当前位置:文档之家› 质粒DNA转染注意事项(engreen)

质粒DNA转染注意事项(engreen)

质粒DNA转染注意事项(engreen)

脂质体转染的实验原理与操作步骤大全

脂质体转染的实验原理与操作步骤大全 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等,理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法-脂质体转染的原理和操作步骤等。 脂质体(lipofectin regeant,LR)试剂是阳离子脂质体N-[1-2,3-Dioleyoxy,Propyl]-n, n,n-Trimethylammonium Chloride(DOTMA)和Dioleoyl photidye-thanolamine(DOPE)的混合物[1:1(w/w)]。它适用于把DNA转染入悬浮或贴壁培养细胞中,是目前条件下最方便的转染方法之一。转染率高,优于磷酸钙法,比它高5~100倍,能把DNA和RNA转染到各种细胞。 用LR进行转染时,首先需优化转染条件,应找出该批LR对转染某一特定细胞适合的用量、作用时间等,对每批LR都要做:第一,先要固定一个DNA的量和DNA/LR混合物与细胞相互作用的时间,DNA可从1~5μg和孵育时间6小时开始,按这两个参数绘出相应LR需用量的曲线,再选用LR和DNA两者最佳的剂量,确定出转染时间(2~24小时)。因LR对细胞有一定的毒性,转染时间以不超过24小时为宜。 细胞种类:COS-7、BHK、NIH3T3、Hela和Jurkat等任何一种细胞均可作为受体细胞。 一、脂质体(liposome)转染方法原理 脂质体(liposome)转染方法原理:脂质体((Iiposome)作为体内和体外输送载体的工具,已经研究的十分广泛,用合成的阳离子脂类包裹DNA,同样可以通过融合而进人细胞。使用脂质体将DNA带人不同类型的真核细胞,与其它方法相比,有较高的效率和较好的重复性。 中性脂质体是利用脂质膜包裹DNA,借助脂质膜将DNA导入细胞膜内。带正电的阳离子脂质体,DNA并没有预先包埋在脂质体中,而是带负电的DNA自动结合到带正电的脂质体上,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,经过内吞被导入细胞。 二、脂质体转染操作步骤 1、操作步骤[方法一]: (1)细胞培养:取6孔培养板(或用35mm培养皿),向每孔中加入2mL含1~2×105个细胞培养液,37℃CO2培养至40%~60%汇合时(汇合过分,转染后不利筛选细胞)。 (2) 转染液制备:在聚苯乙稀管中制备以下两液(为转染每一个孔细胞所用的量)A液:用不含血清培养基稀释1-10μg DNA,终量100μL,B液:用不含血清培养基稀释2-50μgLR,终量100μL,轻轻混合A、B液,室温中置10-15分钟,稍后会出现微浊现象,但并不妨碍转染(如出现沉淀可能因LR或DNA浓度过高所致,应酌情减量)。 (3)转染准备:用2mL不含血清培养液漂洗两次,再加入1mL不含血清培养液。

质粒提取的原理、操作步骤、各溶液的作用

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS 溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH ,10mM EDTA(pH )。1M Tris-HCl[t1] (pH ),EDTA (pH )10ml,葡萄糖,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。 50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I 中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA 恢复活性 2. 溶液Ⅱ:NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置[t2] 。这是用新鲜的N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA的断裂会带来麻烦。 3. 溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 。5M KAc 300ml,冰醋酸,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,

质粒提取有关问题及注意点

质粒提取常见问题解析 涂布棒在酒精蘸一下,然后烧一下,能不能保证把所用的菌烧死? 参考见解:涂布棒可以在酒精中保藏,但是酒精不能即时杀菌。蘸了酒精后再烧一小会,烧的是酒精而不是涂布棒。建议涂布棒还是干烧较长时间后,冷却了再涂。同时作多个转化时,应用几个涂布棒免得交叉污染。 原先测序鉴定没有问题的细菌,37℃摇菌后发现质粒大小或序列出现异常? 参考见解:这种情况出现的几率较小,常出现在较大质粒或比较特殊的序列中。解决办法: 1、降低培养温度,在20~25℃下培养,或室温培养可明显减少发生概率。 2、使用一些特殊菌株,如Sure菌株,它缺失了一些重组酶,如rec类等,使得质粒复制更加稳定。 3、质粒抽提有一个酶切不完全的原因就是溶液Ⅱ中的NaOH浓度过高造成的,请大家注意一下! 【有两种方法可以在提质粒前判断菌生长是否正常: 1、利用你的嗅觉。只要平时做实验仔细点就能闻出大肠杆菌的气味,新鲜的大肠杆菌是略带一点刺鼻的气味,但不至于反感。而在泥水状的菌液中你只要一凑过去就感觉到其臭无比或者没有气味,可以和正常菌液对照。 2、肉眼观察活化菌株。对于生长不正常的菌液进行划板验证或者稀释到浓度足够低涂板,第二天观察单克隆生长情况,LB平板生长的DH5A正常形态在37℃16h后直径在1mm左右,颜色偏白,半透明状,湿润的圆形菌斑,如果观察到生长过快,颜色又是泛黄的话基本上不正常了。】 未提出质粒或质粒得率较低,如何解决? 参考见解: 1、大肠杆菌老化:涂布平板培养后,重新挑选新菌落进行液体培养。 2、质粒拷贝数低:由于使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷贝数载体。 3、菌体中无质粒:有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。 4、碱裂解不充分:使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液的用量。对低拷贝数质粒,提取时可加大菌体用量并加倍使用溶液,可以有助于增加质粒提取量和提高质粒质量。 5、溶液使用不当:溶液2和3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的溶液,才能使用。 6、吸附柱过载:不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若用富集培养基,例如TB或2×YT,菌液体积必须减少;若质粒是非常高的拷贝数或宿主菌具有很高的生长率,则需减少LB培养液体积。 7、质粒未全部溶解(尤其质粒较大时) :洗脱溶解质粒时,可适当加温或延长溶解时间。 8、乙醇残留:漂洗液洗涤后应离心尽量去除残留液体,再加入洗脱缓冲液。 9、洗脱液加入位置不正确:洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱效率。 10、洗脱液不合适:DNA只在低盐溶液中才能被洗脱,如洗脱缓冲液EB(10mM Tris-HCl, 1mM EDTA,pH8.5)或水。洗脱效率还取决于pH值,最大洗脱效率在pH7.0-8.5间。当用水洗脱时确保其pH值在此范围内,如果pH过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱缓冲液加热至60℃后使用,有利于提高洗脱效率。

转染步骤及经验(精华)

转染步骤及经验(精华) 一、基础理论 转染是将外源性基因导入细胞内的一种专门技术。分类:物理介导方法:电穿孔法、显微注射和基因枪;化学介导方法:如经典的磷酸钙共沉淀法、脂质体转染方法、和多种阳离子物质介导的技术;生物介导方法:有较为原始的原生质体转染,和现在比较多见的各种病毒介导的转染技术。理想细胞转染方法,应该具有转染效率高、细胞毒性小等优点。病毒介导的转染技术,是目前转染效率最高的方法,同时具有细胞毒性很低的优势。但是,病毒转染方法的准备程序复杂,常常对细胞类型有很强的选择性,在一般实验室中很难普及。其它物理和化学介导的转染方法,则各有其特点。需要指出的一点,无论采用哪种转染技术,要获得最优的转染结果,可能都需要对转染条件进行优化。影响转染效率的因素很多,从细胞类型、细胞培养条件和细胞生长状态到转染方法的操作细节(见后文)。 二、转染操作流程(以常用的6孔板为例) (1) 细胞培养: 取6孔培养板,以3x104/cm2密度铺板,37℃5%CO2培养箱中培养至70%~90%汇合。(不同细胞略有不同,根据实验室优化的条件进行,汇合过分,转染后不利筛选细胞)。 (2) 转染液制备: 在EP管中制备以下两液(为转染每一个孔细胞所用的量) A液:用不含血清培养基稀释1-10μg DNA,终量100μL, B液:用不含血清培养基稀释对应量的转染试剂,终量100μL; 轻轻混合A、B液(1:1混匀),室温中置15分钟,稍后会出现微浊现象,但并不妨碍转染。 (3) 转染准备:用2mL不含血清培养液漂洗两次,再加入2mL不含血清及PS的培养液。 (4) 转染:把A/B复合物缓缓加入培养液中(缓慢滴加),轻轻摇匀,37℃温箱置6~8小时,吸除无血清转染液,换入正常培养液继续培养。 三、转染注意事项 1. 血清 A. DNA-阳离子脂质体复合物形成时不能含血清,因为血清会影响复合物的形成。 B.一般细胞对无血清培养可以耐受几个小时没问题,转染用的培养液可以含血清也可以不加,但血清一度曾被认为会降低转染效率,转染培养基中加入血清需要对条件进行优化。 C. 对于对血清缺乏比较敏感的细胞,可以使用一种营养丰富的无血清培养基OPTI-MEMⅠ培养基, 或者在转染培养基中使用血清。对血清缺乏比较敏感的贴壁细胞,建议使用LIPOFECTAMINE 2000。无血清培养基OPTI-MEM(GIBICO)很好用,有条件的话,就用它代替PBS洗细胞两遍,注意洗的时候要轻,靠边缘缓缓加入液体,然后不要吹吸细胞,而是转动培养板让液体滚动在细胞表面。如果洗的太厉害,细胞又损失一部分,加了脂质体后,细胞受影响就更大了,死亡细胞会增多。 2.抗生素(PS) 抗生素,比如青霉素和链霉素,是影响转染的培养基添加物。这些抗生素一般对于真核细胞无毒,但阳离子脂质体试剂增加了细胞的通透性,使抗生素可以进入细胞。这降低了细胞的活性,导致转染效率低。所以,在转染培养基中不能使用抗生素,甚至在准备转染前进行细胞铺板时也要避免使用抗生素。这样,在转染前也不必润洗细胞。对于稳定转染,不要在选择性培养基中使用青霉素和链霉素,因为这些抗生素是GENETICIN选择性抗生素的竞争性抑制剂。另外,为了保证无血

高纯度质粒小量快速提取试剂盒操作方法及步骤说明书

杭州昊鑫生物科技股份有限公司 htpp://https://www.doczj.com/doc/373714449.html, HighPure Plasmid Mini Kit 高纯质粒小量快速提取试剂盒 目录号:PL03 试剂盒组成、储存、稳定性: 试剂盒组成保存 50次 (PL0301) 100次 (PL0302) 200次 (PL0303) 平衡液室温5ml 10ml 20ml RNaseA(10mg/ml)-20℃150μl 250μl 500μl 溶液P1 4℃15 ml 25 ml 50 ml 溶液P2 室温15 ml 25 ml 50 ml 溶液P3 室温20 ml 35 ml 70 ml 去蛋白液PE 室温16ml 31.5 ml 63 ml 第一次使用前按说明加指定量乙醇 漂洗液WB 室温15 ml 25ml 50ml 第一次使用前按说明加指定量乙醇 洗脱缓冲液EB 室温10ml 15ml 20ml 吸附柱AC 室温50个100个200个 收集管(2ml)室温50个100个200个 本试剂盒在室温储存12个月不影响使用效果。 储存事项: 1.第一次使用时,将试剂盒所带的全部RNase A加入溶液P1后(终浓度100ug/ml) 置于2-8℃保存。如果溶液P1中RNase A失活,提取的质粒可能会有微量RNA 残留,在溶液P1中补加RNase A即可。 2.环境温度低时溶液P2中SDS可能会析出浑浊或者沉淀,可在37℃水浴加热几分 钟,即可恢复澄清,不要剧烈摇晃,以免形成过量的泡沫。 3.避免试剂长时间暴露于空气中产生挥发、氧化、pH值变化,各溶液使用后应及时 盖紧盖子。 产品介绍:

本试剂盒采用改进SDS-碱裂解法裂解细胞,离心吸附柱内的硅基质膜在高盐、低pH值状态下选择性地结合溶液中的质粒DNA,再通过去蛋白液和漂洗液将杂质和其它细菌成分去除,最后低盐、高pH值的洗脱缓冲液将纯净质粒DNA从硅基质膜上洗脱。 产品特点: 1.离心吸附柱内硅基质膜全部采用进口世界著名公司特制吸附膜,柱与柱之间吸附 量差异极小,可重复性好。克服了国产试剂盒膜质量不稳定的弊端。 2.独有的去蛋白液配方,可以高效去除残留的核酸酶,即使是核酸酶含量丰富的菌 株如JM系列、HB101也可以轻松去除。有效防止了质粒被核酸酶降解。 3.快速、方便,不需要使用有毒的苯酚、氯仿等试剂,也不需要乙醇沉淀。获得的 质粒产量高、纯度好,可以直接用于酶切、转化、PCR、体外转录、测序等各种分子生物学实验。 注意事项 1. 所有的离心步骤均在室温完成,使用转速可以达到13,000rpm的传统台式离心机, 如Eppendorf 5415C 或者类似离心机。 2. 提取质粒的量与细菌培养浓度、质粒拷贝数等因素有关。一般高拷贝质粒,建议 接种单菌落于1.5-4.5 ml加合适抗生素的LB培养基,过夜培养14-16个小时,可提取出多达20μg的纯净质粒。如果所提质粒为低拷贝质粒或大于10kb的大质粒,应适当加大菌体使用量,使用5-10 ml过夜培养物,同时按比例增加P1、P2、P3的用量,其它步骤相同。 3. 得到的质粒DNA可用琼脂糖凝胶电泳和紫外分光光度计检测浓度与纯度。OD260 值为1相当于大约50μg/ml DNA。电泳可能为单一条带,也可能为2条或者多条DNA条带,这主要是不同程度的超螺旋构象质粒泳动位置不一造成,与提取物培养时间长短、提取时操作剧烈程度等有关。本公司产品正常操作情况下基本超螺旋可以超过90%。 4. 质粒DNA确切分子大小,必须酶切线性化后,对比DNA分子量Marker才可以知 道。处于环状或者超螺旋状态的的质粒,泳动位置不确定,无法通过电泳知道其确切大小。 5. 洗脱液EB不含有螯合剂EDTA,不影响下游酶切、连接等反应。也可以使用水洗 脱,但应该确保pH大于7.5,pH过低影响洗脱效率。用水洗脱质粒应该保存在-

基因工程原理讲义:基因克隆的质粒载体

第六讲基因克隆的质粒载体 中国科学院遗传与发育生物学研究所 2017年8月

基因克隆的质粒载体 一、导言 1.质粒是一类引人注目的亚细胞有机体 其结构比病毒还要简单,既无蛋白质外壳,也无细胞外生命周期,只能在寄主细胞内增殖,并随着寄主细胞的分裂而被遗传下去。2.质粒的类型多种多样 F质粒:F因子或性质粒(Sex plasmid),它能够使寄主染色体上的基因与F因子(F factor)一道转移到原先不存在该质粒的 寄主受体细胞中去。 R质粒:通称抗药性因子(Resistant factor, R factor),编码一种或数种抗菌素抗性基因,并能将此抗性转移到缺乏该质粒 的适宜的受体细胞中去。 Col质粒:所谓Col质粒,即是一种产生大肠杆菌素的因子,编码控制大肠杆菌素合成的基因。大肠杆菌素可使不带Col 质粒的亲缘关系密切的细菌菌株致死。 3.质粒载体 70年代在实验室构建的一类最普遍使用的基因克隆载体。

二、质粒的一般特性 1.质粒DNA(细菌质粒定义) *1.大肠杆菌的质粒是独立于寄主染色体以外的自主复制的共价、闭合、环形的双链DNA分子(covalently closed circular DNA, cccDNA)。除了酵母的杀伤质粒(Killer plasmid)是RNA质粒外,所有的质粒都是质粒DNA。但是质粒DNA的复制又必须依赖 于寄主提供核酸酶及蛋白质。 *2.质粒DNA分子大小 文献中有3种说法:小的仅有103KD,仅能编码2-3种蛋白质; 大的可达105KD,两者相差上百倍。 1Kb~200Kb (Sambrok et al.) 5Kb~400Kb (Lehninger) MD(megadaltons)=106D (兆道尔顿) 1.5Kb≈1MD *3.质粒DNA与寄主染色体DNA间的关系 一般情况下,质粒DNA可持续地处于寄主染色体外的游离状

质粒提取

1.菌液接种到500ml培养基中,加抗生素至工作浓度,37℃,300rpm过夜 2.4000rpm,15min离心菌液收集菌体。 3.用20ml solutionⅠ溶解菌团,充分打散混合均匀。 4.称取0.1g溶菌酶加入菌液,室温放置5min。 5.加入40ml solution Ⅱ,轻轻混合至澄清,冰上放置5min。 6.加30ml solution Ⅲ,轻轻混匀,冰浴10min。 7.4000rpm,20min,离心后将上清液倒到200ml量筒里面。 8.加入0.6倍体积的异丙醇混匀并室温放置10min。10000rpm离心15min。 9.用6.5ml的TE重悬沉淀,转移到4个EP管中,13000rpm 离心5min。 10.上清转移到15ml的离心管中,加7.2gCsCl和 200ul的10mg/ml的EB,混匀。 11.在超速离心管中加样并封口。60000rpm 10℃离心16h。 12.用一个注射器在超速离心管中上面戳一个孔,留下针头,并用另外一个注射 器从红色质粒带旁边管壁戳进去,吸取1-1.5ml,装入新的离心管中。 13.加5ml TE饱和丁醇,混匀后静置各相分离后去掉上层桃红色丁醇,重复这一 步,直到下层水相中没有桃红色。转移下层水相到EP管中。 14.加入1/10体积5M的Nacl和2倍体积的无水乙醇。在-20℃下放置20min。 15.13000rpm,10min离心后去上清,重悬沉淀于1ml的TE然后转移至EP管。 16.用1倍体积的25/24/1的酚/氯仿/异戊醇抽提两次。 17.每管加1/10体积的2.5M的乙酸钠和2倍体积的乙醇, -20℃下放置20min。 13000rpm离心10min,然后用70%的乙醇轻轻润洗并晾干EP管。 18.重悬于1ml TE中,并在OD260下测量浓度。

质粒提取原理及步骤

For personal use only in study and research; not for commercial use 质粒提取原理及步骤 一、导论 已经提出过许多方法用于从细菌中提纯质粒DNA,这些方法都含有以下3个步骤:1. 细菌培养物的生长。 2. 细菌的收获和裂解 3. 质粒DNA的纯化。 (一)细菌培养物的生长 从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长),然后从中纯化质粒,质粒的提纯几乎总是如此。现在使用的许多质粒载体(如pUC系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准LB 培养基中生长到对数晚期,就可以大量提纯质粒。此时,不必造反性地扩增质粒DNA。然而,较长一代的载体(如pBR3 22)由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。这样,像pBR322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不

同,前者大为增高。多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml)已成为标准的操作、用该方法提取的质粒

DNA量,对于分子克隆中几乎所有想象到的工作任务。 (二)细菌的收获和裂解 细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。 1)大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。 2)可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形成完全天然的超螺旋分子。 3)一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。 4)当从表达内切核酸酶A的大肠杆菌菌株(endA+株,如HB101) 中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。 5)目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。 (三)质粒DNA的纯化

脂质体转染实验原理与操作步骤总(精)

脂质体转染的实验原理与操作步骤大全 日期:2012-06-25 来源:互联网作者:青岚点击:3644次 摘要: 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等, 理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等, 本文主要介绍细胞转染常用的方法 -脂质体转染的原理和操作步骤等。 找产品,上生物帮 >> >> 细胞转染的方法主要包括:电穿孔法、显微注射、基因枪、磷酸钙共沉淀法、脂质体转染法、多种阳离子物质介导、病毒介导的转染等, 理想的细胞转染方法是具有高转染效率、对细胞的毒性作用小等,本文主要介绍细胞转染常用的方法 -脂质体转染的原理和操作步骤等。 脂质体 (lipofectin regeant, LR 试剂是阳离子脂质体 N-[1-2, 3-Dioleyoxy , Propyl]-n, n , n-Trimethylammonium Chloride(DOTMA和 Dioleoyl photidye-thanolamine(DOPE的混合物 [1:1(w/w]。它适用于把 DNA 转染入悬浮或贴壁培养细胞中 ,是目前条件下最方便的转染方法之一。转染率高,优于磷酸钙法,比它高 5~100倍,能把 DNA 和 RNA 转染到各种细胞。 用 LR 进行转染时, 首先需优化转染条件, 应找出该批 LR 对转染某一特定细胞适合的用量、作用时间等,对每批 LR 都要做:第一,先要固定一个 DNA 的量和DNA/LR混合物与细胞相互作用的时间, DNA 可从1~5μg和孵育时间 6小时开始,按这两个参数绘出相应 LR 需用量的曲线,再选用 LR 和 DNA 两者最佳的剂量,确定出转染时间 (2~24小时。因 LR 对细胞有一定的毒性,转染时间以不超过 24小时为宜。

质粒DNA提取方法与原理

质粒提取的原理、操作步骤、各溶液的作用 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA 发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA 的断裂会带来麻烦。 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是

质粒提取操作步骤

操作步骤: 本实验方法适用于从1-10ml过夜培养的大肠杆菌菌液中提取质粒。提取量受菌株、质粒拷贝数、菌液体积和培养时间、培养基类型等因素的综合影响。 1.收菌:将过夜培养(37℃,12-16小时)的菌液于室温≧10,000g 离心1-2分钟,彻底弃除上清。 注意:高拷贝质粒建议使用≦5ml菌液;菌液用量过大不仅不能增加质粒产量,反而会因裂解不完全或杂质封闭硅胶膜而降低产量;培养时间不宜过长,否则会增加开环结构质粒的比例。。 2.重悬:加入250μl含RNase A的细胞悬浮液(S1),充分混悬震荡 或用枪头反复抽打使细菌彻底分散悬浮。 3.裂解:加入250μl细胞裂解液(S2),轻轻上下颠倒混合5次,室 温静置1-5分钟,待细菌充分裂解,溶液变半透明。 注意:避免剧烈震荡导致基因组DNA裂解,裂解时间不能超过5分钟。 4.中和:加入350μl中和缓冲液(S3),轻轻上下颠倒混合5次,充 分混匀,避免剧烈震荡。室温下≧12,000g离心10分钟。 5.DNA结合:小心吸取上清,转移到插入收集管的离心吸附柱内,室 温下≧12,000g离心1分钟,弃除收集管中的废液,将离心吸附柱重新插回收集管中。 6.清洗:加入500μl漂洗液(WB,请确认已加入乙醇!)于离心吸附 柱中,室温下≧12,000g离心30秒,弃除收集管中的废液,将离心吸附柱重新插回收集管中。 7.再次清洗:加入500μl漂洗液(WB)于离心吸附柱中,室温下≧ 12,000g离心30秒,弃除收集管中的废液,将离心吸附柱重新插

回收集管中。将离心吸附柱开盖再次离心2分钟,彻底除去残余漂洗液。 8.洗脱:小心取出离心吸附柱,将其套入一个新的1.5ml灭菌离心 管中。向硅胶吸附膜的中央加入100μl洗脱缓冲液(EB),室温放置1分钟后,≧12,000g离心1分钟收集质粒DNA。 注意:为提高质粒浓度,最低可使用30μl的EB溶液,离心收集后壳将洗脱的质粒溶液再次加入离心吸附柱中重复洗脱;使用100μlEB溶液则无需二次洗脱;对6kb以上的质粒,可使用预先加热至55℃的EB溶液洗脱以提高产量;EB溶液不含EDTA,故不会影响荧光测序等后续反应;如必须使用无菌去离子水洗脱,需注意其pH值是否接近中性,否则应使用NaOH溶液将pH值调节至7.0-8.5之间。 9.储存:弃除离心吸附柱,纯化的质粒可直接用于后续反应或于 -20℃长期保存。 注意:经检测,本试剂盒从endAˉ菌株(如DH5α,TOP10,XL1-blue等)中提取的质粒反复冻融20次无降解;如需在4℃长期保存或者保存从endA+菌株(如JM109,HB101,BL21等)中提取的质粒,可向每100μl质粒溶液中加入11μl的10×TE溶液,但含EDTA的质粒溶液不可用作荧光测序模板。

细胞转染的操作步骤

细胞转染的操作步骤 转染,是将外源性基因导入细胞内的一种专门技术。随着基因与蛋白功能研究的深入,转染目前已成为实验室工作中经常涉及的基本方法。转染大致可分为物理介导、化学介导和生物介导三类途径。电穿孔法、显微注射和基因枪属于通过物理方法将基因导入细胞的范例;化学介导方法很多,如经典的磷酸钙共沉淀法、脂质体转染方法、和多种阳离子物质介导的技术;生物介导方法,有较为原始的原生质体转染,和现在比较多见的各种病毒介导的转染技术。红外碳硫仪理想细胞转染方法,应该具有转染效率高、细胞毒性小等优点。病毒介导的转染技术,是目前转染效率最高的方法,同时具有细胞毒性很低的优势。但是,病毒转染方法的准备程序复杂,常常对细胞类型有很强的选择性,在一般实验室中很难普及。其它物理和化学介导的转染方法,则各有其特点。 >需要指出的一点,无论采用哪种转染技术,要获得最优的转染结果,可能都需要对转染条件进行优化。影响转染效率的因素很多,从细胞类型、细胞培养条件和细胞生长状态,到转染方法的操作细节,都需要考虑。 一、细胞传代 1. 试验准备:200ul/1mlTip头各一盒(以上物品均需高压灭菌),酒精棉球,废液缸,试管架,微量移液器,记号笔,培养皿,离心管。 2. 弃掉培养皿中的培养基,用1ml的PBS溶液洗涤两次。 3. 用Tip头加入1ml Trypsin液,消化1分钟。用手轻拍培养瓶壁,观察到细胞完全从壁上脱落下来为止。 4. 加入1ml的含血清培养基终止反应。 5. 用Tip头多次吹吸,使细胞完全分散开。 6. 将培养液装入离心管中,1000rpm离心5min。 7. 用培养液重悬细胞,细胞计数后选择0.8X106个细胞加入一个35mm培养皿。8. 将合适体积完全培养液加入离心管中,混匀细胞后轻轻加入培养皿中,使其均匀分布。 9. 将培养皿转入培养箱中培养,第二天转染。 二、细胞转染 1. 转染试剂的准备 ①将400ul去核酸酶水加入管中,震荡10秒钟,溶解脂状物。 ②震荡后将试剂放在-20摄氏度保存,使用前还需震荡。 2. 选择合适的混合比例(1:1-1:2/脂质体体积:DNA质量)来转染细胞。在一个转染管中加入合适体积的无血清培养基。加入合适质量的MyoD或者EGFP的DNA,震荡后在加入合适体积的转染试剂,再次震荡。 3. 将混合液在室温放置10―15分钟。 4. 吸去培养板中的培养基,用PBS或者无血清培养基清洗一次。 5. 加入混合液,将细胞放回培养箱中培养一个小时。 6. 到时后,红外碳硫仪根据细胞种类决定是否移除混合液,之后加入完全培养基继续培养24-48小时。三、第二次细胞传代1. 在转染后24小时,观察实验结果并记录绿色荧光蛋白表达情况。 2. 再次进行细胞传代,按照免疫染色合适的密度0.8X10 个细胞/35mm培养皿将细胞重新转入培养皿中。 3. 在正常条件下培养24小时后按照染色要求条件固定。

质粒抽提原理和详细操作步骤

质粒抽提,实验室必备技能之一 质粒 质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA 分子。 质粒抽提 从细菌中分离质粒DNA的方法包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用强碱液、加热或溶菌酶(主要针对革兰氏阳性细菌)可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和 TritonX-100(一般很少使用)可使细胞膜裂解。经溶菌酶和SDS或 Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circular DNA,简称cccDNA)的两条链不会相互分开。当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。 质粒抽提最常用的方法是碱裂解法,它具有得率高、适用面广、快速和纯度高等特点。当然,碱裂解法也有缺陷:容易导致不可逆的变性。要降低不可逆的变性,就要控制好碱裂解的时间。 碱裂解法抽提质粒需要用到以下三种溶液 溶液Ⅰ 50 mmol/L 葡萄糖,25 mmol/L Tris-Cl(pH 8.0),10 mmol/L EDTA(pH 8.0),在15 psi 压力下蒸汽灭菌15 min,4℃保存。 溶液Ⅱ 0.2 mmol/L NaOH(从10 mmol/L 贮存液中现用现稀释),10 g/L SDS(室温保存)。 溶液Ⅲ

质粒提取原理和方法

质粒DNA提取的原理及方法 碱裂解法质粒DNA提取原理 质粒DNA提取主要包括以下几个方面:如何将细胞裂解释放质粒DNA,如何将质粒DNA和基因组DNA分离开来,如何去除RNA污染,如何去除蛋白质和其它杂质。 质粒提取方法中,最常用的方法是碱裂解法,它具有得率高,适用面广,快速,纯度高等特点。其原理是: 强碱性条件下,质粒DNA和基因组DNA同时从细胞中释放出来,并发生变性。在pH中性,并有高盐浓度存在的条件下,质粒DNA会迅速发生复性,仍为可溶性状态,染色体DNA之间交联形成不溶性网状结构,在去垢剂SDS作用下,染色体DNA与变性蛋白质和细胞碎片结合形成沉淀,通过离心去除沉淀后,再用酚氯仿抽提进一步纯化质粒DNA,用异丙醇或乙醇沉淀可将之纯化出来。 BIOMIGA公司质粒DNA纯化系列试剂盒,采用碱裂解法质粒提取原理,在高盐环境下,采用硅胶膜特异性的吸附质粒DNA,而蛋白质不被吸附,最后用低盐洗脱液将DNA从膜上洗脱下来,方法简单,快速,质量好,收获量高。 影响质粒提取的因素 影响质粒提取的因素有很多种,如质粒拷贝数,宿主菌株的种类,细菌的培养时间、培养基种类、培养条件等等。 质粒拷贝数 质粒DNA最终收获量取决于质粒的拷贝数和质粒的大小。BIOMIGA 公司质粒DNA提取系列试剂盒,操作步骤适用于高拷贝数质粒的纯化,对于低拷贝质粒纯化提取,应加大起始菌液量的体积,并且相应地增加各种缓冲液的用量。 下表给出一些常用质粒载体的拷贝数: 质粒种类 复制起点 拷贝数 1 mL菌液质粒DNA收获量(μg) pSC101 pSC101 5 pACYC P15A

10-12 pSuperCos pMB1 10-20 pBR322 pMB1 15-20 pGEMR Muted pMB1 300-400 6-7 pBluescriptR ColE1 300-500 6-8 pUC Muted pMB1 500-700 8-12 宿主菌株 宿主菌株的种类将会影响质粒的收获量。含内源核酸酶的宿主菌株,如JM101, JM110, HB101, TG1以及它们的衍生菌株,通常因为内源核酸酶的存在,或者在提取过程中释放出来的核酸酶的作用下,将会显著影响最终收获量,或者纯化到的质粒容易降解,推荐客户将质粒转化至不含内源核酸酶的宿主菌株中,如Top10, DH5a进行质粒纯化。 如果从含内源核酸酶的宿主菌株中纯化质粒DNA,请用试剂盒附送的核酸酶去除溶液,去除核酸酶的污染。或选用HP系列试剂盒进行质粒的纯化。 下表给出一些常用的宿主菌株种类:

Hieff TransTM脂质体核酸转染试剂说明书

Hieff Trans TM脂质体核酸转染试剂说明书 产品描述 Hieff Trans TM脂质体核酸转染试剂是一种多用途的脂质体转染试剂,适用于DNA、RNA 和寡核苷酸的转染,对大多数真核细胞具有很高的转染效率。其独特的配方使其可直接加入培养基中,血清的存在不会影响转染效率,这样可以减少去除血清对细胞的损伤。转染后不需要除去核酸-Hieff Trans TM复合物或更换新鲜培养基,也可在4~6小时后除去。 Hieff Trans TM以无菌的液体形式提供。通常情况下对于 24 孔板转染,每次用1.5μl左右,则1ml Hieff Trans TM约可做660次转染;对于6孔板,每次用6μl左右,则1ml Hieff Trans TM约可做160 次转染; 运输与保存方法 冰袋(wet ice)运输。产品4oC保存,一年有效。不可冷冻! 注意事项 1)Hieff Trans TM脂质体核酸转染试剂要求细胞铺板密度较高,以90%-95%为佳,这有助于减少阳离子脂质体细胞毒性造成的影响;如果你研究的基因要求比较长的表达时间,比如细胞周期相关基因,或者细胞表面蛋白,最好选择细胞铺板密度要求较低的转染试剂,不适合用脂质体核酸转染试剂。 2)Hieff Trans TM脂质体核酸转染试剂可用于有血清培养基的转染,并且转染前后不需要换培养基。但是,制备转染复合物时要求用无血清培养基稀释DNA和转染试剂,因为血清会影响复合物的形成。另外,要检测所用的无血清培养基与脂质体核酸转染试剂的相容性,已知CD293, SFMII, VP-SFM 就不相容。 3)转染的时候培养基中不能添加抗生素。 4)使用高纯度的DNA或RNA有助于获得较高的转染效率,质粒中的内毒素是转染的大敌。 5)阳离子脂质体应该在4度保存,要注意避免多次反复长时间开盖,因为可能会导致脂质体氧化而影响转染效率。 6)初次使用应优化DNA浓度和阳离子脂质体试剂量以得到最大的转染效率。DNA 和转染试剂的比例,通常推荐是1:2-1:3,比如24孔板内接种0.5-2×105个细胞,使用0.5 μg DNA 和1-1.5 μl 转染试剂。通过调整DNA/Hieff Trans TM脂质体核酸转染试剂比例优化转染效率,保证细胞密度大于90%,DNA(μg): Hieff Trans TM(μl)比值在1:0.5-1:5。

相关主题
文本预览
相关文档 最新文档