当前位置:文档之家› 多糖高级结构研究方法

多糖高级结构研究方法

多糖高级结构研究方法
多糖高级结构研究方法

1. 红外光谱法(IR)

红外光谱在多糖的结构分析上的应用主要是确定糖苷键的构型以及常规官能团。如:多糖化合物在890cm- 1处吸收是β-吡喃糖苷键特征峰,而820 cm- 1和850cm- 1则是α-吡喃糖苷键特征峰。

2.核磁共振法( NMR)

主要用于确定多糖结构中糖苷键的构型以及重复结构中单糖的数目。

3. 原子力显微镜(AFM)

该技术是在扫描隧道显微镜( STM )基础上发展起来的一种新颖的物质结构分析方法。其用很尖的探针扫描待测样品表面, 探针附在一根可活动的微悬臂的底端上, 当探针与样品接触时, 产生的微小作用力引起微悬臂的偏转, 通过光电检测系统对微悬臂的偏转进行检测和放大, 信号经过转换可得到样品的三维立体图像。

如:该技术研究了香菇多糖在不同浓度NaOH 溶液下构型和构象的转变。

4. X- 射线衍射法(XRD)

X - 射线衍射法可得到晶体的晶胞参数和晶格常数, 再加上立体化学方面的信息,包括键角、键长、构型角和计算机模拟, 就可以准确的确定多糖的构型。

5. 圆二色谱( CD)

从CD 可以知道绝对构型、构象等信息, 是研究多糖的三维结构的有效办法。中性多糖因缺少一般紫外区可提供信息的结构, 难以直接得到由CD 谱提供的结构信息,通常可进行衍生化或者将多糖与刚果红络合后测定。

6. 快原子轰击质谱( FAB - M S)

FAB- MS适合于分析极性大、难挥发、热不稳定的样品。在快原子轰击过程中, 样品通过正离子方式增加一个质子或阳离子, 或通过负离子方式失去一个质子产生准分子离子作为谱图的主要信号, 并给出反映连接顺序等信息的碎片。因此FAB- MS可用来测定寡糖链的分子量。通过FAB- MS形成[M - H ] - 离子是确定寡糖中单糖组成的一种方便的方法。

7. 气质联用(GC - M S)

气相色谱与质谱联用可以得到有关单糖残基类型、链的连接方式、糖的序列和糖环形式、聚合度等多种结构信息。气相色谱要求试样具有良好的挥发性和热

稳定性。多糖为大分子物质, 不能直接挥发, 不适用于气象色谱, 因而将大分子多糖降解为结构单糖或寡糖, 并且将其衍生成具有易挥发, 对热稳定的衍生物。一般衍生方法有三甲基硅烷化、三氟醋酸酯衍生化和糖醇醋酸酯衍生化等。

多糖结构总结

多糖结构总结

————————————————————————————————作者:————————————————————————————————日期: ?

1 红外分析(IR ) 从硒化壳聚糖[图1(b)]与壳聚糖[图1(a)]的数据和图形对比可以看出,亚硒酸根主要连接在C 2的氨基本上和C 6的羟基上,主要是由以下的光谱图形和光谱 数据变化得到证明:壳聚糖C 2的氨基硒化后,NH 的弯曲振动由1594.52c m-1变为1523.29cm -1,壳聚糖C2 位氨基上未脱干净的乙酰基的羰基振动峰为

1650.32cm -1,而硒化壳聚糖C 2位上未脱干净的乙酰基的羰基振动峰为163 2.88cm -1,可能是受到C 6位的羟基上亚硒酸基的影响;同样由于硒化壳聚糖C 2位氨基上和C 6位羟基上亚硒酸根的影响,壳聚糖C -O 伸缩振动峰由 1079.45cm -1变为1090.41c m-1。同时,在800.00c m-1处观察到亚硒酸酯的Se=O 双键的振动峰。上述红外分析结果表明:壳聚糖与亚硒酸可能是通过C6位上的酯化反应和C2位上氨基的静电作用完成的。(硒化壳聚糖的制备及其表征) 从羧甲基壳聚糖与硒化羧甲基壳聚糖的红外光谱图图3、图4的对比中可以看出, 亚硒酸根主要连接在C2位的羧甲基和C 6的羟基上。主要由以下光谱图形和光谱数据变化得到证明: 羧甲基壳聚糖1627cm -1处的-COOH 反对称吸收峰在硒化羧甲基壳聚糖中红移至1599cm -1, 这可能是羧甲基壳聚糖中的-CO OH 与亚硒酸钠发生反应, 从而使键力削弱。1119cm -1处的C-O 伸缩振动在硒化羧甲基壳聚糖中红移至1064cm -1, 说明C6上的羟基也参与了硒化反应。此 外, 在硒化羧甲基壳聚糖的红外光谱中观测到位于806.125cm -1的Se=O 双键振动峰。(硒化羧甲基壳聚糖的合成及表征) 2.X-射线衍射 X 射线衍射法是研究多糖的结晶构型的有效方法。多糖通常是不能结晶的,但在适宜的条件下,它可以微晶态存在。所以进行衍射分析的样品必须通过外界的诱导使其中相当部分呈现微晶态。进行衍射的香菇多糖样品一般先制成碱性溶液,然后在水中透析,进一步处理制备。孙艳等将从香菇中分离而得的多糖经X2衍射分析,确定其立体结构为右手心三度螺旋,晶格为六角形, 晶格常数a

天然植物多糖的结构及活性研究进展

2007年第1期 3月出版 李尔春* (陕西师范大学食品工程系,西安710062) 天然植物多糖的结构及活性研究进展 Rsearchprogressonnaturalplant polysaccharidestructureandbiologicalactivity *李尔春,男,1984年出生,陕西师范大学食品科学与工程系 在读生。 收稿日期:2006-12-14 LiEr-chun* (Departmentoffoodengineering,Shanxinormaluniversity,Xi'an710062,China) 摘要主要介绍了天然植物多糖的结构及生物活性功能,如抗肿瘤、免疫调节、抗疲劳、降血糖、抗病毒、抗氧化等,展望了其发展前景。关键词 植物多糖 结构 生物活性 AbstactsThenaturalplantpolysaccharidestructureandthebiologicalactivityfunctionweremainlyintro-duced,liketheanti-tumor,theimmunoregulation,an-tifatigue,hypoglycemic,theanti-virus,antioxidationandsoon.Itsprospectsfordevelopmentwerealsoforecasted.keywordsPlantpolysaccharidesStructureBiolog-icalactivities 多糖是指由十个以上单糖通过苷键连接而成的聚合物,他们除了作为植物的贮藏养料和骨架成分外,有些植物体内的多糖类化合物还在抗肿瘤、抗心血管疾病、抗衰老等方面具有独特的生理活性。多糖是重要的高分子化合物,但由于其单糖的组成种类和连接位置多,再加上端基碳的构型等问题,使得对多糖类化合物的研究难度加大,长时间以来未受到重视,发展比蛋白质和核酸晚。近年来由于多糖类化合物的特殊生理活性,使得对于糖复合物和多糖类化合物的研究得到了快速发展。 1多糖的结构与测定方法 从自然界分离得到的多糖是非常复杂的大混合 物,包括生物大分子的混合、不同多糖(中性多糖、酸性多糖或杂多糖) 的混合、同种多糖大小分 子的混合,因此必须采取适合特点的方法分离分级纯化,否则结构不易确定。同一样品采用不同分级方法,常有不同结果。植物的不同部位,因功能不同,其中的多糖也是各色各样的,必须分开来研究。例如人参的根、茎、叶、果中的多糖,虽都含有中性杂多糖、酸性杂多糖组分,但其组成与结构却是不同的。 多糖与蛋白质一样也具有一、二、三、四级结构。多糖的一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。多糖的结构测定包括纯度测定、分子量测定、单糖组成的鉴定、糖连接位置的测定、糖链连接顺序的测定、苷键构型及氧环的测定。 多糖一级结构的分析方法很多,主要分为三大 类, 即化学分析法、仪器分析法和生物学方法。① 化学分析方法。主要有:水解法、高碘酸氧化、 Smith降解、甲基化反应等。②仪器分析法。与化 学分析法相比,仪器分析法具有快速、准确、灵敏、操作方便等优点,是糖链分析不可缺少的手段。用于糖链结构分析的仪器方法主要有紫外光谱法、红外光谱法、气相色谱法、高效液相色谱法、质谱法、核磁共振法等。除了传统的分析技术,现代分析技术的出现和发展以及仪器之间的联用,大大推动了糖链结构的研究工作。③生物学分析法。主要包括:酶学方法和免疫学方法。 食品工程FOODENGINEERING 44

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。

植物多糖的研究进展

植物多糖的研究进展 【摘要】多糖又称多聚糖,是由单糖缩合成的多聚物,广泛分布于自然界中,是一类重要的活性物质。从20世纪50年代对真菌多糖抗癌效果的发现以来,人们开始了对多糖的化学、物理、生物学系列的研究。目前已有报道的天然多糖化合物约有300多种,广泛存在于植物、动物和微生物组织中。近年来,由于植物多糖具有免疫调节、抗肿瘤、抗衰老、降血糖等多种生物活性、毒副作用小和不易造成残留等优点[1-2],对植物多糖的研究呈现逐渐增多的趋势。中国幅员辽阔,自然条件复杂,孕育着丰富的植物资源,为开发利用植物多糖奠定了深厚的物质基础。目前,对植物多糖的研究多集中在药理作用等方面,而对植物多糖进一步的分离纯化、结构测定、结构和功能关系及在食品、农业、工业方面的开发应用等研究工作较少。笔者参阅了部分资料,对植物多糖的结构、提取方法、药理作用及在保健品、食品、农业等领域的应用作一简要综述,旨在为今后中国植物多糖的综合利用和开发奠定技术和理论基础。 【关键词】多糖;功能;提取纯化 1 植物多糖的组成和结构 多糖是由超过10个以上、通常由几百甚至几千个单糖分子聚合而成的一类化合物。由醛糖或酮糖通过糖苷键连接而成,糖苷键分为α型和β型2种。植物多糖的糖链结合以β-1,3或β-1,6键为主,有的多糖还带有分支,带有分支链的多糖具有抗肿瘤活性。而α型连接的多糖生理活性较弱。但有研究表明[3],α型连接的多糖也具有较强的抗肿瘤活性。多糖与蛋白质一样具有一、二、三、四级结构。一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。三级和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。研究表明,同是β-1,3连接的多糖即使其一级结构完全相同,但由于二级和三级结构不同,其生理活性差异也很大[4-5]。因此,多糖的活性与其高级结构密切相关。 2 多糖提取纯化方法的研究进展 2.1植物多糖的提取方法 2.1.1水煎煮法 水煎煮法是多糖提取的传统方法,是用水作为溶剂煎煮提取多糖。因为多糖在冷水中溶解度较低,一般要在70-90热水中回流提取2~3h,将提取液真空浓缩后加入乙醇将多糖析出。目前多数国内文献采用水煎煮法提取多糖,如盛家荣等[6]采用此法从板蓝根中提取多糖,李志洲等[7]采用该法提取大枣多糖。该法

多糖高级结构研究方法

1. 红外光谱法(IR) 红外光谱在多糖的结构分析上的应用主要是确定糖苷键的构型以及常规官能团。如:多糖化合物在890cm- 1处吸收是β-吡喃糖苷键特征峰,而820 cm- 1和850cm- 1则是α-吡喃糖苷键特征峰。 2.核磁共振法( NMR) 主要用于确定多糖结构中糖苷键的构型以及重复结构中单糖的数目。 3. 原子力显微镜(AFM) 该技术是在扫描隧道显微镜( STM )基础上发展起来的一种新颖的物质结构分析方法。其用很尖的探针扫描待测样品表面, 探针附在一根可活动的微悬臂的底端上, 当探针与样品接触时, 产生的微小作用力引起微悬臂的偏转, 通过光电检测系统对微悬臂的偏转进行检测和放大, 信号经过转换可得到样品的三维立体图像。 如:该技术研究了香菇多糖在不同浓度NaOH 溶液下构型和构象的转变。 4. X- 射线衍射法(XRD) X - 射线衍射法可得到晶体的晶胞参数和晶格常数, 再加上立体化学方面的信息,包括键角、键长、构型角和计算机模拟, 就可以准确的确定多糖的构型。 5. 圆二色谱( CD) 从CD 可以知道绝对构型、构象等信息, 是研究多糖的三维结构的有效办法。中性多糖因缺少一般紫外区可提供信息的结构, 难以直接得到由CD 谱提供的结构信息,通常可进行衍生化或者将多糖与刚果红络合后测定。 6. 快原子轰击质谱( FAB - M S) FAB- MS适合于分析极性大、难挥发、热不稳定的样品。在快原子轰击过程中, 样品通过正离子方式增加一个质子或阳离子, 或通过负离子方式失去一个质子产生准分子离子作为谱图的主要信号, 并给出反映连接顺序等信息的碎片。因此FAB- MS可用来测定寡糖链的分子量。通过FAB- MS形成[M - H ] - 离子是确定寡糖中单糖组成的一种方便的方法。 7. 气质联用(GC - M S) 气相色谱与质谱联用可以得到有关单糖残基类型、链的连接方式、糖的序列和糖环形式、聚合度等多种结构信息。气相色谱要求试样具有良好的挥发性和热

多糖结构总结

多糖结构总结.

IR红外分析()1 的数据和图形对比可以看出,亚硒酸根[图1(a)]从硒化壳聚糖[图1(b)]与壳聚糖主要是由以下的光谱图形和光谱数据C的羟基上,主要连接在C的氨基本上和62-1变为C的氨基硒化后,NH的弯曲振动由1594.52cm变化得到证明:壳聚糖2-1为基的酰的干未基位C聚1523.29cm,壳糖氨上脱净乙基羰振动峰2

-1,而硒化壳聚糖C位上未脱干净的乙酰基1650.32cm的羰基振动峰为2-1,可能是受到C位的羟基上亚硒酸基的影响;同样由于硒化壳聚糖1632.88cm6C位氨基上和C位羟基上亚硒酸根的影响,壳聚糖C-O伸缩振动峰由62-1-1-1处观察到亚硒酸酯的800.00cm1090.41cmSe=O1079.45cm。同时,在变为双键的振动峰。上述红外分析结果表明:壳聚糖与亚硒酸可能是通过C位上的6酯化反应和C位上氨基的静电作用完成的。(硒化壳聚糖的制备及其表征) 2 的对比中可以图4、从羧甲基壳聚糖与硒化羧甲基壳聚糖的红外光谱图图3主要由以下光谱图形C的羟基上。看出, 亚硒酸根主要连接在C位的羧甲基和62-1反对称吸收峰在羧甲基壳聚糖: 1627cm-COOH处的和光谱数据变化得到证明-1

与亚1599cm-COOH, 这可能是羧甲基壳聚糖中的硒化羧甲基壳聚糖中红移至-1伸缩振动在硒化羧甲基壳处的C-O1119cm硒酸钠发生反应, 从而使键力削弱。-1在硒化羧上的羟基也参与了硒化反应。此外, 聚糖中红移至1064cm, 说明 C6-1(硒化羧806.125cm甲基壳聚糖的红外光谱中观测到位于双键振动峰。的Se=O 甲基壳聚糖的合成及表征) 2.X-射线衍射,X射线衍射法是研究多糖的 结晶构型的有效方法。多糖通常是不能结晶的但在适宜的条件下,它可以微晶态存在。所以进行衍射分析的样品必须通过外界的诱导使其中相当部分呈现微晶态。进行衍射的香菇多糖样品一般先制成碱进一步处理制备。孙艳等将从香菇中分离 而得的多糖经,性溶液,然后在水中透析a=b=1. 晶格为六角形确定其立体结构为右手心三度螺旋衍射分析X2,,, 晶格常数 5nm, c =0. 6nm。ZhangP等经X-衍射分析表明:天然香菇多糖具β三股绳 状螺旋型立体结构,但加入尿素或二甲亚砜后立体构型改变,转变为单绳螺旋结 构。(香菇多糖结构分析和构效关系研究进展) 3.拉曼光谱法 拉曼光谱在检测多糖分子的振动相同原子的非极性键和异头物方面效果较好。它侧重于探测多糖生物大分子的空间结构,如平铺折叠或螺旋状等。研究 -1-1926cm954和有很强的拉曼吸收,此外在-D 表明,α螺旋直链淀粉在 865cm-1内对多糖的类500-1500cm有C-O-C 糖苷键的伸缩振动吸收,拉曼 光谱在处 型和糖苷的连接方式的检测灵敏,比红外光谱表现出了更高的分辨率,许多复杂-1区域内。的拉曼吸收谱带都在低于600cm 2.1 Seleno-LP的拉曼光谱 -1-1附近的吸收峰亚硒酸酯中和Seleno-LP的激光拉曼光谱在 911cm699cmSe=O和Se-OH的伸缩振动,而LP在这两处均没有吸收峰。这证实了seleno-LP中存在Se=O键。(兰州百合多糖硒酸酯的合成及表征)

多糖分离纯化的基本原则和方法

多糖分离纯化的基本原则和方法 多聚糖(polysaccharide),简称多糖,常由一百个以上甚至几千个单糖基通过糖苷键连接而成的,其性质已大不同于单糖,如甜味和强的还原性已经消失,广泛存在于动物细胞膜和植物、微生物的细胞壁中,是构成生命的四大基本物质之一,与生命功能的维持密切相关。近年来,大量研究表明多糖除了有增强免疫功能、抗肿瘤作用、抗氧化、抗衰老、消化系统保护作用的生物学效应外,还有抗菌、抗病毒、降血糖、降血脂、抗辐射、抗凝血等作用。 1、基本原则 在不破坏多糖活性的前提下进行多糖的分离纯化。尽量不引入新的杂质,或引入的新杂志易于除去,如小分子盐类可经过透析作用除去,铵根离子可通过加热挥发除去等[1]。 2、分离纯化方法 多糖的生物活性倍受关注,但不少多糖的提取方法和工艺尚未成熟,基于效率、成本多方面的考虑,各种方法的开发、比较、分析是研究工作的焦点之一。目前多糖提取方法主要有溶剂提取法、酸提法、碱提法、酶解法、超滤法、超声法、微波法、超临界流体萃取法。首先要根据多糖的存在形式及提取部位不同,决定在提取之前是否做预处理:提取时需注意对一些含脂较高的根、茎、叶、花、果及种子类,在用水提取前,应先加入甲醇或l:l的乙醇乙醚混合溶液或石油醚进行脱脂,而对含色素较高的根、茎、叶、果实类,需进行脱色处理。 2.1多糖的提取与分离方法 由于各类多糖的性质及来源不同,所以提取方法也各有所异,主要归纳为以下几类: 第一类难溶于水,可溶于稀碱液的主要是胶类,如木聚糖及半乳糖等。原料粉碎后用0.5mol/L NaOH水溶液提取,提取液经中和及浓缩等步骤,最后加入乙醇,即得粗糖沉淀物。 第二类易溶于温水,难溶于冷水的多糖,可用70~80℃热水提取,提取液用氯仿:正丁醇(4:1)混合除去蛋白质,经透析、浓缩后再加入乙醇即得粗多糖产物[2]。 第三类粘多糖的提取。在组织中,粘多糖与蛋白质以共价键结合,故提取

植物多糖的研究进展

植物多糖的研究进展 11食品科学余勇 11720525 摘要:植物多糖具有多种生物活性,近年来已成为研究热点。本文综述了植物多糖的提取分离、结构鉴定的方法及其主要生物活性,并展望了其发展前景。 关键词:植物多糖提取分离生物活性 多糖是普遍存在于自然界中的由许多相同或不同的单糖通过糖苷键连接在一起的多聚化合物,是维持生命活动正常运转的基本物质之一。根据单糖的组成可分为同多糖和杂多糖。同多糖指由相同单糖构成的多糖,如淀粉、纤维素等;杂多糖由不同的单糖组成,结构上还可能与蛋白质或者核酸等结合形成结合型多糖。植物多糖是多糖的重要组成部分。植物多糖在早期的天然产物化学研究中,因活性不明显,常作为无效成分弃去。由于生物学、化学等学科的飞速发展,自2O世纪8O年代来,人们对植物多糖的生物活性有了新的认识。科学实验研究显示,植物多糖具有许多生物活性功能,包括免疫调节、抗肿瘤、降血糖、降血脂、抗辐射、抗菌、抗病毒、保护肝脏等,且对机体毒副作用小。因此,对植物多糖的研究开发已成为医药保健品行业热门领域。如香菇多糖、灵芝多糖、云芝多糖已在国内临床上广泛应用。而其他一些植物多糖正在深入研究,如桑黄多糖、猪苓多糖、人参多糖、枸杞多糖等。 1 植物多糖的提取、分离和鉴定 1.1 植物多糖的提取 多糖是极性大分子,所以从植物中提取多糖,一般采用不同温度的水稀碱或稀盐溶液提取。由于水提时间长且效率低,酸碱提易破坏多糖的立体结构及活性。因此,发展高效,维持多糖结构和生物活性的方法至关重要。涂国云等采用酶法提取多糖,即采用复合酶一热水浸提相结合的方法,复合酶多采用一定的果胶酶、纤维素酶及中性蛋白酶,此法具有条件温和、杂质易除和提高效率等优点。同一原料,分别用水、酸、碱、盐或酶法提取,所得多糖往往是不同的。 1.2 植物多糖的分离纯化 利用不同多糖分子大小和溶解度不同而分离。常用季铵盐沉淀法和有机溶剂沉淀法。如安络小皮伞粗多糖的纯化方法,在多糖溶液中加入不同浓度乙醇溶液。得到多个多糖;还可用葡聚凝胶(Sephadex)琼脂糖凝胶(Sepharose)以不同浓度的盐溶液和缓冲溶液作为脱色剂,采用凝胶柱层析法使不同大小的多糖分子得到分离纯化,但该方法不适宜粘多糖分离。

研究报告的结构

研究报告的结构 题目 题目是课题的最高概括,要点明研究的对象、问题、方法。应以陈述句式表达,字数不要超过20个字;忌使用疑问句式。 课题的提出 (一)课题研究的背景 研究意义通常是研究者从社会发展、教育实际、现实意义等方面阐述研究的重要性与必要性。表述应针对所要研究的具体问题,忌脱离工作实际,空话套话;强调逻辑的严谨。 (二)国内外相关研究综述与本课题相关研究的现状。包括:主要成绩;存在的问题;存在问题的原因、研究的空白点等内容。这部分内容要在广泛深入了解的基础上体现出“综合”与“评述”的特点。忌只就一两个实例发挥没有综合的特点。同时忌脱离具体研究问题,泛泛而谈,更忌不做考察,枉下结论。 (三)研究的创新点根据相关研究综述,说明本课题的与众不同之处。应从研究内容、对象、方法、途径、侧重点等方面表述;忌缺乏参照,主观想象。 (四)概念的界定界定研究中关键词的内涵、本质。应抓住课题研究的主题进行界定;忌过于宽泛、界定共识性概念。 研究的依据 (一)理论依据是指与课题研究紧密相关,对研究目标的达成具

有指导与支撑的作用的理论。表述应与研究的问题形成密切关联;忌理论罗列,逻辑松散。 (二)政策依据说明研究符合教育教学改革与发展方向,为教育行政所认可。应从具体的实际出发;忌简单罗列,缺乏针对性。 (三)实践依据说明本类研究所关注的问题在实践层面上开展的状况。上述三项依据表述上均要先概括,再展开。 研究的原则 研究的原则是本研究必须遵守的基本要求。应紧密结合所本研究的具体情况进行论述;忌缺乏针对性。表述上要先概括,再展开。 研究的目标与内容 (一)研究目标 教育目标:研究要达成的人才培养目标,体现在研究对象的发展与进步。即通过什么方法,促使研究对象发生什么样的变化与效果。 科研目标:研究要获得规律的目标,表现在知识的增长,经验的丰富,方法技巧的创新,认识的发展。即通过研究收获什么样的策略、方法、模式等。 工作目标:研究所要达成的教育工作改革和发展目标,表现在教学等工作的效益上。上述三项目标的表述均应为将来时态。 (二)研究内容 研究内容是研究目标的具体细化,是把目标加以分解成一系列可操作的具体研究项目。强调内容与目标要对应,忌两者不对称;强调语言简捷,具体说明研究什么内容,忌描述过多、忌将具体措施表述

多糖结构的研究方法及其活性的研究进展

第23卷 第5期Vol.23 No.5 平 原 大 学 学 报 J OU RNAL OF PIN GYUAN UN IV ERSIT Y 2006年10月 Oct.2006 多糖结构的研究方法及其活性的研究进展 3 丰贵鹏 (平原大学化学与环境工程学院,河南新乡453003) 摘 要:综述多糖研究的经典方法和新技术的应用情况,以及5年来其活性的研究进展状况。关键词:多糖结构;多糖活性;抗肿瘤活性;抗氧化活性 中图分类号:Q539 文献标识码:A 文章编号:1008-3944(2006)05-0128-03 多糖作为天然大分子物质同核酸、蛋白质一样是所有生命有机体的重要组成部分,在高等动物、植物、藻类以及菌类中均有存在,是自然界含量最丰富的生物聚合物,与维持生命所需的多种生理功能密切相关。就多糖的研究状况而言,虽然已经取得了巨大进展,但与核酸和蛋白质的飞跃发展相比,显得 远远落伍。[1] 近年来,生物学、化学等学科的研究飞 速发展,对多糖及其复合物的化学结构和生物活性 的研究也越来越深入。 [2]一、结构研究 (一)经典方法 紫外分光光度法、纸层析和Sep hadex 凝胶柱层析:在实验室常采用硫酸苯酚法和蒽酮硫酸法测定多糖的总含量及其纯度,其中硫酸苯酚法尤为常用。此外,可以利用紫外分光光度计在280nm 和260nm 处有无吸收来判断多糖样品是否含有蛋白质和DNA 。因此,紫外分光光度法在多糖结构研究中被 广泛应用。闫吉昌、崔春月、张奕等[3]用纸层析和Sep hadex 凝胶柱层析分析以库拉索芦荟为材料,经 热水抽提,乙醇分级沉淀,酶法和seveg 法去除蛋白质后得到的2种酸性多糖PSA1和PSA2,证实其均为单一组分。 甲醇解、气相层析质谱(GC/MS )、高效液相色谱(HPL C )、薄层层析:多糖的甲醇解是分析多糖组分的常用方法,GC/MS 常用于单糖的分离和鉴定。佘志刚、胡谷平、吴耀文等[4]用改进的甲醇解方法从 鲍鱼中分离出一种鲍鱼多糖HalA ,甲醇解后的产物经三甲硅醚衍生,进行GC/MS 分析,确定鲍鱼多糖HalA 主要由萄萄糖、半乳糖、甘露糖,以及少量木糖、岩藻糖和半乳糖醛酸组成。闫吉昌、崔春月、张奕等[3]用薄层层析和乙酰化GC/MS 分析库拉索芦荟中的多糖PSA1,发现其是由甘露糖和葡萄糖组成,摩尔比为1∶1.3;多糖PSA2主要由甘露糖组成。孟庆勇、刘志辉、徐美奕等[5]用薄层层析分析从半叶马尾藻中用热水浸提法获得的半叶马尾藻多糖,发现其组成可能为木聚糖。丁琼、张俐娜[6]等用GC/MS 、H PL C 方法分析茯苓菌丝体中的多糖,从 中提取出4种多糖组分,编号分别为PCM1、PCM2、PCM3和PCM4。PCM1、PCM2为酸性杂多糖由D —鼠李糖、D —木糖、D —甘露糖、D —半乳糖、D — 葡萄糖及葡萄糖醛酸组成。PCM3主要为线型β(1→3)—D —葡聚糖,PCM4由D —葡萄糖和葡萄糖醛酸组成。 红外光谱、核磁共振(NMR ):红外光谱是分析多糖结构的强有力的工具,可以判别多糖的特征吸收峰。例如:利用890cm -1吸收峰来判别β-糖苷键的存在,840cm -1吸收峰来判别α-糖苷键的存在,吡喃糖苷在1100~1010cm -1间应有3个吸收峰,而呋喃糖苷在相应区域只有2个吸收峰,810cm -1和870cm -1是甘露糖的吸收峰,1260cm -1和1730cm -1是酯基或O -乙酰基的特征。此外,利用 红外光谱在3500cm -1处有无吸收常用来判断甲基 ? 821?3收稿日期:2005-12-23 修回日期:2006-06-26 作者简介:丰贵鹏(1982-),男,河南新乡人,主要从事生物化工方面的教学与研究。

多糖结构的分析

多糖结构分析 多糖在生物学上的重要意义,尤其是在医药学上的重要意义决定了多糖研究的迅速发展,多糖构效关系的研究已成为多糖研究的热点。但由于多糖结构的复杂性和多样性,其结构测定远远落后于蛋白质和核酸,本实验选择天然多糖(半乳葡萄甘露聚糖)作为实验材料,对其一级结构做初步的分析。 多糖一级结构的分析包括:纯度鉴定,分子量测定,单糖组成测定和糖链的序列测定。糖链的序列测定包括:单糖残基在糖链中的次序,单糖残基间连键的位置,链的分支情况等诸多方面。 【实验目的】 1.了解多糖结构分析的内容及方法。 2.了解多糖一级结构分析的基本原理。 3.掌握多糖一级结构分析的基本方法。 一、糖含量测定 【实验原理】 苯酚—硫酸试剂与游离的或寡糖、多糖中的己糖、糖醛酸起显色反应,己糖在490nm 处有最大吸收,吸收值与糖含量呈线性关系。 【实验材料】 1. 实验器材 721型分光光度计。 2. 实验试剂 (1)98%的浓硫酸。 (2)80%苯酚:80g苯酚加20ml水使之溶解,可置冰箱中避光长期贮存。 (3)6%苯酚:临用前用80%苯酚配制。 (4)标准葡萄糖溶液(0.1 mg/ml):取100mg葡萄糖,用蒸馏水溶解,定容至1L。 (5)多糖样品:半乳葡萄甘露聚糖溶液(0.1 mg/ml)。 【实验操作】 1. 制作标准曲线: 取9支干燥试管,按下表操作 横坐标为多糖微克数,纵坐标为光密度值,绘制标准曲线。 2. 样品含量测定: 取样品液1.0ml,按上述步骤操作,测光密度。

3.计算: 糖含量(%)=C /(C0× V)×100% C: 由标准曲线查得的糖微克数 C0:样品溶液的浓度(0.1 mg/ml) V:测定时用的样品溶液体积(1.0ml) 二、单糖组成分析 【实验原理】 多糖在浓硫酸中保温一定时间可完全水解为单糖,通过纸层析分离,特定试剂显色后与已知糖的标准混合物作对比,可以鉴定多糖水解产物中单糖的组成。 【实验材料】 1. 实验器材 水解管;滤纸;玻璃毛细管;层析缸;喷雾器。 2. 实验试剂 ⑴标准糖溶液: 称取一定量的半乳糖、葡萄糖、甘露糖、阿拉伯糖,用蒸馏水溶解,得标准糖混合溶液(每种糖的点样量为20微克~30微克)。 ⑵展层剂:正丁醇:乙酸:水=4:l:5 (上层)。 ⑶显色剂:苯胺-邻苯二甲酸-正丁醇饱和水溶液(邻苯二甲酸1.6g溶于水饱和的正丁醇100 ml,加苯胺0.93g(相当于0.9 ml)。 ⑷BaCO3;1mol/L硫酸。 【实验操作】 l.完全酸水解: 称取20 mg多糖样品,加入1mol/L H2S04 2ml;封管,l00℃水解8小时,然后加入BaC03中和,定量滤纸过滤,滤液留作分析。 2.纸层析: 将层析滤纸剪成7cm×40cm的纸条,距层析滤纸一端2cm处画一横线作为点样线,在点样线上画两个点分别作为标准糖溶液和多糖水解液的点样位置。用玻璃毛细管点样,斑点尽可能小,而且每点一滴,待点样点干燥后,在同一位置再点第二滴。然后将滤纸条悬挂于层析缸中进行层析,展层时间约为36小时。 3.显色: 将滤纸取出,自然干燥,喷上苯胺-邻苯二甲酸-正丁醇饱和水溶液,100℃条件下15分钟即可显色。标准单糖混合物色斑在滤纸上由下而上的顺序是:半乳糖-葡萄糖-甘露糖-阿拉伯糖。与标准单糖混合物色斑比较,即可判断多糖样品的单糖组成。 三、糖链的序列测定 (一)高碘酸氧化 【实验原理】 高碘酸可以选择性地氧化和断裂糖分子中连二羟基或连三羟基处,生成相应的多糖醛、甲醛或甲酸。反应定量地进行,每开裂—个C-C键消耗一分子高碘酸。通过测定高碘酸消耗量及甲酸的释放量,可以判断多糖分子中糖苷键的位置、类型、多糖的分枝数目和取代情况等。 【实验材料】

多糖各种提取方法

一、植物多糖的提取 1 溶剂提取法 1.1 水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 1.2酸碱提法 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与

酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。

1.4 生物酶提取法 酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。 1.5 超声提取法 超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。另外,超声波的热效应使水温基本在57℃,对原料有水浴作用。超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。超声提取的影响因素有:超声时间、超声频率(一般低频中提取效率高,但也有例外)、料液比和温度等。 1.6 微波提取 微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波技术应用于植物细胞破壁,有效地提高了收率。具有穿透力强、选择性高、加

植物多糖生物活性的研究进展

植物多糖生物活性的研究进展(作者: _________ 单位:___________ 邮编: ___________ ) 【关键词】多糖类;植物,药用;生物类 多糖广泛分布于自然界的多种生物体中,尤其是动物细胞膜、植物细胞壁和微生物细胞壁中,是一类由醛糖或酮糖通过糖苷键连接而成的天然高分子多聚物,是构成生命体的分子基础之一。多糖在自然界中储量丰富,主要分为植物多糖、动物多糖以及微生物多糖3类[1]。自I960年以来,人们陆续发现多糖具有多种药理活性,它不仅可以作为广谱免疫促进剂调节机体免疫功能,还可以在抗肿瘤、抗病毒、抗氧化、降血糖、抗辐射等方面发挥广泛的药理作用[2拟.7]。迄今为止,已有300多种多糖类化合物从天然产物中分离出来,其中从植物中提取的水溶性多糖最为重要[8]。因为它药理活性强,来源广泛,细胞毒性低,安全性强,毒副作用较小,已引起医药界的广泛关注,并成为当今生命科学研究的热点之一。 1植物多糖的生物学功能 1.1免疫调节作用Yang等研究发现,在针对小鼠腹腔巨噬细胞的体内和体外试验中,当归多糖均可显著提高一氧化氮(NO )生成

量, 提高细胞溶酶体酶活性[9]。另外,他们还发现L拟硝基拟精氨酸甲酯(NG A nitro 拟L拟arginine methyl ester , L拟NAME)即一种诱导 型NC合酶(iNOS)抑制剂,可有效抑制巨噬细胞中当归多糖诱导的NO 的增殖,说明当归多糖是在iNOS基因表达的诱导下刺激巨噬细胞产生NO的。Cheung等从冬虫夏草中提取得到虫草多糖(UST2000)并对产物进行了成分分析和体外药理活性研究[10]。虫草多糖主要由葡萄糖、甘露糖和半乳糖组成,比例为 2.4 : 2 : 1;体外试验中,虫草多 糖可显著促进细胞增殖和白细胞介素的分泌;另外,虫草多糖可短暂诱导胞外信号调控酶的磷酸化而使其激活、提高巨噬细胞的吞噬活性 并提高酸性磷酸酯酶的活性。结果表明,虫草多糖在触发免疫应答方面具有极其重要的作用。 1.2抗肿瘤活性自从1950年发现酵母多糖具有抗肿瘤活性以来,研究人员已分离出许多具有抗肿瘤活性的植物多糖。Lins等经 过血液实验、生物化学实验和组织病理学分析得知,在体外实验中,红藻硫酸多糖无显著细胞毒性,但体内实验显示出明显的抗肿瘤活性,并且可以增强5拟氟尿嘧啶诱发的免疫应答,说明红藻硫酸多糖由于它的免疫学性质而具有抗肿瘤活性[11]。Yamasaki等通过体外实验研究发现,云芝多糖可增强肿瘤细胞的生长抑制和细胞凋亡,降低肿瘤细胞的扩散能力,从而发挥抗肿瘤功效[12]。 1.3抗菌抗病毒活性Wang等研究发现,匍扇藻粗多糖具有显著抗I

多糖结构分析

多糖结构研究方法 多糖及其复合物是来自于高等动、植物细胞膜和微生物细胞壁中的天然大分子物质之一,自然界含量丰富,与人类生活紧密相关,对维持生命活动起至关重要的作用。多糖和核酸、蛋白质、脂类构成了最基本的4类生命物质。由于多糖的生物活性与多糖的结构关系密切,因此清楚认识多糖的结构是进行多糖研究和利用的基础。多糖结构比蛋白质和核酸的结构更加复杂,可以说是自然界中最复杂的生物大分子。从化学观点来看,多糖结构解析最大的难点就在于其结构的复杂性。糖的结构分类可沿用蛋白质和核酸的分类方法,即多糖的结构也可分为一级、二级、三级和四级结构。与蛋白质或核酸大分子相比,糖链的一级结构“含义”要十分丰富。测定糖链的一级结构,要解决以下几个问题:(1)相对分子质量;(2)糖链的糖基组成,各种单糖组成的摩尔比;(3)有无糖醛酸及具体的糖醛酸类型和比例;(4)各单糖残基的D-或L.构型,毗喃环或呋喃环形式;(5)各个单糖残基之间的连接顺序;(6)每个糖苷键所取的a-或B.异头异构形式;(7)每个糖残基上羟基被取代情况:(8)糖链和非糖部分连接情况;(9)主链和支链连接位点:(10)糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象,与分子主链的构象有关,不涉及侧链的空间排布;多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象四。多糖结构的分析手段很多。不仅有仪器分析法,如红外、核磁共振、质谱等,还有化学方法,如完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化反应等,以及生物学方法,如特异性糖苷酶酶切、免疫学方法等。 1质谱(MS) 由于MS法在糖链结构分析中具有快速灵敏,样品用量少、结构信息直观的特点而得到越来越广泛的应用。近年来各种软电离技术的诞生,如快原子轰击质谱(FAB—MS),电喷雾质谱(ESI—MS),基质辅助激光解析离子化质谱(MALDI-MS)等,使得糖结构分析的研究取得了日新月异的发展。 (1)快原子轰击质谱(FAB—MS) FAB-MS是上世纪80年代初发展起来的一种新的软电离质谱技术。其显著区别于传统质谱之处在于样品受加速原子或离子的轰击,可直接在基质溶液中电离。FAB-MS的引入使传统质谱技术难以分析的极性强,难挥发以及热不稳定的化合物不经衍生化就可以直接进行质谱分析,而且对生物大分子的研究取得了重大突破。FAB-MS已被证明是分析糖结构最为有力的方法之一,它不仅可以测定寡糖及其衍生物的分子量,而且可以测定聚合度高于30的糖的分子量。同时,FAB-MS还可以确定糖链中糖残基的连接位点和序列,已广泛用于糖类的分析。 (2)电喷雾质谱(ESI-MS) ESI-MS是将溶液中分子转变成气相离子非常有效的手段,是目前最软的一种电离方式。这种电离方式所产生的分子离子往往带有多电荷。因此ESI-MS可

结构优化方法研究综述

结构优化方法研究综述 结构优化方法研究综述 【摘要】建筑结构优化对建筑整体的稳定性、可靠性、耐久性有非常重要的作用。文章针对建筑结构优化设计的主要因素,以及结构优化的方法等方面做简要的分析,以提高建筑结构的整体的稳定性、耐久性等性能。 【关键词】结构设计;结构优化;结构类型 0引言 建筑结构优化,即在一些建筑结构的设计方案中选取最优的或最适宜的设计方案,它参照数学中的模型最优化原理应用到建筑工程结构设计方案的优化比选中。研究发现,建筑结构在使用过程中是否稳定、耐久、合理等,主要决定于在建筑结构设计时选定的结构类型是否最优、是否最符合工程结构的需要。对于同一座建筑工程项目,不同的结构设计师知识储备不同,因此可能会设计出不同的结构类型、结构体系,但经过结构方案的优化、从而选取最优化的结构类型,提高建筑结构的使用寿命、稳定性能。 1建筑结构优化的主要因素 1.1荷载设计 研究发现,任何一座建筑结构都需要受到水平力和竖向荷载的作用,同时建筑还要承受较大的风荷载、地震力的作用等。当建筑结构的整体高度比较低时,由结构本身的重力引起的竖向荷载对结构的作用比较明显,而水平荷载作用在结构上,产生的内力和位移比较小,往往在计算时不考虑水平荷载的作用;若在较高层建筑设计中,虽然所受到的竖向荷载仍对结构产生较大程度的影响,但水平荷载对建筑结构本身的影响比竖向荷载产生的影响更加强烈。研究表明,随着建筑结构整体高度的逐渐增加,水平荷载对建筑结构产生的影响越将会越来越大,因此,在建筑结构高度较高时,结构所承受的水平荷载对结构的影响则不可忽视。 1.2选取结构类型较轻的

在建筑结构优化过程中,要尽量选取结构体较轻的。在现代结构优化设计中,设计人员越来越重视选用轻质高强材料,从而做大程度上减轻整体结构的自重。由于在多层建筑结构中,水平荷载对结构产生的影响处于较次要地位,结构所承受的主要荷载是竖向荷载。由于多层建筑楼层较少,整体高度相对比较低,结构自重相对来说较轻,对材料的强度要求不是特高。 但随着建筑结构高度的增加,在较多的楼层作用下,结构产生的自重荷载则会比较大,使得建筑结构对基础产生较大的竖向荷载,同时在水平荷载的作用下,结构的竖向构件(柱)中会产生较大的水平剪力和附加轴力。为了使得结构满足刚度和强度的要求,通常采取加大结构构件的截面尺寸,但是加大构件的截面尺寸会使得结构的整体自重增加。因此在高层建筑结构首先应该考虑如何减轻结构的自重。 研究表明,当在高层或超高层建筑结构优化设计时,选用结构强度高、自重较轻的钢结构、高强混凝土结构可以很大程度上减小建筑结构的自重。 1.3 侧向位移 据相关资料表明,建筑结构的侧向位移随着建筑高度的增加而逐渐增大,因此,在建筑结构的优化设计中,对层数较少、高度较低的结构,可以不考虑其侧向位移对结构的影响。但随建筑结构高度的增加,整体结构的侧移对结构产生的影响则不可忽视。 研究表明,由于水平荷载对结构作用产生的侧移随着建筑高度的增加而逐渐增大,且侧移量与结构高度成一定的关系。 在进行高层建筑结构优化设计时,既需要充分考虑建筑结构整体是否具有足够的承载能力,能否承受风荷载的冲击作用,又要求结构具有足够的抗侧移性能,当建筑结构受到较大的水平力作用下,其可以很好地控制产生过大的侧移量,确保结构整体的稳定性能。 与低层或多层建筑相比,高层建筑结构的刚度稍微差一些,在发生地震灾害时,结构的侧向变形更大。为了确保高层建筑结构在进入塑性阶段后,结构整体仍具有较强的抗侧移性能,保持结构的稳定性,则需要在高层建筑结构的构造上采取合适的措施,确保结构具有足够的延性,从而满足结构的刚度要求。

相关主题
文本预览
相关文档 最新文档