当前位置:文档之家› 东南大学自动化自控原理实验六串联校正研究

东南大学自动化自控原理实验六串联校正研究

东南大学自动化自控原理实验六串联校正研究
东南大学自动化自控原理实验六串联校正研究

东南大学自动化学院

实验报告

课程名称:自动控制实验

实验名称:实验六串联校正研究

院(系):自动化专业:自动化

姓名:吕阳学号: 080111 实验室:实验组别:

同组人员:实验时间:2013年 12 月 20 日评定成绩:审阅教师:

一、实验目的:

(1) 熟悉串联校正的作用和结构

(2) 掌握用Bode 图设计校正网络

(3) 在时域验证各种网络参数的校正效果

二、预习与回答:

(1) 写出原系统和四种校正网络的传递函数,并画出它们的Bode 图,请预先得出各种校

正后的阶跃响应结论,从精度、稳定性、响应时间说明五种校正网络的大致关系。

答:G 1(s )=12.01+s G 2(s )= 1

41+s G 3(s )=0.110.001 1.01

s s ++ G 4(s )=s s 12.0+ 原系统Bode 图如下:

G (1)Bode 图如下:

由G1(s)的Bode图可知,该校正能够将系统的截止频率减小,并且相位滞后,则会使系统的相角裕度小于0,从而使系统的响应时间变长,稳定性变差,并且低频段的斜率为0,系统稳态性能差,误差大。

G(1)接入系统时,系统Bode图如下:

G(2)Bode图如下:

由G2(s)的Bode图可知,该校正环节造成高频衰减,使截止频率减小,从而条件时间变长;又由于该滞后环节被安排在低频段,远离截止频率,因此可以使得相角裕度为正值,从而系统稳定。传递函数为0型,因此对阶跃信号的跟踪有一定误差。G(2)接入系统时,系统Bode图如下:

G(3)Bode图如下:

由G3(s)的Bode图可知,该校正环节为超前校正,它会增大开环截止频率和系统带宽,其超前相位又能补偿原系统中的元件造成的相位滞后,最大超前角频率在开环截止频率附近,是系统相角裕度增大,从而改善了系统的瞬态性能,调节之间变短。相对稳定性增大。但对阶跃的跟踪仍然存在误差。

G(3)接入系统时,系统Bode图如下:

G(4)Bode图如下:

由G4(s)的Bode图可知,PID控制中低频段主要是滞后环节起作用,提高系统的无差度阶次,减少稳态误差;中高频段主要是超前环节起作用,增大截止频率和相角裕度,提高响应速度。

G(4)接入系统时,系统Bode图如下:

(2) 若只考虑减少系统的过渡时间,你认为用超前校正还是用滞后校正好?

答:超前校正能够将原开环系统的频率特性上调一定的高度,从而增大截止频率,因此用超前好。

(3) 请用简单的代数表达式说明用Bode 图设计校正网络的方法

答:1.根据系统对稳态误差的要求确定校正增益Kc ,并画出未校正的伯德图

2.求出为校正系统的相角裕度γ’,若γ-γ’<0,或γ-γ’>65°,则不应采用超前校正

3.根绝瞬态指标选择截止频率,计算校正环节时间常数T 和T

其中C(s)= 11'++Ts Ts c K αα,T=α

c w 1

4.若不能采用超前校正,则根据相角裕度重新选择截止频率,该频率处有)??++?-=∠12~5(180)(γc jw KcP ,算出未校正系统该处的幅值,由此求出,得到

C(s)= 1

1'++Ts Ts c K β,T=10/c w 三、实验原理:

东南大学实验模拟运算放大电路(二)

.东南大学电工电子实验中心 实验报告 课程名称:电子电路实践 第二次实验 实验名称: 院(系):专业: 姓名:学号: 实验室:实验组别:无 同组人员: 实验时间: 评定成绩:审阅老师:团雷鸣

实验报告 实验目的: 1、了解运放在信号积分和电流、电压转换方面的应用电路及参数的影响。 2、掌握积分电路和电流、电压转换电路的设计、调试方法。 3、了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估 算 4、学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特 性。 实验原理: 1、积分电路:运用下图所示电路,可构成运放积分电路,R2为分流电阻,用于稳定直流增益,以避免直流失调电压在积分周期内的积累导致运放饱和,一般取R2=10R1.输出电压与输入电压呈积分关系。 2、同相型电压/电流转换电路:利用如下图所示电路,可以构成电压/电流转换电路。由“虚短”“虚断”原理知,I L=Vi/R1,该电路属于电流串联负反馈电路,电路的输入电阻极高,其闭环跨导增益1/R1即为电路的转换系数。电路可实现线性的电压/电流转换。 3、精密整流电路:利用二极管的单向导电性,可以组成半波及全波整流电路。但由于二极管存在正向导通压降、死去压降、非线性伏安特性及其温度漂移,故当用于对弱信号进行整流时,必将引起明显的误差,甚至无法正常整流。如果将二极管与运放结合起来,将二极管至于运放的负反馈回路中,则可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。

实验内容: 1、积分电路 用741设计一个满足下列要求的基本积分电路:输入V ip-p=1V、f=10kHz的方波。设计R、C值,测量积分输出电压波形;改变f值观察v0波形变化,并找出当f接近什么值的时候,电路近似一个反响比例运算电路。 2、同相输入比例运算电路 用741组成一个同向型电压/电流转换电路,并完成表中所列数据的测量。 3精密半波整流电路: (1)、依照10-1连接电路,原件参数:R1=R2=10K?,同时在电位器和±15V 电源之间接入510?限流电阻。 (2)、Vi输入一个频率为100Hz的正弦交流信号,有效值分别为5V、1V、10mV,用示波器观察输入输出信号波形,对结果进行分析比较。 (3)、用示波器的X-Y显示方式测试该电路的电压传输特新,调节Vi幅度,找出输出的最大值V omax。 4、精密全波整流电路 (1)、图10-2的精密全波整流电路如下图。R=10K?,电源电压±10V,二极管为1N4148。 (2)、搭接电路,重复半波整流电路(2)(3)的内容。

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理-PID控制特性的实验研究——实验报告

自动控制原理-PID控制特性的实验研究——实验报告

2010-2011 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理 实验名称: PID控制特性的实验研究实验教室: 6111 指导教师: 小组成员(姓名,学号): 实验日期:2010 年月日评分:

一、实验目的 1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和时域仿真的方法; 2、通过仿真实验,学习并掌握应用根轨迹分析系统性能及根据系统性能选择系统参数的方法; 3、通过仿真实验研究,总结PID 控制规律及参数变化对系统性能影响的规律。 二、实验任务及要求 (一)实验任务 针对如图所示系统,设计实验及仿真程序,研究在控制器分别采用比例(P )、比例积分(PI )、比例微分(PD )及比例积分微分(PID )控制规律和控制器参数(Kp 、K I 、K D )不同取值时,控制系统根轨迹和阶跃响应的变化,总结PID 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。具体实验内容如下: ) s (Y ) s (R ) 6)(2(1 ++s s ) (s G c 1、比例(P )控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。总结比例(P )控制的规律。 2、比例积分(PI )控制,设计参数Kp 、K I 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和K I 的变化情况。总结比例积分(PI )控制的规律。 3、比例微分(PD )控制,设计参数Kp 、K D 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

东南大学校园公共自行车系统的研究

项目年度: 2012年5月—2012年11月 项目名称:基于一卡通平台的校园内公共自行车系统的 探究 指导教师: 负 责 人: 小组成员: 所在院系: 经济管理学院 项目编号

目录 摘要 (3) ABSTRACT (3) 第一章绪论 (4) 1.1研究背景 (4) 1.2研究对象与范围 (4) 1.3文献综述 (4) 1.4研究方法与框架 (5) 第二章东南大学校园交通问题调查 (6) 2.1学校占地与人员概况 (6) 2.2物质空间 (7) 2.3动态交通流量 (9) 2.4静态交通调查 (12) 第三章东南大学九龙湖校区公共自行车策略 (13) 3.1公共自行车系统建立的原则 (13) 3.2 关键技术和实现 (13) 3.3 一卡通平台 (16) 3.4 系统的选址布局与路线设置 (19) 第四章东南大学九龙湖校区公共自行车系统初步方案 (20) 4.1前期准备 (20) 4.2公共自行车系统的管理办法(暂行) (20) 4.3公共自行车系统的实施方案 (21) 4.4提案可行性分析 (21) 4.5经费预算 (21) 第五章结论与局限 (22) 参考文献 (22)

基于一卡通平台的校园内公共自行车系统的探究 摘要 随着国家高等院校的快速发展和招生人数的迅速上升,当今大学校园交通问题己成为影响校园合理健康发展的重要因素。本文在借鉴和总结国内外大学校园交通发展理论和实践的基础上,针对最为普遍的自行车问题做出研究。并从校园内建立公共自行车的可行性、选址、运作与管理几个方面展开探讨,进一步提出了符合我校园特征的自行车规划方案。 1.现阶段我们校园有关自行车管理方面存在诸多问题急需解决; 2.通过发放问卷、实地走访和文献收集等方法去深入认识上述问题并得出初步分析结果与理论依据; 3.根据所得出的分析结果提出有关东南大学九龙湖校区的具体方便易于使用公共自行车系统的提案与结论。 关键词:大学校园,自行车,方案 ABSTRACT With the rapid development of the national institutions of higher education and the rapid rise in enrollment, the traffic problems of today's college campuses has become an important factor affecting the campus’ reasonably healthy development. On the basis of the reference and summary of the theory and practice of domestic and foreign university campus’most common traffic problems, and to establish the feasibility of public bicycle from the campus site discusses further aspects of the operation and management of the proposed bicycle planning programs in line with the characteristics of our campus. 1. Now there are many problems need to be resolved in our campus bike management; 2. Through the issuance of questionnaires, field visits and literature collection-depth understanding of the problem and come to a preliminary analysis of the results and the theoretical basis; 3. In accordance with the results of the analysis derived proposals and conclusions about the Southeast University Jiulonghu campus convenience of easy-to-use public bike system. Keywords: university campus, bikes, programs

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

PID自控原理实验报告

自动控制原理实验 ——第七次实验

一、实验目的 (1)了解数字PID控制的特点,控制方式。 (2)理解和掌握连续控制系统的PID控制算法表达式。 (3)了解和掌握用试验箱进行数字PID控制过程。 (4)观察和分析在标PID控制系统中,PID参数对系统性能的影响。 二、实验容 1、数字PID控制 一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。模拟PID控制框图如下: 输出传递函数形式: ()1 () ()p i d U s D s K K K s E s s ==++ 其中Kp为调节器的比例系数,Ti为调节器的积分常数,Td是调节器的微

分常数。 2、被控对象数学模型的建立 1)建立模型结构 在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID 整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为: 0001 ()1 s G s K e T S τ-=? + 这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。 001211 ()11 G s K T S T S =? ?++ 2)被控对象参数的确认 对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认0T 和τ,以达到转换成有时延的单容被控过程的目的。单位阶跃输入实验辨识的原理方框如图3-127所示。 对于不同的 、 和K 值,得到其单位阶跃输入响应曲线后,由 010()0.3()Y t Y =∞和020()0.7()Y t Y =∞得到1t 和2t ,再利用拉氏反变换公式得到

PID控制实验报告,DOC

实验二数字PID 控制 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。 一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I p i T k k T k k == ,,e 为误差信号(即PID 控制器的输入) ,u 为控制信号(即控制器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。 二、连续系统的数字PID 控制仿真 连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 1.Ex3设被控对象为一个电机模型传递函数Bs Js s G += 21 )(,式中 J=0.0067,B=0.1。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。 因为Bs Js s U s Y s G +==21 )()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则?? ???+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 functiondy=ex3f(t,y,flag,para) u=para; J=0.0067;B=0.1; dy=zeros(2,1); dy(1)=y(2);

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

PID实验报告

实验题目:PID控制实验 学生姓名:学号: 区队:日期: 学科名称现代控制系统实验 实验目的 1.理解一阶倒立摆的工作机理及其数学模型的建立及简化的方法;掌握使用Matlab/Simulink软件对控制系统的建模方法; 2.通过对一阶倒立摆控制系统的设计,理解和掌握闭环PID控制系统的设 计方法; 3.掌握闭环PID控制器参数整定的方法;理解和掌握控制系统设计中稳定 性、快速性的权衡以及不断通过仿真实验优化控制系统的方法。 实验设备倒立摆实验箱、MATLAB6.5 实验原理PID控制原理分析: 由前面的讨论已知实际系统的物理模型: Kp=30,Ki=0,Kd=0.5 60 122 .6 ) ( 2- = s s G 对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。系统控制结构框图如图3-37,图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。 图1 PID控制结构框图 其中s K s K K s KD D I P + + =)( 此次实验只考虑控制摆杆的角度,小车的位置是不受控的,即摆杆角度的单闭环控制,立起摆杆后,会发现小车向一个方向运动直到碰到限位信号。那么要使倒立摆稳定在固定位置,还需要增加对电机位置的闭环控制,这就形成了摆杆角度和电机位置的双闭环控制。立摆后表现为电机在固定位置左右移动控制摆杆不倒。

实验步骤: 1、使用MATLAB/Simulink 仿真软件建立以下控制模型: 图2 PID 控制模块组成 2、按照PID 参数整定方法调整PID 参数,设计PID 控制器。 3、在倒立摆教学实验软件中进行PID 控制器的仿真验证。 实验结果: 1、PID 参数整定: 设置PID 控制器参数,令Kp=1,Ki=0,Kd=0,仿真得到以下图形: 012345678910 00.5 1 1.5 2 2.53 3.5 4 4.5 x 1030时间t/s 摆杆角度Kp=1,Ki=0,Kd=0 从图中看出,曲线发散,控制系统不稳定。令Kp=20,Ki=0,Kd=0,仿真得到以下图形: 0246810 00.5 1 1.5 22.533.5 4 时间t/s 摆杆角度 Kp=20,Ki=0,Kd=0

东南大学计算方法与实习上机实验一

东南大学计算方法与实习实验报告 学院:电子科学与工程学院 学号:06A12528 姓名:陈毓锋 指导老师:李元庆

实习题1 4、设S N=Σ (1)编制按从大到小的顺序计算S N的程序; (2)编制按从小到大的顺序计算S N的程序; (3)按两种顺序分别计算S1000,S10000,S30000,并指出有效位数。 解析:从大到小时,将S N分解成S N-1=S N-,在计算时根据想要得到的值取合适的最大的值作为首项;同理从小到大时,将S N=S N-1+ ,则取S2=1/3。则所得式子即为该算法的通项公式。 (1)从大到小算法的C++程序如下: /*从大到小的算法*/ #include #include #include using namespace std; const int max=34000; //根据第(3)问的问题,我选择了最大数为34000作为初值 void main(){ int num; char jus; double cor,sub; A: cout<<"请输入你想计算的值"<<'\t'; cin>>num; double smax=1.0/2.0*(3.0/2.0-1.0/max-1.0/(max+1)),temps; double S[max]; // cout<<"s["<num;){ temps=smax; S[n]=temps; n--; smax=smax-1.0/((n+1)*(n+1)-1.0); } cor=1.0/2.0*(3.0/2.0-1.0/num-1.0/(num+1.0)); //利用已知精确值公式计算精确值sub=fabs(cor-smax); //double型取误差的绝对值 cout<<"用递推公式算出来的s["<>jus; if ((int)jus==89||(int)jus==121) goto A; }

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

东南大学数学实验报告(1)

高等数学数学实验报告实验人员:院(系) 土木工程学院学号05A11210 姓名李贺__ 实验地点:计算机中心机房 实验一空间曲线与曲面的绘制 一、实验题目:(实验习题1-2) 利用参数方程作图,做出由下列曲面所围成的立体图形: 2 2 2 2 ⑴ Z 1 X y,x y X 及xOy平面; ⑵ z xy,x y 1 0 及z 0. 二、实验目的和意义 1、利用数学软件Mathematica绘制三维图形来观察空间曲线和空间曲面图形的特点,以加 强几何的直观性。 2、学会用Mathematica绘制空间立体图形。 三、程序设计 空间曲面的绘制 x x(u, V) y y(u,v),u [u min , max ],V [V min , V max ] 作参数方程z z(u,v)所确定的曲面图形的Mathematica命令

为: ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umi n,umax}. {v,vmi n,vmax}, 选项] ⑵ t2 = ParametricPlotJD [{u f 1 v}, [u^ ?0?§尸1}^ (v, 0F 1}, HxegLabel {"x" 11 y" J1 z" }. PlotPolnts t 5B, Dlspla^unction -> Identity」: t3 = ParametricPlotSD[{u f 0}* (u, -U.J5』1}^ {v z-0.5, 1} f AxesLabel {"x" 11y" 11 z" PlotPoints 50, Display1 unction — Identity]: Slinw[tl z t2, t3 f DisplayFunction -> SDlsplajfunction] 四、程序运行结果 ⑴ (2) 五、结果的讨论和分析 1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。 2、可以通过mathematica软件作出多重积分的积分区域,使积分能够较直观的被观察。

2018年自控原理实验报告 修改-范文模板 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 自控原理实验报告修改 实验报告 课程自动控制原理实验报告专业学号 指导教师姓名 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节{ EMBED Equation.3 |G1(s)?1和; ② 惯性环节和 ③ 积分环节 ④ 微分环节 ⑤ 比例+微分环节(PD)和 ⑥ 比例+积分环节(PI)和 三、实验结果及分析 实验过程

① 比例环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 分析知: 1、比例环节是一条平行于实轴的直线。 2、比例系数越大,越远离实轴。 ② 惯性环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 分析知: 惯性环节s因子系数越小,系统越快速趋于稳定。 ③ 积分环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 ④ 微分环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 分析知: 积分环节先趋于稳定,后开始开始不稳定。 微分环节开始稳定中间突变而后又趋于稳定。 ⑤ 比例+微分环节(PD)

东南大学九龙湖校区环境因素分析

东南大学九龙湖校区选址的环境因素分析 根据有关建设项目环境保护设计规定及新校区选址的实际情况,新校区选址的环境因素评价内容主要包括土地位置、土地面积及形状、基础设施、自然环境及环境污染五项内容。 (1)土地位置 新校区位于开发区南部的九龙湖畔,机场高速路以东,宁溧路以西,南京市二环路以北,地势开阔、交通便利、环境优美,距四牌楼校区约20公里。江宁区现已有河海大学、南京航空航天大学新校区,南汽菲亚特、熊猫爱立信等国内知名的大学和企业在区内落户;正在开工建设的IT工业园、外贸工业园、台湾机电工业园、纺织工业园等产业园区也吸引了众多的客商入驻,目前是南京三个开发区中引进资金最多、成长最快、发展势头最好的开发区。。江宁区更是南京市未来发展的主要区域,九龙湖校区所处的江宁经济技术开发区位于南京市区与禄口机场之间。区内路网纵横、山清水秀、基础设施完备、区位优势明显。 九龙湖校区周边毗邻主要公路,且北接南师附中,南临工业园区,扩建难度较大,另外,校园南门外为南京绕城高速公路,大型货车较多,车速较快,容易造成学生交通事故。(2)土地面积及形状 九龙湖校区占地面积相对庞大,形状为规则的矩形,便于进行远期规划建设,并且与其他形状相比各建筑间的平均路径较短。九龙湖校区地势平坦,无明显凹凸,以中心圆环为最高点,标高为10米,其内环道路和周围地形标高为9米左右,因此起伏不大,但仍以中心为最高点,有利于中心景观带及其他经管设计,但土质多为疏松沙土,土质不好,不利于植被生长,从某种程度上造成了九龙湖校区植被成活率不高。 (3)基础设施 九龙湖校区,位于开发区南部的九龙湖畔,机场高速路以东,宁溧路以西,南京市二环路以北,地势开阔、交通便利,距四牌楼校区也仅约20公里,学校之间设有直达校车,方便快捷。学校东门、西门、北门均有多班公交直达地铁站,学生老师的出行也很方便。九龙湖校区所处的江宁经济技术开发区是目前南京三个开发区中引进资金最多、成长最快、发展势头最好的开发区,区内路网纵横、基础设施完备,水电、道路、通讯等基础设施都充分满足校区发展需要。 这些都为学校今后充分发挥以工为特色、多学科综合的优势,与企业和社会形成良性互动,更好地为经济建设和社会发展服务,提供了极为有利的外部环境。

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

相关主题
文本预览
相关文档 最新文档