当前位置:文档之家› 全等三角形模型(教案)

全等三角形模型(教案)

全等三角形模型

适用学科初中数学适用年级初中一年级

适用区域江苏课时时长(分钟)60

知识点全等三角形的性质、全等三角形的判定、直角三角形的全等的判定

教学目标熟练掌握三角形全等的判定定理,能够灵活运用这些定理进行推理和证明;能够从模型的观点去理解复杂的几何图形的推理。

教学重点熟练掌握三角形全等的判定定理

教学难点能够从模型的观点去理解复杂的几何图形的推理

教学过程

一、课堂导入

【问题】如图,你能感觉到哪两个三角形全等吗?

【思考】△ABD≌△ACE

二、复习预习

【问题】工人师傅常用角尺平分一个任意角,作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON.移动角尺,使角尺两边相同的刻度分别与M、N重合.则过角尺顶点P的射线OP便是∠AOB的角平分线,为什么?请你说明理由.

【解答】OP平分∠AOB

理由如下:

∵OM=ON,PM=PN,OP=OP

∴△MOP≌△NOP(SSS)

∴∠MOP=∠NOP

∴OP平分∠MON

(即OP是∠AOB的角平分线)

三、知识讲解

考点1

全等三角形性质:

全等三角形的对应边相等,对应角相等,对应边上的高、中线相等,对应角的平分线相等。

考点2

全等三角形的判定:

所有三角形SAS、ASA、AAS、SSS;直角三角形HL

四、例题精析

【例题1】

【题干】如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.

【答案】证明:∵正方形ABCD,∴∠ABC=∠C=90°,AB=BC.

∵AE⊥BF,∴∠AGB=∠BAG+∠ABG=90°,

∵∠ABG+∠CBF=90°,∴∠BAG=∠CBF.

在△ABE和△BCF中,

BAE CBF AB CB

ABE BCF

∠=∠

?

?

=

?

?∠=∠

?

∴△ABE≌△BCF(ASA),∴AE=BF.

【解析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案.

【例题2】

【题干】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;

(2)求证:AE⊥CF.

【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,

∵BE⊥BF,∴∠FBE=90°,

∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,

在△AEB和△CFB中,

AB BC

ABE CBF BE BF

=

?

?

∠=∠

?

?=

?

∴△AEB≌△CFB(SAS),∴AE=CF.(2)延长AE交BC于O,交CF于H,

∵△AEB≌△CFB,∴∠BAE=∠BCF,

∵∠ABC=90°,∴∠BAE+∠AOB=90°,

∵∠AOB=∠COH,∴∠BCF+∠COH=90°,∴∠CHO=90°,∴AE⊥CF

【解析】(1)利用△AEB≌△CFB来求证AE=CF.

(2)利用全等三角形对应角相等、对顶角相等、等量代换即可证明.

【例题3】

【题干】(2014?顺义区一模)已知:如图1,△MNQ中,MQ≠NQ.

(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:

如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D.求证:CD=AB.

【答案】:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.

主要根据“SSS”判定三角形的全等.

(2)如图3,

延长DA至E,使得AE=CB,连结CE.

∵∠ACB+∠CAD=180°,∠DAC DAC +∠EAC=180°∴∠BAC BCA =∠EAC

在△EAC和△BAC中,

AE CE

AC CA

EAC BCN

=

?

?

=

?

?∠=∠

?

∴△AECEAC≌△BCA (SAS),∴∠B=∠E,AB=CE

∵∠B=∠D,∴∠D=∠E,∴CD=CE,∴CD=AB.

【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.

(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.

【例题4】

【题干】问题背景:

如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=1

∠BAD,上述结论

2

是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

【答案】问题背景:EF=BE+DF;

探索延伸:EF=BE+DF仍然成立.

证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,

在△ABE和△ADG中,

DG BE

B ADG

AB AD

=

?

?

∠=∠

?

?=

?

,∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,∵∠EAF=1

2

∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,

∴∠EAF=∠GAF,

在△AEF和△GAF中,

AE AG

EAF GAF

AF AF

=

?

?

∠=∠

?

?=

?

,∴△AEF≌△GAF(SAS),∴EF=FG,

∵FG=DG+DF=BE+DF,∴EF=BE+DF;

实际应用:如图,连接EF,延长AE、BF相交于点C,

∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=1

2

∠AOB,

又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,

∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.

相关主题
文本预览
相关文档 最新文档