当前位置:文档之家› mosher定绝对构型

mosher定绝对构型

mosher定绝对构型

制备(R)-MTPA酯:待测样品加入(S)-(-)-MTPA chloride

制备(S)-MTPA酯:待测样品加入(R)-(+)-MTPA chloride

归属核磁数据,计算?δ = (S)-MTPA-(R)-MTPA

由于MTPA酯中苯环的屏蔽效应,叔醇左右两侧的核磁必然发生变化。将?δ负值基团代入下图左侧,?δ正值基团代入下图右侧,根据基团优先顺序判断顺时针或逆时针方向,再反之则为R/S结果(图中H朝外)。

药物分析第七版习题及部分答案(1)

第一章药物分析与药品质量标准 (一)基本概念 药物( drugs) 药品( medicinal products) 药物分析(pharmaceutical analysis)药品特性是(二)药品标准 药品标准和国家药品标准 药品标准的内涵包括:真伪鉴别、纯度检查和品质要求三个方面,药品在这三方面的综合表现决定了药品的安全性、有效性和质量可控性。 凡例( general notices)、正文( monograph。)、附录(appendices) (三)药品标准制定与稳定性试验 药品稳定性试验的目的,稳定性试验包括 (四)药品检验工作的基本程序 (五)药品质量管理规范 使药品质量控制和保证要求从质量设计(Quality by Design)、过程控制( Quality by Process)和终端检验(Quality by Test)三方面来实施,保障用药安全。 (六)注册审批制度与ICH ICH协调的内容包括药品质量(Quality,以代码Q标识)、安全性(Safety,以代码S标识)、有效性(Efficacy,以代码E标识)和综合要求(Multidisciplinary,以代码M标识)四方面的技术要求。 三、习题与解答 (一)最佳选择题 D 1.ICH有关药品质量昀技术要求文件的标识代码是 A.E B.M C.P D.Q E.S B 2.药品标准中鉴别试验的意义在于 A.检查已知药物的纯度B.验证已知药物与名称的一致性 C.确定已知药物的含量D.考察已知药物的稳定性E.确证未知药物的结构 A 3.盐酸溶液(9→1000)系指 A.盐酸1.0ml加水使成l000ml的溶液B.盐酸1. 0ml加甲醇使成l000ml的溶液 C.盐酸1. 0g加水使成l000ml的溶液D.盐酸1. 0g加水l000ml制成的溶液 E.盐酸1. 0ml加水l000ml制成的溶液

2020年整理各种糖的结构.doc

第一章糖类 一.糖的分布及其重要性: 分布 (1)所有生物的细胞质和细胞核含有核糖 (2)动物血液中含有葡萄糖 (3)肝脏中含有糖元 (4)植物细胞壁由纤维素所组成 (5)粮食中含淀粉 (6)甘蔗,甜菜中含大量蔗糖 重要性 (1)水+CO2 碳水化合物 (2)动物直接或间接从植物获取能量 (3)糖类是人类最主要的能量来源 (4)糖类也是结构成分 (5)纤维素是植物的结构糖 二.糖的化学概念 1.定义糖类是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称光合作用

三.糖的分类 上一页下一页 第一节单糖 一.葡萄糖的分子结构 (一)葡萄糖的化学组成和链状结构 1.葡萄糖能与费林氏(Fehling)试剂或其他酸试剂反应。证明葡萄糖分子含有 2.葡萄糖能与乙酸酐结合,产生具有五个已酰基的衍生物。证明葡萄糖分子含有五个-OH 3.葡萄糖经钠汞齐作用,被还原成一种具有六个羟基的山梨醇,而山梨醇是由六个碳原子构成的直链醇。 证明了葡萄糖的六个碳原子是连成一直线的链式结构:

上一页 下一页 (二) 葡萄糖的构型 构型--指一个分子由于其中各原子特有的固定的空间排列, 而使该分子所具有的特定的立体化学形式。 1. 单糖的D 及 L 型。 (1) 不对称碳原子--连接四个不同原子或基团的碳原子。 差向异构体(epimers) 相同点: (1)全含六个碳原子 (2)五个-OH ,一个CHO (3)四个不对称的碳原子 不同点: 1.基团排列有所不同 2.除了一个不对称C 原子不同外,其余结构部分相同 上一页 下一页 下一页

表示法:球棒模型,投影式,透视式。 (2) D . L- 型的决定。规定:OH在甘油醛的不对称碳原子的右边者[即与- CH2OH基邻近的不对称碳原子(有*号)的右边。]称为D-型,在左边者称L-型。 水面键被视 为垂直放置 在纸平面之 前,垂直键则 在纸平面之 后 L-甘油醛 D-甘油醛D-型及L-型甘油醛,是两类彼此相似但并不等同的物质,只要将它们重叠起来,即可证明它们并非等同而是互为镜像,不能重叠,这两类化合物称为一对"对映体"。 2.旋光性。 L--旋光管的长度。以分米表示。 C--浓度。即在100ml溶液中所含溶质的克数。 α 是在钠光灯(D线,λ:589.6与589.0nm)为光源,温度为t,管长为L,浓度为c时所测得的旋光度。[α]-为上述条件下所计得的旋光率。

PAL-1糖度计使用说明

PAL-1糖度计使用说明 一、调零 1. 准备蒸馏水或自来水; 2. 清洁棱镜表面; 3. 滴约0.3ml的水至棱镜表面; 4. 按“START”键,显示器上箭头闪烁三次后将显示Brix值; 5. 若显示0.0%,表明调零已成功; 6. 若显示的不是0.0%,按”ZERO”键重新调零; 7. 仪器显示0000,调零完成.用软布或纸巾擦干净棱镜上的水.此时可以进行测样了. 二、测试样品 1. 清洁棱镜表面; 2. 滴约0.3ml的被测样品至棱镜表面; 3. 按“START”键; 4. 显示器显示Brix值; 5. Brix值将持续显示一分钟.若要关机,按住START键2秒以上; 6. 擦去样品,滴些水至棱镜再擦干. 注: 添加样品至棱镜表面时不要用金属的勺,以免刮花棱镜表面. 若样品温度与棱镜表面的温度不一样时,应先让样品放置在棱镜表面一段时间再测量. 三、错误信息 AAA:调零错误。 1.调零时,棱镜表面未放蒸馏水。 2.调零时,棱镜表面放的是其它溶液而不是蒸馏水。

LLL:样品错误。 1.测试时,未放样品。2.电池能量低. HHH:超出量程 样品测量值高于53%(PAL-1)←:温度错误 棱镜表面温度低于10

℃或高于40℃ 日常保养: 1. 测量完毕,用纸巾擦拭棱镜表面的样品,再滴几滴水至棱镜表面,用纸巾清洁棱镜表面及样品台,注意不要太用力,或者使用不够柔软的纸张和布,以免划伤棱镜的表面。 2:仪器在5分钟内未按任何键,它会自动进入待机状态,显示器关闭,属于正常情况。3:在测量时应避免阳光直射棱镜表面。 4:电池如果用尽电力,应该及早更换,避免漏液。 5:可以直接用水龙头的缓慢流水直接短时间(10秒以内)冲洗,但是不能在水中浸泡。6:避免跌落,碰坏,安装电池要特别注意,使用硬币,不要使用螺丝批,避免将电池盖弄花或者使螺纹损坏,失去固定作用。 7:塑料壳体,避免使用有机溶剂。 .

糖的构型及其画法【参考借鉴】

一、单糖的结构 表示单糖结构式的三种方法:Fischer 投影式、Haworth 投影式和优势构象式 1、葡萄糖(Fischer 投影式)D ,L 表示相对构型 结构式中,位号最大、离羰基最远的手性碳原子的羟基在右侧为D 型;羟基在左侧的为L 型。 CHO OH H H HO OH H OH H CH 2OH 5 D-葡萄糖 CHO OH H H HO OH H H HO CH 2OH 5 L-葡萄糖 2、Fischer 投影式不能表示单糖在水溶液中的真实存在形式,因此有了Haworth 投影式。 Haworth 投影式中,C4位羟基在面下为D 型,在面上则为L 型 单糖成环后形成了一个新的手性碳原子,形成一对端基差向异构体,有α、β二种构型。 端基碳上的羟基与C4羟基在同侧称α型,异侧β型 O OH H H OH OH H H OH CH 2OH O H OH H OH OH H H OH CH 2OH β-D-葡萄糖 α-D-葡萄糖 3、虽然Haworth 式表示方法较Fischer 式有所改进,但它仍然是一种简化了的方式,尚不能完全表达糖的真实存在状态。经实验证明葡萄糖在溶液或固体状态时其优势构象是椅式 当C 4在面上,C 1在面下,称C1式(通常绝大多数单糖的优势构象是C1式) 当C 4在面下,C 1在面上,称1C 式

O 1 2 3 4 51C 式 O 1 2 3 4 5C1式 对于β-D 型和α-L 型葡萄糖,当优势构象为C1式时,C 1-OH 在环的面上,处于横键上,1C 式时,在竖键 O O 对于α-D 型和β-L 型葡萄糖,当优势构象为C1式时,C 1-OH 在环的面下,处于竖键上,1C 式时,在横键 O O 竖键和横键的具体写法:1、横键与环上的键隔键平行;2、横键与竖键在环 的面上面下交替排列。 例: (E)-2,3,5,4′-四羟基二苯乙烯-2-O-β-D -葡萄糖苷 HO HO O O HO OH OH OH OH 单糖的绝对构型如何测定 1、GC 法 将单糖与手性试剂反应,(相当于在糖中引入一个新的手性中心)然后通过GC 比较与标准单糖D 和L 型单糖衍生物的比移值,比移植相同的即为构型相同,反之亦然。 2、HPLC 法 3、手性柱色谱法

手持糖度计的原理及使用方法

手持糖度计的原理及使用方法(图) 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪, 手持糖度计的工作原理 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称水果糖度计,数字折射仪,数显糖度计,数显浓度计,数显折光仪,数字折射计,数字式折射仪,数显糖量计,浓度计,通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。 手持糖度计一般是圆柱形的。 二、手持糖度折光仪使用说明 (一)、仪器结构 ①、折光棱镜②、盖板③、校准螺栓④、光学系统管路⑤、目镜(视度调节环)(二)、手持糖度折光仪使用方法 打开盖板②,用软布仔细擦净检测棱镜①。取待测溶液数滴,置于检测棱镜上,轻轻合上盖板,避免气泡产生,使溶液遍布棱镜表面。将仪器进光板对准光源或明亮处,眼睛通过目镜观察视场,转动目镜调节手轮⑤,使视场的蓝白分界线清晰。分界线的刻度值即为溶液的浓度。 (三)、手持糖度折光仪校正和温度修正 仪器在测量前需要校正零点。取蒸馏水数滴,放在检测棱镜上,拧动零位调节螺钉③,使分界线调至刻度0%位置。然后擦净检测棱镜,进行检测。有些型号的仪器校正时需要配置标准液,代替蒸馏水。 另一种方法是(只适合含糖量之测定):利用温度修正表,在环境温度下读得的数值加(或减)温度修正值,获得准确数值。 (四)、手持糖度折光仪注意事项 仪器系精密光学仪器,在使用和保养中应注意以下事项:

构象与构型有何区别

2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化;构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 2.什么叫内聚能密度?它与分子间作用力的关系如何?如何测定聚合物的内聚能密度? 答:(1)内聚能密度:CED定义为单位体积凝聚体汽化时所需要的能量,单位: (2)内聚能密度在300以下的聚合物,分子间作用力主要是色散力;内聚能密度在400 以上的聚合物,分子链上有强的极性基团或者分子间能形成氢键;内聚能密度在 300-400之间的聚合物,分子间相互作用居中。 测定方法:黏度法和溶胀度法,测定溶度参数的方法可用于测定内聚能密度 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态及其形成条件?各种结晶形态的特征是什么? 答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体; (2)形态特征:(括号中为形成条件) 单晶(浓度<0.01%的聚合物溶液缓慢冷却):分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右; 树枝晶(结晶温度较低或溶液浓度较大或分子量过大):许多单晶片在特定方向上的择优生长与堆积形成树枝状; 球晶(高聚物浓溶液或熔体冷却结晶时):呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环; 纤维状晶(存在流动场):晶体呈纤维状,长度大大超过高分子链的长度; 串晶(溶液温度较低,边搅拌边结晶):在电子显微镜下,串晶形如串珠; 柱晶(高聚物熔体在应力作用下冷却结晶):中心贯穿有伸直链晶体的扁球晶,呈柱状;伸直链晶体(高聚物在高温高压下结晶时):高分子链伸展排列晶片厚度与分子链长度相当。

ATAGO糖度计参数说明

ATAGO糖度计技术参数说明 PAL系列迷你数显折射计 仅手掌大小,经济实用、操作简便。注重产品的洁净设计,通过减少非必需附件而减少细菌可能繁殖的环境,并具备完全流水冲洗的性能,适应各行业的卫生要求。符合HACCP 标准。同时,具备E.L.I.(外部光线阻止)功能,保证室外测量的精度。 ·防水防尘性能IP65 ·E.L.I.(外部光线阻止)功能 ·清水归零,操作简便 ·小巧轻便,仅重100g ·自动温度补偿功能 ·设计简洁,可单手操作 ·配便携式挂钩,便于携带 手持式糖度计PR-α系列 ·精度提高至Brix±0.1%,可同时测量果汁、食品、饮料等的糖度及化工液体浓度如:切削油、清洗液、不冻液等 ·可设置客户专用标度,客户自己预设系数(浓度=Brix X系数)就可直接读出此样品浓度 ·采用E.L.I.,可防止强光下的误测量,保证稳定的测量结果 ·清水较零,自动温度补偿 ·响应时间3秒 ·样品体积0.1ml ·防护等级IP64

自动折射仪 RX-5000α RX-5000α( alpha ) 是能够内部设定测量温度的自动折射仪,能够快速地测量折射指数、糖度或各式液体的浓度,以下为本产品的特性: ?因为RX-5000α ( alpha ) 具有电热模块以控制温度,所以不需要恒温水箱。 ?在样本达到目标温度之后,测量会自动开始。 ?在目标温度下,折射指数与糖度会快速显示 ?可取得高糖度± 0.03% 与折射指数± 0.00004 准确度。 ? RX-5000α ( alpha ) 会显示您所设的控制范围的高低界线。 ?如果测量值与您的标准液体值或其它折射仪测量的不同,将能做部分调整。 ?根据您的样本,能够输入60种使用者标度。 ? RX-5000α ( alpha ) 能够显示最少30个最近的测量值。

各种糖的结构

第一章糖类 一. 糖的分布及其重要性: 分布 (1所有生物的细胞质和细胞核含有核糖 (2)动物血液中含有葡萄糖 (3)肝脏中含有糖元 (4)植物细胞壁由纤维素所组成 (5)粮食中含淀粉 (6)甘蔗,甜菜中含大量蔗糖重要性 (1水+CO2 ?碳水化合物 (2)动物直接或间接从植物获取能量 (3)糖类是人类最主要的能量来源 (4)糖类也是结构成分 (5)纤维素是植物的结构糖 二. 糖的化学概念 1 ?定义糖类是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称 光合作用 1CHjOH H—C—0H 1 I tID—i:—口 T H - *:—— 1日一4:—0H 1 葡萄糖果糖 (己醛糖〕(已伺糖)三. 糖的分类 上一页 第一节单糖 一.葡萄糖的分子结构 (一)葡萄糖的化学组成和链状结构 1.葡萄糖能与费林氏(Fehling )试剂或其他酸试剂反应。证明葡萄糖分子含有 2.葡萄糖能与乙酸酐结合,产生具有五个已酰基的衍生物。证明葡萄糖分子含有五个 3.葡萄糖经钠汞齐作用,被还原成一种具有六个羟基的山梨醇,而山梨醇是由六个碳原子构成的直链醇。 下一页—OH

证明了葡萄糖的六个碳原子是连成一直线的链式结构: CHIO I H —C —OH T H3—C —H I H —C —6H I H —C —0H I M —C —0W I 差向异构体(epimers) 相同点: (1) 全含六个碳原子 ⑵五个—0H 一个CHO (3)四个不对称的碳原子 不同点: 1. 基团排列有所不同 2. 除了一个不对称C 原子不同外,其余结构部分相同 O 半乳糖 广丙穗 上一页 下一页 分为 甘诉糖 -J 葡萄糖 / V

7 对映异构问题参考答案

7 对映异构问题参考答案 问题1 某纯液体试样在10cm 的盛液管中测得其旋光度为+30°,怎样用实验确证它的旋光度是+30°而不是-330°,也不是+390°? 讨论:通过旋光度测定实验,可以利用物质旋光度αλt 与该物质质量浓度ρB 或管长l 成正比的关系确定。例如,物质质量浓度ρB 增大为原来的2倍,若测得其旋光度为+60°,则说明第1次测得的旋光度不是-330°。再使物质质量浓度ρB 减小为原来的1/2,若测得其旋光度为+15°,则说明第1次测得的旋光度不是+390°。因此最终确定测得其旋光度为+30°。对于纯液体,则可通过2次改变旋光管的长度进行测试即可确定。 问题2 构型相同的旋光化合物,它们的旋光方向就一定相同吗?反之又如何?构型与旋光方向之间有什么关系? 讨论:两化合物构型相同时,它们的旋光方向不一定相同,反之亦然。手性化合物的旋光方向和构型是两个不同的概念。因此,手性化合物在构型上的联系才是本质的联系。 构型的命名是人为规定的,但是不论按照什么命名系统规定,都是为了表示分子中的原子在空间的排布方式。现在所涉及的问题都是绝对构型,实际上也就是分子的真实立体结构。旋光方向和旋光度是它们显示出来的物理性质。化合物的任何性质都是由它们的组成和结构决定的,这是化学思维中的一条最重要的基本原理。因此,旋光度和旋光方向,必然是由化合物的结构决定的。 问题3 请用实例解释非对映异构现象,说明非对映异构与对映异构的异同。 讨论:以氯代苹果酸为例进行讨论,其Fischer 投影式如下: H OH H Cl HO H Cl H H OH Cl H HO H H Cl COOH COOH COOH COOH COOH COOH COOH COOH (1)(2) (3) (4) 对映体对映体m.p 173℃ 173℃167℃167℃D 20[α]-7.1°+7.1° -9.3° +9.3° (±) m.p 145℃ m.p 157℃ 外消旋体外消旋体非对映体 对映异构是指分子式、构造式相同,构型不同,互呈镜像对映关系的立体异构现象。对 映异构体之间的物理性质和化学性质基本相同,只是对平面偏振光的旋转方向(旋光性能)等不同。 不呈物体与镜象关系的立体异构体叫做非对映体。或者符合如下3点就属于非对映体:⑴构造式相同,⑵不是物像关系,⑶空间关系不同。例如分子中有两个以上手性中心时,就有非对映异构现象。 非对映异构体的特征: 1 物理性质不同(熔点、沸点、溶解度等)。 2 比旋光度不同。 3 旋光方向可能相同也可能不同。 4 化学性质相似,但反应速度有差异。

中药化学习题集第二章糖与苷吴立军

第二章糖和苷 一、写出下列糖的Fisher投影式和Haworth投影式 (寡糖只写Haworth投影式) 1.β-D-葡萄吡喃糖 2.α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖 4.α-L-阿拉伯呋喃糖 5.β-D-木吡喃糖 6.β-D-核呋喃糖 7.β-D-半乳吡喃糖8.β-D-果呋喃糖 9.α-L-呋吡喃糖10.β-D-葡萄吡喃糖醛酸11.β-D-半乳吡喃糖醛酸12.新橙皮糖 13.芦丁糖14.蔗糖 15.樱草糖16.麦芽糖 17.槐糖18.海藻糖 19.棉子糖20.槐三糖 投影式如下: 1.β-D-葡萄吡喃糖 2.α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖 4.α-L-阿拉伯呋喃糖 5.β-D-木吡喃糖 6.β-D-核呋喃糖 7.β-D-半乳吡喃糖8.β-D-果呋喃糖

9.α-L-呋吡喃糖10.β-D-葡萄吡喃糖醛酸11. β-D-半乳吡喃糖醛酸12.新橙皮糖 13.芦丁糖14.蔗糖 15.樱草糖

16.麦芽糖 17.槐糖18.海藻糖 19.棉子糖 20.槐三糖

二、名词解释 1. 1C和C1构象式 2.N和A构象式 3.1C4和4C1构象式 4.β构型、α构型 5.D构型、L构型 6.相对构型、绝对构型 7.吡喃型糖、呋喃型糖8.低聚糖、多糖 9.Molish反应10.还原糖、非还原糖 11.乙酰解反应12. 酶解反应 13.β-消除反应14.Smith降解(过碘酸降解)15.苷化位移16.端基碳 17.前手性碳18.Bio-gel P 19.苷化位移中的同五异十其余七 解析: 1、2、3 吡喃型糖在溶液或固体状态时,其优势构象是椅式,以C2、C3、C5、O四个原子构成的平面为准,当C4在面上,C1在面下时,称为4C1,简称为C1式或N式;当C4在面下,C1在面上时,称为1C4,简称为1C式或A式。 4、α、β表示相对构型,当C1-OH和C5(六元氧环糖-吡喃糖)或C4(五元氧环糖-呋喃糖)上的大取代基为同侧的为β型,为异侧的为α型。 5、D、L表示绝对构型,在Haworth式中,看不对称碳原子C5(吡喃糖)或C4(呋喃糖)上大取代基的方向,向上的为D,向下的为L。 6、相对构型:与包含在同一分子实体的任何其他手性中心相关的任何手性中心的构型。 绝对构型:当一个构型式按规定表达一个立体异构体时,若确定的立体异构体的真正构型与构型式所表达的构型相同时,则这种构型式所表示的构型称为绝对构型。 7、呋喃型糖:糖在形成半缩醛或半缩酮时,五元氧环的糖称为呋喃型糖。 吡喃型糖:糖在形成半缩醛或半缩酮时,六元氧环的糖称为吡喃型糖。 8、低聚糖:由2-9个单糖通过苷键结合而成的直链或支链聚糖称为低聚糖。 多糖:由十个以上单糖通过苷键连接而成的糖称为多糖。 9、Molish反应:糖在浓H2SO4(硫酸)或浓盐酸的作用下脱水形成糠醛及其衍生物与α-萘酚作用形成紫红色复合物,在糖液和浓H2SO4的液面间形成紫环,因此又称紫环反应。 10、还原糖:具有游离醛基或酮基的糖。 非还原糖:不具有游离醛基或酮基的糖。 11、乙酰解反应:乙酰解所用的试剂是醋酐和酸,反应机制与酸催化水解相似,但进攻的基团是CH3CO+而不是质子,乙酰解反应可以确定糖与糖的连接位置。 12、酶解反应:酶催化水解具有反应条件温和,专属性高,根据所用酶的特点可确定苷键构型,根据获得的次级苷、低聚糖可推测苷元与糖及糖与糖的连接关系,能够获得原苷元。 13、β-消除反应:在一个有机分子里消去两个原子或者基团的反应。根据两个消去基团的相对位置分类,若在同一个碳原子上,称为1,1消除或者α-消除。如果

糖度计测香蕉中糖分的使用原理

一、糖度计的工作原理 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是 手持式折光仪,也称糖镜、手持式糖度计,通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。手持糖度计一般是圆柱形的。 二、手持糖度折光仪使用说明 (一)、仪器结构 ①、折光棱镜②、盖板③、校准螺栓④、光学系统管路⑤、目镜(视度调节环) (二)、使用方法 打开盖板②,用软布仔细擦净检测棱镜①。取待测溶液数滴,置于检测棱镜上,轻轻合上盖板,避免气泡产生,使溶液遍布棱镜表面。将仪器进光板对准光源或明亮处,眼睛通过目镜观察视场,转动目镜调节手轮⑤,使视场的蓝白分界线清晰。分界线的刻度值即为溶液的浓度。 (三)、校正和温度修正 仪器在测量前需要校正零点。取蒸馏水数滴,放在检测棱镜上,拧动零位调

节螺钉③,使分界线调至刻度0%位置。然后擦净检测棱镜,进行检测。有些型号的仪器校正时需要配置标准液,代替蒸馏水。另一种方法是(只适合含糖量之测定):利用温度修正表,在环境温度下读得的数值加(或减)温度修正值,获得准确数值。 (四)、注意事项 仪器系精密光学仪器,在使用和保养中应注意以下事项: 1.在使用中必须细心谨慎,严格按说明使用,不得任意松动仪器各连接部分,不得跌落、碰撞,严禁发生剧烈震动。 2.使用完毕后,严禁直接放入水中清洗,应用干净软布擦拭,对于光学表面,不应碰伤,划伤。 3.仪器应放于干燥、无腐蚀气体的地方保管。 4.避免零备件丢失。 糖度计测定香蕉中糖分的原理及使用方法 一、目的及原理 利用手持式折光仪测定果蔬中的总可溶性固形物(Total Soluble Solid,TSS)含量,可大致表示果蔬的含糖量。 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。

糖的构型及其画法

一、单糖的结构 表示单糖结构式的三种方法:Fischer 投影式、Haworth 投影式与优势构象式 1、葡萄糖(Fischer 投影式)D,L 表示相对构型 结构式中,位号最大、离羰基最远的手性碳原子的羟基在右侧为D 型;羟基在左侧的为L 型。 CHO OH H H HO OH H OH H CH 2OH 5 D-葡萄糖 CHO OH H H HO OH H H HO 2OH 5 L-葡萄糖 2、Fischer 投影式不能表示单糖在水溶液中的真实存在形式,因此有了Haworth 投影式。 Haworth 投影式中,C4位羟基在面下为D 型,在面上则为L 型 单糖成环后形成了一个新的手性碳原子,形成一对端基差向异构体,有α、β二种构型。 端基碳上的羟基与C4羟基在同侧称α型,异侧β型 O OH H H OH H H OH CH 2OH O H OH H OH H OH CH 2OH β-D-葡萄糖 α-D-葡萄糖 3、虽然Haworth 式表示方法较Fischer 式有所改进,但它仍然就是一种简化了的方式,尚不能完全表达糖的真实存在状态。经实验证明葡萄糖在溶液或固体状态时其优势构象就是椅式 当C 4在面上,C 1在面下,称C1式(通常绝大多数单糖的优势构象就是C1式) 当C 4在面下,C 1在面上,称1C 式 O 1 2 34 51C 式 O 1 2 3 4 5C1式

对于β-D型与α-L型葡萄糖,当优势构象为C1式时,C1-OH 在环的面上,处于横键上,1C式时,在竖键 O O 对于α-D型与β-L型葡萄糖,当优势构象为C1式时,C1-OH 在环的面下,处于竖键上,1C式时,在横键 O O 竖键与横键的具体写法:1、横键与环上的键隔键平行;2、横键与竖键在环的面上面下交替排列。 例: (E)-2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷 HO HO O O HO OH OH OH OH 单糖的绝对构型如何测定 1、GC法将单糖与手性试剂反应,(相当于在糖中引入一个新的手性中心)然后通过GC比较与标准单糖D与L型单糖衍生物的比移值,比移植相同的即为构型相同,反之亦然。 2、HPLC法 3、手性柱色谱法 4、手性检测器法 5、旋光比较法将苷或糖类化合物全水解后,采用各种分离手段得到单体的单糖,然后测定其旋光,通过旋光方向或比旋度确定单糖的绝对构型,缺点就是样品用量大。

手持式糖度计的设计原理及功能特点

手持式糖度计的设计原理及功能特点 手持式糖度计是用于快速测定含糖溶液以及其它非糖溶液的浓度或折射率。广泛应用于制糖、食品、饮料等工业部门及农业生产和科研中。托普云农手持式糖度计适用于酱油,番茄酱等各种酱类(调味料)产品的浓度测量、适用于果酱,糖稀,液糖等含糖分较多产品的糖度测量、适用于果汁,清凉饮料及炭酸饮料的生产线上,品质管理,发货前检验等、适用于水果从种植至销售的过程中,它可适用于测定准确的收采时期,作甜度分级分类。此外,在纺织工业浆料的浓度测定也获得普遍的应用。 手持式糖度计设计原理: 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称糖镜、手持式糖度计,通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。手持糖度计一般是圆柱形的,将待测的糖液放入后面可打开的槽中,抹均匀,关上盖子,然后将糖度计对着光,从前面的孔中看,就可以读数了。 托普云农手持式糖度计又称为手持糖度仪,手持式糖度计采用数字LCD显示,适用于几乎任何果汁、食品与饮料等液体的测量,手持式糖度计测量范围为0-65%,可在3秒之内显示结果。 测糖仪(Sugar Refrectometer)为用于快速测定含糖溶液以及其它非糖溶液的浓度或折射率的折射仪或折光仪((Refractometer) 。

手持式糖度计功能特点: 1、小巧美观,使用方便。 2、轻触式按键,舒适美观。 3、不锈钢样品池。 4、带有棱镜盖板,保护样品,确保样品精度。 5、1节7号电池可供8000次的测量。 6、使用蒸馏水校准。 7、三分钟无操作自动关机,节电。 其他农残及果品仪器:农药残留速测仪、果实硬度计、水果无损检验仪

第三章 糖和苷类化合物习题

第三章糖和苷类化合物 一、填空题 1.糖的绝对构型,在哈沃斯(Haworth)式中,只要看六碳吡喃糖的C5(五碳呋喃糖的C4)上取代基的取向,向上的为()型,向下的为()型。 2.糖的端基碳原子的相对构型是指C1羟基与六碳糖C5(五碳糖C4)取代基的相对关系,当C1羟基与六碳糖C5(五碳糖C4)上取代基在环的()为β构型,在环的()为α构型。 3.麦芽糖酶只能使()水解;苦杏仁酶主要水解()。 4.13C-NMR谱是确定苷元和糖之间连接位置的有效方法。醇类羟基的苷化,可引起苷元α-碳向(),位移β-碳向()位移 5.确定苷键构型的方法主要有三种,即()、()和()。 二、选择题 (一)A型题:每题有5个备选答案,备选答案中只有一个最佳答案。 1.在提取原生苷时,首先要设法破坏或抑制酶的活性,为保持原生苷的完整性,常用的提取溶剂是: A.乙醇B. 酸性乙醇C. 水D. 酸水E. 碱水2.右侧的糖为: A . α-D-甲基五碳醛糖B.β-D-甲基六碳醛糖 E.β-D-六碳酮糖 3.下列糖属于多糖的是 A.半乳糖 B.蔗糖 C.芸香糖 D.果胶 E.槐糖 4.与Molish试剂反应呈阴性的化合物为: A.氮苷B.硫苷C.碳苷D.氰苷E.酚苷 5.Molish反应的阳性特征是: A.上层显红色,下层有绿色荧光B.上层绿色荧光,下层显红色 C.两液层交界面呈紫色环D.两液层交界面呈蓝色环 E.有橙-红色沉淀产生 6.Hakomori 法(箱守法)是: A.在二甲基亚砜(DMSO)溶液中,加入氢化钠,以碘甲烷进行甲基化反应。 B.在氘代氯仿(CDCl3)溶液中,加入氢化钠,以碘甲烷进行甲基化反应。 C.在二甲基亚砜(DMSO)溶液中,加入碳酸钠,以硫酸二甲酯进行甲基化反应。 D.在二甲基甲酰胺(DMF)溶液中,加入氢氧化钡,以氧化银进行甲基化反应。 E.在丙酮(Me2CO)溶液中,加入氢化钠,以碘甲烷和氧化银进行甲基化反应。 7.可用于糖类PC检查的显色剂是: A.α-萘酚-浓硫酸试剂B.茴香醛-浓硫酸试剂C.苯胺-邻苯二甲酸试剂 D.间苯二酚-硫酸试剂E.酚-硫酸试剂

糖和苷--习题

第二章 糖和苷类 一、选择题 (一)A 型题(备选答案中只有1个最佳答案) 1. 下列最容易水解的是 A.2-氨基糖苷 B.2-去氧糖苷 C.2-羟基糖苷 D.6-去氧糖苷 2. 提取原生苷类成分,为抑制酶常用方法之一是加入适量 A.H 2SO 4 B.NaOH C.CaCO 3 D.Na 2CO 3 3. 研究苷中糖的种类宜采用哪种水解方法 A.强烈酸水解 B.Smith 降解法 C.乙酸解 D.全甲基化甲醇解 4. 不同苷原子的苷水解速度由快到慢顺序是 A.S-苷>N-苷>C-苷>O-苷 B.C-苷>S-苷>O-苷>N-苷 C.N-苷>O-苷>S-苷>C-苷 D.O-苷>N-苷>C-苷>S-苷 5. 下列物质中水解产生糖与非糖两部分的是 A.二萜 B.黄酮苷 C.双糖 D.二蒽酮 6、属于碳苷的是( ) H 2C CH CH 2N N N N NH 2 OH O HO O glu CH 2OH H 3CO C CH 3 O O glu C N S O SOK 3 glu A.B C. D. E. 7、下列对吡喃糖苷最容易被酸水解的是( ) A 、七碳糖苷 B 、五碳糖苷 C 、六碳糖苷 D 、甲基五碳糖苷 8、天然产物中, 不同的糖和苷元所形成的苷中, 最难水解的苷是( ) A 、糖醛酸苷 B 、氨基糖苷 C 、羟基糖苷 D 、2, 6—二去氧糖苷 10、羟基化合物与苯甲醛或丙酮等形成的缩合物在下列条件下稳定( ) A 、碱性 B 、酸性 C 、中性 D 、酸碱性中均稳定 11、Smith 裂解法所使用的试剂是( ) A 、NaIO 4 B 、NaBH 4 C 、均是 D 、均不是

立体化学与构象分析

立体化学与构象分析

————————————————————————————————作者: ————————————————————————————————日期:

立体化学 教学目的要求 本章学习立体化学和构象分析 为完全认识一个分子结构,需要了解三个层次的内容: ●构造(constitution ) ●构型(config urat ion) 指分子内原子或基团在空间“固定”排列关系,分为:顺反异构,旋光异构二种。 ●构象(con form ation) 指围绕单键旋转产生的不同的分子形象。 构型和构象在有机合成、天然产物、生物化学等研究领域非常重要。例如六六六有九种顺反异构体,其中只有γ-异构体具有杀虫活性。 人体需要多种氨基酸,其中只有L-型具有活性作用。 手性(chi ral)在医药、农药、食品添加剂、香料等领域需求越来越多。手性液晶材料、手性高分子材料具有独特的理化性能,成为特殊的器件材料。一个新兴的高新技术产业-手性技术(c hirote ch nology )正在悄然兴起。 (一)顺反异构 由于双键或环的存在,使得旋转发生困难,而引起的异构现象。 能垒<10 kcal/mol 。 能垒50 kcal /mol 双键要破坏。 命名:顺、反 (Cis, Sy n-; Trans, Ant i)。 现在用 “Z ”, “E ”表示 Z :Zusammen 二个大的基团都在一侧(相当于顺) E :Entge gen 二个大的基团分在两侧 (相当于反) 例: C C C C C C H 3C CH 3CH 2 2 CH 2CH 2CH 3 CH(CH 3)2 1 7 6 5 3 4

含固量的测定 烘干法糖度计法

含固量的测定: (有二种方法,烘箱法和糖度计法) 1、烘箱法: (1)原理:将一定质量的试样在一定温度下常压干燥一定时间,以加热后的试样质量与加热前试样质量的百分比表示含固量。 (2)测定步聚 ①取三个称量瓶,于(105±2) ℃的烘箱中干燥1.5h后,在干燥器中冷却30min后称量,记为m1。 ②称取1~2g(精确至0.0001g)试样于干燥过的称量瓶中,记为m。 ③轻轻转到称量瓶,使试样均匀分布在称量瓶的底部,称量瓶盖子稍打开,置于(105±2) ℃的烘箱中,打开鼓风机,干燥3h后,将瓶盖盖严,放入干燥器中冷却30min,称重,记为m2。 (3)结果的计算 试样的含固量以质量分数X计,数值用(%)表示,按式(1)计算: m2 -m1 X= ×100% (1) m 式中:m——试样质量的数值。单位为克(g); m1——称量瓶质量的数值。单位为克(g); m2——称量瓶及试样在干燥后质量的数值。单位为克(g)。 取二次平行测定的算术平均值,按GB/T8170-2008修约至0.1%后即为测定结果,两次平行测定结果之差不大于0.3%。 2、糖度计法(快速测定法) (1)原理:利用折射原理测得的溶液糖度与其含固量呈一定的比例关系,通过测定溶液的糖度,按照一定的比例系数可折算出样品的含固量。 (2)测定步骤:测试宜在室温下进行,测定前需将样品平衡至室温。 ①清洁糖度计棱镜表面,在其表面上滴加约0.3mL的水,按照糖度计操作说明书调零。 ②弃去糖度计上的水,擦干棱镜,在其表面滴加约0.3mL的试样,按照糖度计操作说明书测定样品的糖度,至前后两次读书稳定不变,记为样品糖度A。 ③按照数据积累得到的含固量与糖度之间的比例系数n,折算出试样的含固量。 注:因本方法是采用折光原理经行测试,不要将其用于难于水洗样品的测试,否则会污染棱镜表面,测试不准确。 ④结果的计算 试样的含固量以质量分数X计,数值用(%)表示,按式(2)计算: X = n×A ---------- (2) 式中:n——含固量与糖度的折算系数 A——样品的糖度,%

手持糖度折光仪使用说明

手持糖度折光仪使用说明 一、仪器结构 1.棱镜座 2.检测棱镜 3.盖板 4.调节螺丝 5.镜筒和手柄 6.视度调节手轮 7.目镜 折光仪是根据不同浓度的液体具有不同的折射率这一原理设计而成的。它具有快速、准确、重量轻、体积小等优点。 二、使用方法 打开盖板(3),用软布仔细擦净检测棱镜(2)。取待测溶液数滴,置于检测棱镜上,轻轻合上盖板,避免气泡产生,使溶液遍布棱镜表面。将仪器进光板(3)对准光源或明亮处,眼睛通过目镜观察视场,转动目镜调节手轮(6),使视场的蓝白分界线清晰。分界线的刻度值即为溶液的浓度。 三、校正和温度修正 仪器在测量前需要校正零点。取蒸馏水数滴,放在检测棱镜上,拧动零位调节螺钉(4),使分界线调至刻度0%位置。然后擦净检测棱镜,进行检测。有些型号的仪器校正时需要配置标准液,代替蒸馏水。 另一种方法是(只适合含糖量之测定):利用温度修正表,在环境温度下读得的数值加(或减)温度修正值,获得准确数值。附表:糖度读数之温度修正表。 四、注意事项 仪器系精密光学仪器,在使用和保养中应注意以下事项: 1.在使用中必须细心谨慎,严格按说明使用,不得任意松动仪器各连接部分,不得跌落、碰撞,严禁发生剧烈震动。 2.使用完毕后,严禁直接放入水中清洗,应用干净软布擦拭,对于光学表面,不应碰伤,划伤。 3.仪器应放于干燥、无腐蚀气体的地方保管。 4.避免零备件丢失。 手持糖度计的原理及使用方法 文章来源:本站原创 | 发布时间:2009-12-2 21:53:20 | 浏览次数:7 一、糖度计的工作原理 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称糖镜、手持式糖度计,通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。 手持糖度计一般是圆柱形的。 二、手持糖度折光仪使用说明

糖度计使用方法

食品、电子产品、环境、纺织品、建材、机械、动物疾病体外诊断的检测及相关领域的技术咨询、技术服务。销售:实验设备及配件、劳保用品、办公用品、实验化工产品(非危险品)。 一、糖度计的工作原理 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称糖镜、手持式糖度计,通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。 手持糖度计一般是圆柱形的。 二、手持糖度折光仪使用说明 (一)、仪器结构 ①、折光棱镜②、盖板③、校准螺栓④、光学系统管路⑤、目镜(视度调节环)(二)、使用方法 打开盖板②,用软布仔细擦净检测棱镜①。取待测溶液数滴,置于检测棱镜上,轻轻合上盖板,避免气泡产生,使溶液遍布棱镜表面。将仪器进光板对准光源或明亮处,眼睛通过目镜观察视场,转动目镜调节手轮⑤,使视场的蓝白分界线清晰。分界线的刻度值即为溶液的浓度。 (三)、校正和温度修正 仪器在测量前需要校正零点。取蒸馏水数滴,放在检测棱镜上,拧动零位调节螺钉③,使分界线调至刻度0%位置。然后擦净检测棱镜,进行检测。有些型号的仪器校正时需要配置标准液,代替蒸馏水。 另一种方法是(只适合含糖量之测定):利用温度修正表,在环境温度下读得的数值加(或减)温度修正值,获得准确数值。 (四)、注意事项 仪器系精密光学仪器,在使用和保养中应注意以下事项: 1.在使用中必须细心谨慎,严格按说明使用,不得任意松动仪器各连接部分,不得跌落、碰撞,严禁发生剧烈震动。 2.使用完毕后,严禁直接放入水中清洗,应用干净软布擦拭,对于光学表面,不应碰伤,划伤。 3.仪器应放于干燥、无腐蚀气体的地方保管。 4.避免零备件丢失。

糖的构型及其画法

、单糖的结构 表示单糖结构式的三种方法:Fischer 投影式、Haworth 投影式和优势构象 1 、葡萄糖(Fischer 投影式)D, L 表示相对构型 结构式中,位号最大、离羰基最远的手性碳原子的羟基在右侧为 D 型;羟基 在左侧的为L 型 CH 2OH D-葡萄糖 2、Fischer 投影式不能表示单糖在水溶液中的真实存在形式,因此有了 Haworth 投影式。 Haworth 投影式中,C4位羟基在面下为D 型,在面上则为L 型 单糖成环后形成了一个新的手性碳原子,形成一对端基差向异构体,有 a 、B 二种构型 3 、虽然Haworth 式表示方法较Fischer 式有所改进,但它仍然是一种简化 了的方式,尚不能完全表达糖的真实存在状态。经实验证明葡萄糖在溶液或固体 状态时其优势构象是椅式 当C 4在面上,G 在面下,称C1式(通常绝大多数单糖的优势构象是 C1式) 当C 4在面下,C 在面上,称1C 式 CHO H --------- OH CHO HO --------- H —— OH 5 H HO H HO OH —H —OH 5 H CH 2OH L-葡萄糖 端基碳上的羟基与 C4羟基在同侧称 CH 2OH 3 -D-葡萄糖 CH 2OH a -D-葡萄糖

处于横键上,1C 式时,在竖键 然后通过GC 比较与标准单糖D 和L 型单糖衍生物的比移值,比移植相同的即为 构型相同,反之亦然。 2、 H PLC 法 3、 手性柱色谱法 4、 手性检测器法 5、旋光比较法 将苷或糖类化合物全水解后,采用各种分离手段得到单体 对于B D 型和a -L 型葡萄糖 , 对于a -D 型和俟L 型葡萄糖,当优势构象为 C1式时, G-OH 在环的面下, 处于竖键上,1C 式时,在横键 竖键和横键的具体写法:1、横键与环上的键隔键平行; 2、横键与竖键在环 的面上面下交替排列。 例: (E)-2,3,5,4 '-四羟基二苯乙烯-2- O-B -D-葡萄糖苷 1、GC 法将单糖与手性试剂反应, (相当于在糖中引入一个新的手性中心) 5 4 2 1C 式 G-OH 在环的面上, 单糖的绝对构型如何测定

相关主题
文本预览
相关文档 最新文档