们在实践中不断认识到这种差异,并针对我国煤层气储层的特征进行了一系列的研究,在煤储层物性方面取得了丰硕的成果,已初步形成了一套研究的理论与方法。渗透性是制约煤层气勘探选区的最重要的参数之一,有效预测煤储层渗透性对我国煤层气的勘探开发具有重要意义[3]。笔者主要从煤储层裂隙系统、煤变质程度、有效应力等方面作以阐述。

煤储层渗透率主要影响因素及其物理模型研究

煤储层渗透率主要影响因素及其物理模型研究 金大伟 赵永军 霍凯中 (中国石油大学地球资源与信息学院 山东 东营 257061) 摘要: 在分析渗透率与地应力、埋深、裂隙、储层压力和水文地质条件等相互关系的基础上,指出影响煤储层渗透率最普遍和主要的因素是围压、裂隙和埋深等。并结合前人的研究成果,以数学关系式的方式,来研究渗透率与其主要影响因素的关系,并建立物理模型。关键词:煤储层 渗透率 影响因素 地应力 埋深 前言 煤储层系指吸附储存了一定的甲烷气体并发育有连通的孔、裂隙系统,煤层气在压降作用下能够发生流动的三维煤岩体。煤储层渗透率研究涉及到岩石力学、流体力学、计算力学和采矿工程诸多学科,与煤储层孔裂隙体系、现代构造应力场的性质和大小、煤化作用和构造演化历史、地下水活动等关系密切。近年来在地质物理模型、渗流模型、实验测试、试井分析及数值模拟等方面均取得了长足发展。 煤层渗透率的影响因素十分复杂。地质构造、应力状态、煤层埋深、煤体结构、煤岩煤质特征、煤级及天然裂隙都不同程度地影响煤层渗透率。有时是多因素综合作用的结果,有时是某一因素起主要作用。但是,在诸多因素中,影响最普遍的煤储层渗透率的主控因素是围压、埋深和裂隙等。本文结合前人的研究成果,以数学关系式的方式,来研究渗透率与其主要影响因素的关系,并建立物理模拟。 1渗透率围压的关系研究 据秦勇等的关于CH4渗透率实验:在晋城成庄矿、高平望云矿、潞安常村矿、五阳矿及沁源沁新矿井下新开拓的煤面上采集裂隙发育中等的半亮型煤大块煤样(20cm×20cm×20cm),Ro max从1.65%至2.87%,煤类为焦煤到三号无烟煤(表1),在室内加工成50mm×100mm 的圆柱形煤样。在有效应力不变的情况下,测量CH4的克氏渗透率(表1),在流体(CH4)压力不变的情况下,测量不同围压下的应力渗透率。结果表明:煤岩体CH4应力渗透率随围压的增大呈指数形式降低(图1)。并由实验数据得出其数值形式为 K c=K0e-aPc (1) 式中,K c为应力渗透率(单位:10-3μm2);K o为无应力时渗透率(单位:10-3μm2);e为自然对数;a为拟合系数;P c为围压(单位:MPa)。除潞安4号煤样相关系数只有0.73外,其余4个煤样相关系数均在0.92以上;克氏渗透率越大,其无应力时渗透率也越大;贫煤-无烟煤随围压的增大,衰减较快,焦煤-瘦煤随围压的增大,衰减相对较慢(表1)。

沁水盆地煤层气资源量评价与勘探预测

加工转化 沁水盆地煤层气资源量评价与勘探预测 薛 茹1 毛灵涛2 (1 郑州航空工业管理学院建筑工程管理系,450015; 2 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室北京100083) 摘 要 根据 煤层气资源/储量规范(试行) 中的容积法对沁水盆地煤层气资源进行 计算,提出了综合考虑区域构造单元、含煤地层沉积特征和实际分布范围来划分计算单元的 划分原则,并对沁水盆地煤层气资源的勘探进行了预测分析。 关键词 煤层气 资源评价 沁水盆地 盖层 气藏 1 沁水盆地地质概况 沁水盆地位于山西省中部及东南部,东以平定-昔阳-左权-长治-晋城一线的煤层露头线为界,西至霍山隆起以东煤层露头线与汾河地堑的东部边界,南起阳城,北抵盂县、寿阳。盆地长轴总体呈NNE向延伸,南北长约320km,东西宽约180km,有效含煤面积31100km2。 盆地的沉积盖层自下而上依次为本溪组、太原组、山西组、下石盒子组、上石盒子组和石干峰组。其岩性以含砾砂岩、砂岩、粉砂岩、泥质粉砂岩、粉质泥砂岩、泥岩及煤层等,其中能够对煤层气起到封盖作用的岩性主要是泥质岩类,包括粉砂岩、泥质粉砂岩、粉沙泥质岩及泥岩。就含煤层段而言,泥质岩很发育,山西组泥岩百分含量在60%左右,太原组泥岩百分含量在50%以上,且变化范围不大,全区稳定发育,是煤层气吸附储集的良好盖层。 煤层不仅是煤层气藏的源岩,同时又是煤层气藏的储层。煤层的稳定发育并具有一定的厚度和规模是煤层气富集的基础。沁水盆地稳定发育的主要可采煤层主要是太原组和山西组,煤层总厚度变化在3 65~18 5m之间。其平面展布规律,在南北方向上是由北向南煤层增厚,在东西方向上是由西向东煤层变厚。 2 煤层气资源评价 2 1 资源量计算方法的确定 煤层气资源量的大小、分布是煤层气地质评价的重要内容,也是煤层气开发前经济预算的主要依据。煤层气资源量计算的准确与否直接影响到煤层气开发的经济效益。所以,煤层气储量计算单元的划分、资源量计算方法及计算参数的确定等问题,是当前煤层气科技工作者的工作重点。 目前,国内外普遍的作法是以煤样的含气量和煤炭储量的乘积求出煤层气资源量[8]。其中含气量以混合气体含气量来计算,煤炭储量以可开采煤层计算。然而,有实例证明,这种计算方法所得计算结果往往与气井的实际产量相矛盾。鉴于煤层气与天然气的明显差异,本文在进行沁水盆地煤层气资源计算时根据 煤层气资源/储量规范(试行) 中的容积法,对全盆地范围内的煤层气资源量进行计算。 所谓容积法,即: Q i=C i H i D 10-2(1) G j=Q j A j(2) G= G j(3)式中:Q j I单元资源丰度,108m3/km2; C i I单元的煤层气含量,m3/t; H i i单元煤层厚度,m; G i i单元煤层气资源量,108m3; D i单元煤层平均容重,m3/t; A i i单元资源量计算面积,km2; G 煤层气总资源量,108m3。 2 2 资源量的计算 2 2 1 计算过程 66中国煤炭第33卷第5期2007年5月

煤层气储层渗透率影响因素研究

煤层气储层渗透率影响因素研究 发表时间:2018-06-19T16:35:29.853Z 来源:《基层建设》2018年第10期作者:张龙[导读] 摘要:面对国家能源结构调整和社会对环境保护的需求,国家相关部门对煤层气提出了更大的指导规划和更积极的财政补贴政策,使得我国煤层气勘探开发又进入一次新的发展时期。 新疆煤田地质局一五六煤田地质勘探队 830009 摘要:面对国家能源结构调整和社会对环境保护的需求,国家相关部门对煤层气提出了更大的指导规划和更积极的财政补贴政策,使得我国煤层气勘探开发又进入一次新的发展时期。 关键词:煤层气;渗透性;影响因素 引言 目前,中国多数煤层气单井产量不高,衰减快,除了渗透率低这个客观因素外,一个很重要的原因就是对煤储层渗透率变化特征认识不全面,国内有关此类报道较少,因此加强煤层气储层的渗透性及其开发过程中动态变化特征的研究势在必行。笔者在总结前人研究的基础上,系统全面分析了煤层气储层的渗透性的相关影响因素及其变化规律。 1煤层气解吸过程 目前煤层气开采和实验研究普遍采用基于气相吸附理论的吸附—解吸模型,认为煤层中的水不利于甲烷的吸附,但实际情况是注水煤样中的液态水的存在反而增加了甲烷吸附量,符合液相吸附理论的特征,而且煤层气液相吸附的模式符合煤层气实际生产规律,可以将煤层气的解吸分为以下几个阶段:地层水脱气阶段、液相解吸阶段、气相解吸阶段和复合解吸阶段。根据液相吸附理论,煤基质(颗粒)和CH4分子是非极性分子,H2O分子是极性分子,因为二者极性不同,H2O分子将进一步推动CH4分子向煤基质方向移动,而煤基质(颗粒)与CH4分子的极性相近趋于相互吸附,使得CH4分子以高于气相吸附程度的形式更加密集地排列到煤基质(颗粒)表面,如图1所示。 根据煤层气的吸附理论,在开展排水采气作业时,由于地层水在甲烷未饱和阶段,所以煤层气井只产水不产气;当水量排至甲烷浓度和溶解度相同时,再降低压力时煤层的吸附甲烷才开始解吸,并且地层水开始脱气;水中的甲烷浓度降低,液相解吸也逐渐开始;随着地层压力的进一步降低,气相解吸出的甲烷不断进入煤层的孔隙和裂缝,产气量进一步增大;当压力降低到一定程度时,由液相解吸出来的一部分气体会出现气相吸附的现象,被称为复合解吸阶段,当液相解吸出来的甲烷无法被气相吸附时,气相解吸就会进一步释放大量的甲烷,使得煤层气的产量进一步增大,如图2所示。当然,并不是所有煤层气井的生产过程都是严格地按此流程进行,具体也要根据煤层气储层的压力、地质、生产流程等多种因素来进行分析。

煤层气储层渗透性影响因素分析

煤层气储层渗透性影响因素分析 摘要:煤的渗透性是控制煤层气在煤储层中流动的最关键参数。探讨煤的渗透率的相关影响因素及其变化规律,对于煤层气的勘探开采及动态开发效果具有重要的现实意义。本文详细地分析了裂隙系统、煤岩组分类型、煤的变质程度、有效应力、基质收缩、克林伯格效应等方面对煤储层渗透性的影响。 关键词:煤层气,渗透性,影响因素,分析 ANALYZING THE FACTORS AFFECTING THE COEFFICIENT OF PERMEABILITY OF COAL BEDS (Institute of Petroleum Engineering,University of the Yangtze,Jingzhou. Hubei 434023) Abstract:The permeability of coal is the most critical parameter controlling the coal bed methane flowing in the coal-bed gas reservoirs. It is practical significant to probe into the relevant influencing factors and their variations of coal permeability on the coalbed methane exploration, exploitation and the effect of dynamic development. It is well analyzed many effects on the coefficient of permeability of coal beds,such as fracture system,maceral type and lithotype, metamorphic grade, effective stress, matrix shrinkage, Klingberg effects,etc. Key words:coal-bed methane,permeability,influencing factors,analysis 基金项目:国家科技重大专项项目(2008ZX05036-001) 煤层气(或称煤层甲烷)是指与煤同生共体以甲烷为主要成分、主要以吸附状态赋存在煤层之中,可从地面上进行采收的非常规天然气,是蕴藏量巨大的新兴潜在能源,将煤层气作为天然气的补充能源对我国经济可持续发展和国家能源安全具有重要意义。 煤体的渗透性是指煤对煤层气(瓦斯)流动的阻力特性,煤的渗透性是控制煤层气在煤储层中流动的最关键参数,煤层气储层自身的特点和煤层气开采过程中外界条件的改变都会影响其渗透性。煤储层渗透性研究涉及到岩石力学、流体力学、计算力学和采矿工程诸多学科,且其作用因素十分复杂。裂隙系统的发育、煤岩组分类型、煤的变质程度、有效应力、煤基质收缩和克林伯格效应等对煤储层的渗透性均有不同程度的影响。 目前,中国多数煤层气单井产量不高,衰减快,除了渗透率低这个客观因素外,一个很重要的原因就是对煤储层渗透率变化特征认识不清,国内有关此类报道较少,因此加强煤层气储层的渗透性及其开发过程中动态变化特征的研究势在必行。笔者在总结前人研究的基础上,系统全面分析了煤层气储层的渗透性的相关影响因素及其变化规律。

砂岩储层渗透率与压汞曲线特征参数间的关系

文章编号:1000-2634(2001)04-0005-04 砂岩储层渗透率与压汞曲线特征参数间的关系Ξ 廖明光1,李士伦1,谈德辉2 (1.西南石油学院石油工程学院,四川南充637001;21西南石油学院成人教育学院) 摘要:通过对大量岩样毛管压力数据的分析研究发现,在双对数坐标下储层岩石毛管压力曲线呈现明显的双曲线特征,且可用双曲线的两条渐近线P d和S b及孔喉几何因子F g三个参数唯一确定,双曲线的顶点代表了非润湿相在岩石系统中完全占据能有效控制流体流动的那部分有效孔隙空间时的状态。且双曲线的位置形状参数或顶点参数决定了岩石绝对渗透率的大小。分别用位置形状参数和顶点参数成功建立了岩石绝对渗透率的估算模型,并用大量实测数据验证了估算模型的可靠性。 关键词:绝对渗透率;砂岩;储层;压汞试验;双曲线;估算模型 中图分类号:TE122.33 文献标识码:A 引 言 压汞测试一直是储层孔隙结构研究的重要手段,由此得到的毛管压力曲线表征了岩石孔喉大小和分布[1]。用毛管压力曲线或孔隙结构特征参数来估算绝对渗透率历来是许多学者的研究课题,也是搞清孔隙结构参数对绝对渗透率影响因素的不可缺少的工作。因为各方面孔隙结构特征综合起来最终体现岩石的孔隙度和绝对渗透率的大小。建立一个有效的渗透率估算模型,其根本意义不完全在于利用该模型来估算绝对渗透率的大小,而在于弄清孔隙结构特征中控制和影响流体在孔隙性岩石中流动的重要特征参数,同时也给这些参数的理论意义和应用价值带来前景。本文在双对数坐标下研究毛管压力曲线的双曲线特征及其顶点意义的基础上,用双曲线的位置形状参数及顶点有关参数建立岩样的绝对渗透率的估算模型,并用来自我国吐哈油田、辽河油田、胜利油田等地区油气田的不同层位的砂岩储层的大量压汞测试资料,分析验证了模型的可靠性。 1 毛管压力曲线的双曲线特征 在毛管压力曲线图上,毛管压力曲线的形状和位置差异无疑反映岩样中一些包括孔隙几何学特征的基本性质[2]。当把实测压汞数据的p c和S Hg绘在双对数坐标下,最佳拟合数据点的平滑曲线近似于一条双曲线。毛管压力p c与饱和度S Hg间的双曲线关系可用如下数学模型来表达: (lg p c-lg p d)(lg S Hg-lg S b)=-F g/2.303 (1)式中 S Hg—进汞压力为p c时的累计汞饱和度(连通孔隙体积百分数,%); S b—无限大压力时可能的汞饱和度(总连通孔隙体积百分数,%); p c—汞/空气系统的毛管压力,MPa; p d—汞/空气系统外推排驱压力,MPa; F g—孔喉几何因子。 毛管压力曲线的位置和形状可由式(1)中的总连通孔隙体积百分数S b、外推排驱压力p d和孔喉几何因子F g三个参数确定。曲线相对于p c和S Hg轴的位置可由双曲线的两条渐近线确定。垂直渐近线表示在无限大压力下的总进汞饱和度,或称“总连通孔隙体积百分数”;水平渐近线表示“外推排驱压力”。曲线的形状由参数F g确定,它反映了岩石样品中的孔隙喉道的分选性和连通性。毛管压力曲线平台段 第23卷 第4期 西南石油学院学报 Vol.23 No.4  2001年 8月 Journal of S outhwest Petroleum Institute Aug 2001  Ξ收稿日期:2001-01-09 基金项目:“油气藏地质及开发工程国家重点实验室”开放基金项目(PLN9730);原地矿部“沉积盆地与流体动力学开放研究实验室”开放基金项目(97005)部分研究成果。 作者简介:廖明光(1967-),男(汉族),四川绵竹人,博士,主要从事储层地质学研究和教学工作。

相关主题
文本预览
相关文档 最新文档