当前位置:文档之家› 除臭设备设计计算书讲解-共10页

除臭设备设计计算书讲解-共10页

除臭设备设计计算书讲解-共10页
除臭设备设计计算书讲解-共10页

8、除臭设备设计计算书

8.1、生物除臭塔的容量计算

1#生物除臭系统

参数招标要求计算过程

号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目

1 2 设备尺寸

处理能力

2.5×2.0×

3.0m

2019m3/h Q=2019m3/h

V=处理能力Q/(滤床接触面积m2)/S=2019/

(2.5×2)/3600=0.1111m/s

3 空塔流速<0.2 m/s

臭气停留

时间4

5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa

设备风阻<600Pa

2#生物除臭系统

参数

招标要求计算过程

号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目

1 2 设备尺寸

处理能力

4.0×2.0×3.0m

3000m3/h Q=3000m3/h

V=处理能力Q/(滤床接触面积m2)/S=3000/

(4×2)/3600=0.1041m/s

3 空塔流速<0.2 m/s

臭气停留

时间4

5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa

设备风阻<600Pa

3#生物除臭系统

参数招标要求计算过程

号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目

1 2 设备尺寸

处理能力

7.5×3.0×3.3m(两台)

20190m3/h Q=20190m3/h

V=处理能力Q/2(滤床接触面积m2)/S=10000/

(7.5×3.0)/3600=0.1234m/s

3 空塔流速<0.2 m/s

臭气停留

时间4

5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa

设备风阻<600Pa

4#生物除臭系统

参数

招标要求计算过程

号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目

1 2 设备尺寸

处理能力

7.5×3.0×3.0m(两台)

18000m3/h Q=18000m3/h

V=处理能力Q/2(滤床接触面积m2)/S=18000/

(7.5×3)/3600=0.1111m/s

3 空塔流速<0.2 m/s

臭气停留

时间4

5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa

设备风阻<600Pa

8.2、喷淋散水量(加湿)的计算

生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

1号除臭单元总风量:2019m 3/h ,设计 1套 8.0×5.0×3.0m 生物滤池除臭设备。

根据《环保设备设计手册》,实际选用液气比为:G/L=500

再根据《化工工艺设计手册》,额定流量取正常流量的 1.0~1.1倍,因此我司选用 液气比为 G/L=500。 则循环水泵流量为

a: Q 水泵=L/G×Q 气量=2019/500=4m 3/h

因此,选用水泵参数:流量为 4m 3/h ,扬程为 15m ,功率为 0.55kW 。 同理可得喷淋水泵及 2#、3#、4#系统的散水量的计算过程。

8.3、化学除臭系统能力计算

已知条件:

处理风量:V h =2019m 3/h 水的密度(20℃)ρL =998.2 kg/m 3 废气温度,常温 T=20℃

废气密度(20℃,按空气密度计)ρV =1.205 kg/m 3 水的密度和液体的密度之比? =1

填料因子(1/m )φ =274(空心多面球 Φ50) 液体粘度(mPa·S )μ L =1.005(20℃) 相关计算: 1)泛点气速 u f

0.5

? ρ ? 由 L =0.0632查填料塔泛点和压降通用关系图乱堆填料泛点线可得 ? ? h

V h L ρ ? ? V u f 2?φρ V g ρL μ 0.2

L

=0.037;

(1)

根据已知条件,并由式(1)可计算出泛点气速 u f =1.15m/s 2)塔体相关计算

取设计气速为泛点气速 70%,则 u=0.805m/s ,取 0.8 m/s 在设计气速下,喷淋塔截面积 A=V h /u=0.7m 2

喷淋塔为卧式,故设计为矩形截面,则截面为 0.7m×1m 。 2)塔设备有效高度 h 计算

设备设计停留时间 t=1.5s (填料段)

则在设计气速下,设备填料层高度 h=u*t=1.44m ;取 h=1.5m ,另设备底部水箱及布气 段高度取 h 1=0.9m ,除雾层高度 h 2=0.2,喷淋所需高度 h 3=0.4m ,塔设备高度 H=h+h 1+h 2+ h 3=1.5+0.9+0.2+0.4=3.0m 。 3)液体喷淋量核算: 采用水为吸收剂。

由液气比(L/ m 3)一般为 2~3之间,这里取 2 则喷淋水量 L h =V h *2=4 m 3/h 4)压降计算

填料层高度:取 1~1.5m ,这里为 1.5m;填料为 Φ50空心多面球

0.5

? ρ ? =0.0632; u 2 ?φρ V μL 0.2 =0.018;查填料塔泛点和压降通用关 在设计气速下, L ?

? h

L V h ρ V g ρL ? ? 系图可知每米填料压降约 ΔP=300Pa 5)喷嘴数量 n 喷嘴覆盖面积 A 0; 2

θ

A 0 = πH 2 tg

(3)

2

其中,H 为喷嘴距离填料高度 m (这里取 H=0.3m )

θ为喷嘴喷雾角度(根据喷嘴不同有 120°、90°、60°等,这里可选 θ=90°) 喷嘴数量 n n = αA (4)

A 0

α为喷淋覆盖率,一般取 200%~300%(这里取 α=300%) A 为塔截面积 m 2

A 0为单个喷嘴覆盖面积 m 2

根据公式(3)可得 A 0=0.283,由(4)可计算出 n=6.14,圆整后得喷嘴数量 7个。由 于喷淋水量为 4m 3/h,则每个喷嘴的小时喷淋量为 4/7=0.57 m 3/h

8.4、加药系统计算

污水处理厂高峰浓度经验值,在化学除臭设备正常运转的情况下,当进口 H 2S 浓

度在 20ppm 和设计空气流量时,须能达到 99%的最终除去率。

H 2S : NH 3:

15~30mg/m 3 10~15mg/m 3

臭味浓度: 2019~5000 已知条件:

25%NaOH 密度(20℃):ρ1=1.28g/cm 3 93%H 2SO 4密度(20℃):ρ2=1.83g/cm 3 12%NaClO 密度(20℃):ρ3=1.1g/cm 3 H 2S 初始浓度:30mg/m 3 NH 3初始浓度:15mg/m 3

1#化学除臭设备(废气处理量 2019m 3/h):

根据化学反应式

H 2S + 2NaOH → Na 2S + 2H 2O Na 2S + 4NaClO → Na 2SO 4 + 4NaCl

2NH 3 + H 2SO 4 →(NH 4)2SO 4 1) 2)

3)

由已知条件及式 1),可计算 H 2S 去除 99%后 NaOH 消耗量 99%?Q 废气 ?C H 2S ? 2? 40

M NaOH = =140 g/h

34

由 25%NaOH 密度为 1.28g/cm 3,可计算出 25%NaOH 消耗量为 140/(1.28*25%*1000)=0.45L/h

由已知条件及式 2),可计算 NaClO 消耗量 99%?Q 废气 ?C H 2S ?78 ? 4?74.5

=526 g/h

M NaClO = 34 78

由 12%NaClO 密度为 1.1g/cm 3,可计算出 12%NaClO 消耗量为 526/(1.1*12%*1000)=4L/h

由已知条件及式 3),可计算 NH 3去除 98%后 H 2SO 4消耗量 98%?Q 废气 ?C NH ?98

M H2SO4 = 3

=85 g/h

2?17

由 93% H 2SO 4密度为 1.83g/cm 3,可计算 93% H 2SO 4消耗量为 85/(1.83*93%*1000)=0.05L/h

2#化学除臭设备(废气处理量 3000m 3/h):

根据化学反应式

H 2S + 2NaOH → Na 2S + 2H 2O Na 2S + 4NaClO → Na 2SO 4 + 4NaCl 2NH 3 + H 2SO 4 →(NH 4)2SO 4

1)

2)

3)

由已知条件及式 1),可计算 H 2S 去除 99%后 NaOH 消耗量 99%?Q 废气 ?C H 2S ? 2? 40

M NaOH = =210 g/h

34

由 25%NaOH 密度为 1.28g/cm 3,可计算出 25%NaOH 消耗量为 210/(1.28*25%*1000)=0.66L/h

由已知条件及式 2),可计算 NaClO 消耗量 99%?Q 废气 ?C H 2S ?78 ? 4?74.5

=789 g/h

M NaClO = 34 78

由 12%NaClO 密度为 1.1g/cm 3,可计算出 12%NaClO 消耗量为 789/(1.1*12%*1000)=6L/h

由已知条件及式 3),可计算 NH 3去除 98%后 H 2SO 4消耗量 98%?Q 废气 ?C NH ?98

M H2SO4 = 3

=127 g/h

2?17

由 93% H 2SO 4密度为 1.83g/cm 3,可计算 93% H 2SO 4消耗量为 127/(1.83*93%*1000)=0.075L/h

3#化学除臭设备(废气处理量 20190m 3/h):

根据化学反应式

H 2S + 2NaOH → Na 2S + 2H 2O Na 2S + 4NaClO → Na 2SO 4 + 4NaCl 2NH 3 + H 2SO 4 →(NH 4)2SO 4

1)

2)

3)

由已知条件及式 1),可计算 H 2S 去除 99%后 NaOH 消耗量 99%?Q 废气 ?C H 2S ? 2? 40

M NaOH = =1398 g/h

34

由 25%NaOH 密度为 1.28g/cm 3,可计算出 25%NaOH 消耗量为 1398/(1.28*25%*1000)=4.4L/h

由已知条件及式 2),可计算 NaClO 消耗量

99%?Q 废气 ?C H 2S ?78 ? 4?74.5

=5259 g/h

M NaClO = 34 78

由 12%NaClO 密度为 1.1g/cm 3,可计算出 12%NaClO 消耗量为 5259/(1.1*12%*1000)=40L/h

由已知条件及式 3),可计算 NH 3去除 98%后 H 2SO 4消耗量 98%?Q 废气 ?C NH ?98

M H2SO4 = 3

=848 g/h

2?17

由 93% H 2SO 4密度为 1.83g/cm 3,可计算 93% H 2SO 4消耗量为 848/(1.83*93%*1000)=0.5L/h

4#化学除臭设备(废气处理量 18000m 3/h):

根据化学反应式

H 2S + 2NaOH → Na 2S + 2H 2O Na 2S + 4NaClO → Na 2SO 4 + 4NaCl 2NH 3 + H 2SO 4 →(NH 4)2SO 4 3)

1)

2)

由已知条件及式 1),可计算 H 2S 去除 99%后 NaOH 消耗量 99%?Q 废气 ?C H 2S ? 2? 40

M NaOH = =1258 g/h

34

由 25%NaOH 密度为 1.28g/cm 3,可计算出 25%NaOH 消耗量为 1258/(1.28*25%*1000)=3.95L/h

由已知条件及式 2),可计算 NaClO 消耗量 99%?Q 废气 ?C H 2S ?78 ? 4?74.5

=4733 g/h

M NaClO = 34 78

由 12%NaClO 密度为 1.1g/cm 3,可计算出 12%NaClO 消耗量为 4733/(1.1*12%*1000)=36L/h

由已知条件及式 3),可计算 NH 3去除 98%后 H 2SO 4消耗量 98%?Q 废气 ?C NH ?98

M H2SO4 = 3

=767 g/h

2?17

由 93% H 2SO 4密度为 1.83g/cm 3,可计算 93% H 2SO 4消耗量为 767/(1.83*93%*1000)=0.45L/h

8.5、除臭风机能力计算

生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设

有观察窗等,其具体计算如下:

1号除臭单元总风量:2019m 3/h ,设计 1台风机,技术参数: Q=2019m3/h,P=1900Pa,N=4Kw 。 风机选型计算

恶臭气体通过收集输送系统,通过风机的抽吸作用进入生物除臭设备,现对风机 进行全压计算。 管道阻力计算

总设计风量为 Q=2019 m 3/h ,计算公式如下: 风管流速计算:

Q :管段风量-------m 3/h ; A :管段截面积-------m 2, A=Πd 2/4,d 为风管半径

沿程摩擦压力损失:

h = λ l u 2

= h ?l f

d 2g h :比压阻-------

引风管主要管段 1:

Q=2019m 3/h ,查管道内气体最低速度表,取 V=12m/s ,则风管截面积为:

Q 2019m /h 3

= 0.069m

A = 3600?V = 2

8m / s ?3600s 得 r=0.149m ,取整得 d=0.298m ,选 DN300管径。 验证气体流速:

Q

2019m /h 3

= 8.05m /S

V = 3600? A = 0.069?3600s 可知,符合招标文件要求,

查表可查得各管段的管径及沿程阻力,如下表所示。

主管道沿程阻力计算表

序号1

流量

(m3/h)

2019

1300

700

数量

(米)

5

单位长度阻沿程阻力

主要技术规格流速(m/s)

力(Pa) (Pa)

?300

?300

8.05

5.8

3.01 15

2 65 1.27 83

3 52 ?200 6.18

5.41 2.14 111

153

362

4 300 60 ?150 2.55

管道动压 Pa

合计沿程阻力 Pa 362

各管件局部摩擦系数(查手册)为:风管入口,根据局部阻力计算公式,90°弯头、三通,软

得到各局部阻力损失统计结果如下:

管道局部阻力损失计算表

序号局部阻力

风阀个数单个阻力 Pa 阻力 Pa

1 2 3 4

4 10

10

10

8

40

490

10 弯头、三通

软接

49

1

变径8 64

合计总阻力 Pa 604

综上所述,管道阻力=沿程阻力+局部阻力=362+604=966Pa。 设备阻力计算

生物滤床阻力计算

查表可得以下参数:

颗粒体积表面积平均直径(米): 0.003

气体密度(千克/立方米):1.2

气体粘度(帕·秒)×10-5: 1.81

空床空隙率(%):0.51

通过上述公式计算可得雷诺系数R em=9.4712,阻力系数f=17.59,从而固定床阻力损失P为352Pa。总设备阻力=352*2=704Pa

风机设计选型

综合设备阻力、管道阻力及烟囱段阻力,则系统总风压损失约为1373Pa。根据招标文件要求,风压在最大臭气量的条件下,具有高于系统压力损失10%的余量,风压损失如下表所示:

设备阻力管道阻力设计余量 10% 风压损失

704Pa 966Pa 167Pa 1837Pa

风压取整得2019Pa。综上所述并且风量根据招标文件要求,风机风量为2019m3/h,风压为1900Pa,功率:4kW,品牌:台湾顶裕风机。

同理可算2/3/4号除臭单元的风机能力计算过程。

设备设计计算与选型

第三部分 设备设计计算与选型 3.1苯∕甲苯精馏塔的设计计算 通过计算D=1.435kmol/h , η=F D F D x x ,设%98=η可知原料液的处理量为F=7.325kmol/h ,由于每小时处理量很小,所以先储存在储罐里,等20小时后再精馏。故D=28.7h koml ,F=146.5kmol/h ,组分为18.0x =F ,要求塔顶馏出液的组成为90.0x D =,塔底釜液的组成为01.0x W =。 设计条件如下: 操作压力:4kPa (塔顶表压); 进料热状况:自选; 回流比:自选; 单板压降:≤0.7kPa ; 全塔压降:%52=T E 。 3.1.1精馏塔的物料衡算 (1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 11.78M A =kg/kmol 甲苯的摩尔质量 13.92M B =kg/kmol 18.0x =F 90.0x D = 01.0x W = (2) 原料液及塔顶、塔底产品的平均摩尔质量 =F M 0.18×78.11+(1-0.18)×92.13=89.606kg/kmol =D M 0.9×78.11+(1-0.9)×92.13=79.512kg/kmol =W M 0.01×78.11+(1-0.01)×92.13=91.9898kg/kmol (3) 物料衡算 原料处理量 F=146.5kmol/h 总物料衡算 146.5=D+W 苯物料衡算 146.5×0.18=0.9×D+0.01×W 联立解得 D=27.89kmol/h W=118.52kmol/h

3.1.2 塔板数的确定 (1)理论板层数T N 的求取 苯—甲苯属理想物系,可采用图解法求理论板层数。 ①由物性手册查得苯—甲苯物系的气液平衡数据,绘出x —y 图,见下图3.1 图3.1图解法求理论板层数 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e (0.45,0.45)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 667.0y q = 450.0x q = 故最小回流比为 1.1217 .0233 .045.0667.0667.09.0x y y x q q q min ==--= --= D R 取操作回流比为 R=22.21.12min =?=R ③求精馏塔的气、液相负荷 L=RD=2.2×27.89=61.358kmol/h

给排水计算书

给排水计算书 1.给排水设计依据: 1.《人民防空地下室设计规范》 GB50038-2005 2.《人民防空工程防化设计规范》 RFJ013-2010 3.《人民防空工程设计防火规范》 GB50098-2009 4.《人民防空工程柴油电站设计标准》 (RFJ2-91) 5.《人民防空医疗救护工程设计标准》 (RFJ005-2011) 6.《建筑给水排水设计规范》 GB50015-2003(2009版) 2.工程概况: 本工程平时功能为汽车库,战时为甲类防空地下室,共含有11个防护单元、1个移动电站、1个固定电站。其中8个防护单元防护等级为二等人员掩蔽部,2个防护单元为物资库,防护等级为核6级、常6级,防化等级为丙级;1个防护单元为中心医院,防护等级为核5级常5级,防化等级为乙级。 三.战时水箱容积计算: 1.防护单元一(二等人员掩蔽所):

a 战时生活用水量 掩蔽人数m=1050, q生=4L/人.日生活储水时间t=7天 Q1=1.15m.q.t/1000=1.15×1050×4×7/1000=33.8m3 口部洗消水量 3m3 人员简易洗消用水量0.6 m3 Q生=33.8+3+0.6=37.4m3取38m3 设38T生活水箱一个:尺寸为5000×4500×2000 临战安装 b战时饮用水量 掩蔽人数m=1050, q生=4L/人.日生活储水时间t=15天 Q饮=1.15m.q.t/1000=1.15×1050×4×15/1000=72.4m3取76m3 设38T饮用水箱两个:尺寸分别为:5000×4500×2000 临战安装 2.防护单元二(二等人员掩蔽所): a 战时生活用水量 掩蔽人数m=1000, q生=4L/人.日生活储水时间t=7天 Q1=1.15m.q.t/1000=1.15×1000×4×7/1000=32.2m3 口部洗消水量 3m3 人员简易洗消用水量0.6 m3 Q生=32.2+3+0.6=35.8m3取38m3

UASB的设计计算

UASB 的设计计算 6.1 UASB 反应器的有效容积(包括沉淀区和反应区) 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%) V= 3028560 .585 .02.111500m N E QC v =??= 式中Q —设计处理流量d m /3 C 0—进出水CO D 浓度kgCOD/3 m E —去除率 N V —容积负荷,)//(0.53d m kgCOD N v = 6.2 UASB 反应器的形状和尺寸 工程设计反应器3座,横截面积为矩形。 (1) 反应器有效高为m h 0.6=则 横截面积:)(4760 .62856 2m h V S =有效= = 单池面积:)(7.1583 4762m n S S i === (2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。 设池长m l 16=,则宽m l S b i 9.916 7 .158=== ,设计中取m b 10= 单池截面积:)(16010162'm lb S i =?== (3) 设计反应器总高m H 5.7=,其中超高0.5m 单池总容积:)(1120)5.05.7(160'3 ' m H S V i i =-?=?= 单池有效反应容积:)(96061603 'm h S V i i =?=?=有效 单个反应器实际尺寸:m m m H b l 5.71016??=?? 反应器总池面积:)(48031602 ' m n S S i =?=?= 反应器总容积:)(336031120'3 m n V V i =?=?=

高层建筑给排水课程设计计算书

建筑给排水课程设计说明书及计算书

目录 设计依据________________________________________________________ - 0 - 设计围__________________________________________________________ - 0 - 工程概况________________________________________________________ - 0 -

生活给水系统计算________________________________________________ - 1 - 1、高层给水计算_____________________________________________ - 1 - 1)各卫生间给水系统计算表_______________________________ - 2 - 2)顶层用户给水系统干管计算表___________________________ - 9 - 3)高层用户给水系统计算表______________________________ - 11 - 2、低层给水计算____________________________________________ - 13 - 3、水表选择________________________________________________ - 17 - 4、地下室加压水泵的选择____________________________________ - 18 - 生活污水排水系统计算___________________________________________ - 19 - 1、住宅卫生间排水计算______________________________________ - 19 - 2、厨房排水计算____________________________________________ - 23 - 3、商场公共卫生间排水计算__________________________________ - 26 - 4、排水附件的设置__________________________________________ - 28 - 5、检查井的设置____________________________________________ - 29 - 6、化粪池的设置____________________________________________ - 29 - 消火栓系统计算_________________________________________________ - 29 - 1、消火栓的布置___________________________________________ - 29 - 2、消防水量________________________________________________ - 31 - 3、水枪充实水柱高度的确定__________________________________ - 31 - 4、水枪喷嘴处所需压力计算__________________________________ - 32 - 5、水枪喷嘴出流量计算______________________________________ - 32 - 6、水带阻力计算____________________________________________ - 33 - 7、消火栓口所需压力计算____________________________________ - 33 - 8、消防系统管材选择________________________________________ - 33 - 9、水力计算________________________________________________ - 33 -

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

厌氧塔试水方案

厌氧塔试水方案 厌氧塔在施工结束后要进行充水检验是否有渗漏点及基础沉降观测,以保证投入运行时能够达到设计施工标准。厌氧系统设备按照下列标准执行,工艺和材料符合下列标准和规定的最新版本的要求: 1)《苏州科特环保设备有限公司企业标准》SP-037 2)《钢制焊接常压容器》JB4735-97 1、前期准备 1.1塔体制作安装完毕,塔体焊接的所有构件及附件应全部完工, 达到验收标准。塔内废铁、焊条以及废物清理干净,封门前请甲方、监理验收,形成验收文件。 1.2试水应有各个工种配合,具体要求铆焊、管道、电气、机装人 员协调处理。 2、试水步骤 2.1试水前测量塔体垂直度(取4监测点)及圆度(取4监测点) 并通过业主确认记录监测数据。 2.2 先向塔体内充水到1/4水位处,观察24小时后塔体垂直度及圆 度,无异常变化后充水到1/2处,同样观察。24小时,无异常变化后充水到3/4处,再观察24小时,无异常变化后将塔体充满水,再观察24小时。 2.3 充水过程中观察塔体是否存在渗漏、异常变形现象,如有异常 现象出现,应立即停止注水,检查并排除异常现象后恢复试水工

作。 3、基础沉降观测 在筒体下部取4个观测点,塔体充水到1/2高度时,进行一次观测,并与充水前的数据进行比对,计算出实际的不均匀沉降量,当未超过允许的不均匀沉降量时,在充水至3/4高度时,进行一次测量,若仍未超过允许的不均匀沉降量时,可继续充水至最高液位,48小时后,进行观测,当沉降无明显变化时,即为合格。当沉降有明显变化时,则保持最高液位,每天观测,直至沉降稳定为止。 4、技术要求 4.1 塔注水到最高液位并保持24小时后渗漏、无异常变形为合格。 4.2 如有渗漏时应将塔内水放至适当高度,将渗漏处返修补焊,再 重新进行盛水试验,直到不渗漏为止。 4.3 如在充水过程中发现基础发生不允许的沉降,应停止充水,待 处理后方可继续进行试验。 4.4 充水时应有人在现场值班,发异常情况应停止充水,并报告技 术负责人。 5、安全保证措施 5.1 充水时的操作人员在高空进行开阀门时,应系好安全带、防滑 保证措施。

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

给排水设计计算书

给排水设计计算书

万科红三期给排水设计计算书 一、生活给水 (一)用水量计算 1、保障房140户,2人/户,250L/人·日计,则最高日生活用水量=2X250X140/1000=70(m3/d); 2、住宅720户,3.5人/户,250L/人·日计,则最高日生活用水量 =3.5X250X720/1000=630(m3/d); 3、公寓324户,4人/户,300L/人·日计,则最高日生活用水量 =4X300X324/1000=388.8(m3/d); 4、办公楼建筑面积为29938.4m2,有效面积按60%建筑面积计,人均有效面积为6m2,则实际使 用人数约为3000人,50L/人·班计,则最高日生活用水量=50X3000/1000=150(m3/d); 5、商业建筑面积为19947.27m2,有效面积按80%建筑面积计,每m2营业厅面积6L/日,则最高 日生活用水量=19947.27X0.8X6/1000=95.7(m3/d)。 本工程分2个生活水池:生活水池和商业水池各一座,其中生活水池供保障房、住宅及幼儿园使用,公寓、办公楼和商业用水由商业水池供给。 生活水池容积:(70+630 )x20%=140m3 商业水池容积:(388.8+150+95.7)x20%=126.9m3,取130m3 (二)分区计算 地块周边市政管网水压极低,除地下车库冲洗水采用直供水外,所有楼层考虑加压供水。 住宅生活给水系统分高、低两个区:

低区: 4、5栋 3~14层, 6~8栋 2~14层,保障房3~14层 高区: 4~6栋 15~32层, 7、8栋 15~31层 商业给水系统分高、中、低两个区: 低区:-1~2层 中区:公寓:3~16层,办公楼3~11层(其中3层无卫生间) 高区:公寓:17~30层,办公楼12~22层 (Ⅰ)住宅低区: a)住宅: Ng4低= Ng5低=(4.75X4+4)X12=276 , Ng7低= Ng8低=(4.75X4+4)X13=299 Ng6低=(4.75+6)X2X13=279.5 b)保障房: Ng10低=4X10X12=480 查表得q4低≈4.4L/s ,q5低≈4.4L/s ,q6低≈4.4L/s ,q7低≈4.6L/s ,q8低≈4.6L/s ,管径为DN80 ;q10低≈6.52L/s ,管径为DN100 ; Ng总低=1909.5,查表得q总低=17.10L/s ,管径为DN150 ; 又∵H 低区=5+48.1+15+15=83.1m,实际值按计算值的1.05倍计,得H 低区 ≈87.3m ∴主泵DL65-16x6,工作时Q=9.0L/s,H=86m,N=15KW,3台,2用1备 辅泵DL50-15x6,工作时Q=3.8L/s,H=86m,N=5.5KW,1台 (Ⅱ)住宅高区: Ng4高= Ng5高=(4.75X4+4)X18=414 , Ng7高= Ng8高=(4.75X4+4)X17=391 Ng6低=(4.75+6)X2X17=365.5 查表得q4高≈5.6L/s ,q5高≈5.6L/s ,q6高≈5.2L/s ,q7高≈5.5L/s ,

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

设备基础计算书

设备基础计算书 1.计算依据 《动力机器基础设计规范》 (GB50040-96) 《建筑地基基础设计规范》 (GB50007-2002) 《混凝土结构设计规范》 (GB50010-2010) 《重载地面、轨道及特殊楼地面》(06J305) 《动力机器基础设计手册》 (中国建筑工业出版社) 2.工程概况 设备静载按G1=10t/m2=100KN/m2; 地基承载力特征值fa=180kPa; 采用C30混凝土,设备基础高度250mm,钢筋采用I级钢(HPB300) 根据所提资料计算160T冲床设备基础的承载力计算,设备基础根据设备脚架尺寸每边向外扩300mm进行计算。160T冲床设备基础示意图如下图所示 设备基础示意图 3.计算过程 设备基础正截面受压承载力计算() *fc*A=**1000000*A=*106A N=*G1*A =*105*A<*fcA 即设备基础正截面受压满足要求 3.2设备基础正截面受弯承载力计算 (仅计算长度方向,取土重度gma=20kN/m3,混凝土保护层厚度取30mm) pk=G1+G2=*105 +25*1000*= 单位宽度基地净反力 p=*( G1+G2-gma*h)=**103-20*103*=m 计算可得最大正弯矩为M=,支座最大负弯矩为M=根据()计算可得 基础底面计算配筋面积As1=565mm2 基础顶面计算配筋面积As2=258mm2 根据(GB50010-2010)取最小配筋率ρmin= 0. 2% 最小配筋面积为Asmin=%*1000*250=500 mm2 基础顶部和底部可配12200(As=565mm2) 3.3地脚螺栓抗倾覆验算(每个设备基础共四个地脚螺栓孔) 取每个地脚的上拔力设计值 q1=* *(G1+G2)* A=****= 倾覆力矩MS=q1*=有设备基础的大小可知抗倾覆力矩

建筑给排水毕业设计计算书

目录 第一章室内冷水系统 (3) 一竖向分区 (3) 二用水量标准及计算 (3) 三冷水管网计算 (4) 四引入管及水表选择 (9) 五屋顶水箱容积计算 (10) 六地下贮水池容积计算 (11) 七生活水泵的选择 (11) 第二章室内热水系统 (12) 一热水量及耗热量计算 (12) 二热水配水管网计算 (12) 三热水循环管网计算 (15) 四循环水泵的选择 (16) 五加热设备选型及热水箱计算 (17) 第三章建筑消火栓给水系统设计 (18) 一消火栓系统的设计计算 (18) 二消防水泵的选择 (20) 三消防水箱设置高度确定及校核 (20) 四消火栓减压 (20) 五消防立管与环管计算 (21) 六室外消火栓与水泵接合器的选定 (21)

第四章自动喷水灭火系统设计 (22) 一自动喷水灭火系统的基本设计数据 (22) 二喷头的布置与选用 (22) 三水力计算 (22) 四水力计算 (23) 五自动喷水灭火系统消防泵的选择 (26) 第五章建筑灭火器配置设计 (28) 第六章建筑排水系统设计 (29) 一排水管道设计秒流量 (29) 二排水管网水力计算 (29) 三化粪池设计计算 (33) 四户外排水管设计计算 (34) 第七章建筑雨水系统设计 (35) 一雨水量计算 (35) 二水力计算 (36)

第一章室内冷水系统 一.竖向分区 本工程是一栋十二层高的综合建筑,给水分两个区供给。一、二、三层商场和办公室作为低区,由市政管网直接供水;三至十二层客房作为高区,由屋顶水箱供水。 二.用水量标准及用水量计算 1.确定生活用水定额q d 及小时变化系数k h。 根据原始资料中建筑物性质及卫生设备完善程度,按《建筑给水排水规范》确定用水定额和小时变化系数见下,未预见用水量高区按以上各项之和的15%计,低区按10%计。列于用水量表中。 2.用水量公式: ①最高日用水量 Q d =Σmq d /1000 式中 Qd:最高日用水量,L/d; m:用水单位数,人或床位数; q d :最高日生活用水定额,L/人.d,L/床.d,或L/人.班。 ②最大小时生活用水量 Q h =Q d K h /T 式中 Q h :最大小时用水量,L/h; Q d :最高日用水量,L/d; T: 24h; K h :小时变化系数,按《规范》确定。⑴.高区用水量计算 客房:用水单位数:324床; 用水定额:400L/(床/d); 时变化系数Kh=2; 供水时间为24h 最高日用水量Qd=324×400=129600L/d 最高日最大时用水量Qh=Kh×Qd/24=10.8 m3/h 未预见水量:按15%计,时变化系数Kh=1. 最高日用水量Qd=129600×15%=19400L/d 最高日最大时用水量Qh=19400/24=0.81 m3/h ⑵.低区用水量计算 办公:用水单位数:442×2×60%/7=76人 用水定额50L/(人*班) 时变化系数Kh=1.5

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

建筑设计设备全套初步设计说明(包括计算书)

第一篇电气 A. 强电部分 一、建筑概况 建筑概况详建筑说明。 二、设计依据 本设计系依据: i.甲方设计任务书及设计要求; ii.相关专业提供给本专业的工程设计资料; iii.中华人民共和国现行有关规范: JGJ/T16-92《民用建筑电气设计规范》 GB50054-95《低压配电设计规范》 GB50057-94《建筑物防雷设计规范》 GB50052-95《供配电系统设计规范》 GB50045-95(2005年版)《高层民用建筑设计防火规范》 GB50053-94《10KV及以下变电所设计规范》 GB50067-97《汽车库、修车库、停车场设计防火规范》 其它有关的国家及地方现行规程、规范。 三、设计范围 本工程的供电、电力、照明、防雷接地等. 四、供电设计 a)本工程重要负荷如消防电梯、消防电源、监控中心、网络机房 等等级为一级,其余为二级。其中消防监控中心、网络机房内设不间断电源UPS.应急照明另设EPS。 b)用电负荷 设备安装容量:4371kW 其中低压侧有功计算负荷:6688kW 低压侧无功计算负荷:2215KVAR 低压侧无功功率补偿容量:3240KVAR 补偿后低压侧功率因数:0.95 补偿后低压侧视在功率:7014KVA 变压器的安装容量9600KVA,折合86VA/m2 c)变压器设置的台数及单机容量:6台×1600KVA/台 d)本工程拟采用两路高压10kV电源供电,单母线分段,互为热备用,任何一路都可负担全部负荷。本工程于负一层设变配电所。 e)柴油发电机组 备用柴油发电机组常用容量:2X1000KW(连续) 在负一层设柴油发电机组作为所有消防设备的备用电源,并在非火灾市电停电时用于重要负荷(包括电梯、生活泵、总雪库及特定场所的电源插座等)。 机房分别设有进、排风口,燃烧的废气经竖井排放至屋顶。机房消音、供油系统、自动灭火系统由专业公司设计。 f)电源供电干线:10kV电缆为铠装交联电力电缆从室外埋地引入。

给排水课程设计计算书

《建筑给水排水工程》课程设计任务书及指导书 一、设计资料 (1)建筑资料 建筑各层平面图、建筑剖面图、厨厕大样图等。 建筑物为六层住宅,采用钢筋混凝土框架结构,层高为3M,室内外高差为0.1M。 (2)水源资料 在建筑物北面有城镇给水管道和城镇排水管道(分流制),据调查了解当在夏天用水高峰时外网水压为190kpa,但深夜用水低峰时可达310kpa;环卫部门要求生活污水需经化粪池处理后才能排入城镇排水管道。每户厨房内设洗涤盆一个,厕所内设蹲式(或坐式)大便器,洗脸盆、淋浴器(或浴盆)及用水龙头(供洗衣机用)各一个。每户设水表一个,整幢住宅楼设总表一个。 二、设计内容 1.设计计算书一份,包括下列内容 (1)分析设计资料,确定建筑内部的给水方式及排水体制。 (2)考虑厨厕内卫生器具的布置及管道的布置与敷设。 (3)室内外管道材料、设备的选用及敷设安装方法的确定。 (4)建筑内部给排水系统的计算。 (5)其它构筑物及计量仪表的选用、计算。 (6)室外管道定线布置及计算(定出管径、管坡等数据及检查井底标高,井径,化粪池进出管的管内底标高等)。 2.绘制下列图纸 (1)各层给排水平面图(1:100)。 (2)系统原理图 (3)厨厕放大图(1:50)。 (4)主要文字说明和图例等。

设计说明书 (一)给水方式的确定 单设水箱供水 由设计任务资料得知,市政给水供水在夏天用水高峰时外网水压为190kpa,但深夜用水低峰时可达310kpa,查规范得知,3层及以下的单位给水供水宜直接市政供水,而4到6层得用户则有水箱供水。 优点:系统简单,投资省,充分利用室外管网水压,节省电耗,拥有贮备水量,供水的安全可靠性较好。 缺点:设置高位水箱,增加了建筑物的结构荷载,降低经济效益,水压长时间持续不足时,需增大水箱容积,并有可能出现断水。 总的来说,整个系统由室外管网供水,下行上给。这种方式不仅节省了材料费用,并且免除了水泵带来的动力费用以及水箱造成的建筑物经济效益降低的问题。 (二)给水系统的组成 整个系统包括引入管、水表节点、给水管网和附件等。 系统流程图为:市政给水管网→室外水表→管道倒流防止器→室外给水环网→户用水表→室内管网 (三)管材及附件的选用 1、给水管材 生活给水管道与室外环网采用不锈钢管,其余配水管采用PP-R给水塑料管。 2、给水附件 DN>50mm的管道及环网上设置闸阀,DN<50mm的管道上设置截止阀。 (四)施工要求 1、室外管道 室外管道采用DN100不锈钢管连接成环状,连接形式为法兰连接,埋设在地下0.7m处,向建筑物内部供水。 2、室内管道 (1)室内管道PP-R给水塑料管采用热熔连接的形式。 (2)室内管道立管采用明装的形式装设在水表间内,支管采用暗装的形式埋在空心墙或暗敷于地板找平层中。同时在管道施工时,注意防漏、防露等问题。 (3)给水管与排水管平时、交叉时,其距离分别大于0.5m和0.15m;交叉处给水管在上。(4)管道穿越墙壁时,需预留孔洞,孔洞尺寸采用d+50mm-d+10mm,管道穿越楼板时应预埋金属套管。 (5)管道外壁之间的最小间距,管径DN≤32时,不小于0.1m;管径大于32mm时,不小于0.15m。 二、排水工程设计 (一)污废水排水工程设计 1、排水体制的选择 根据本工程实际排水条件,该建筑采用污废水合流排水系统,经化粪池处理后排入城市污废水管道。 由于本工程层数较少,采用伸顶通气立管。 2、排水系统的组成 由卫生器具、排水管道、检查口、清扫口、室外排水管道、检查井、化粪池、伸顶通气

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

厌氧塔计算手册

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1)反应器的有效容积 设计容积负荷为)//(0.53d m kgCOD N v = 进出水COD 浓度)/(20000L mg C =,E= V= 3084000 .570 .0203000m N E QC v =??=,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3m E ——去除率 N V ——容积负荷 (2)反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1)反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2)单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ

反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?= (3)水力停留时间(HRT )及水力负荷(r V )v N 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.023'h m m q <沉淀室底部进水口表面负荷一般小于)./(23h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 18 7'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58 .1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流 缝之一),m ; 3h —下三角形集气罩的垂直高度,m ; 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13=

给排水设计计算书

万科红三期给排水设计计算书 一、生活给水 (一)用水量计算 1、保障房140户,2人/户,250L/人·日计,则最高日生活用水量=2X250X140/1000=70(m3/d); 2、住宅720户,3.5人/户,250L/人·日计,则最高日生活用水量=3.5X250X720/1000=630(m3/d); 3、公寓324户,4人/户,300L/人·日计,则最高日生活用水量=4X300X324/1000=388.8(m3/d); 4、办公楼建筑面积为29938.4m2,有效面积按60%建筑面积计,人均有效面积为6m2,则实际使 用人数约为3000人,50L/人·班计,则最高日生活用水量=50X3000/1000=150(m3/d); 5、商业建筑面积为19947.27m2,有效面积按80%建筑面积计,每m2营业厅面积6L/日,则最高 日生活用水量=19947.27X0.8X6/1000=95.7(m3/d)。 本工程分2个生活水池:生活水池和商业水池各一座,其中生活水池供保障房、住宅及幼儿园 使用,公寓、办公楼和商业用水由商业水池供给。 生活水池容积:(70+630 )x20%=140m3 商业水池容积:(388.8+150+95.7)x20%=126.9m3,取130m3 (二)分区计算 地块周边市政管网水压极低,除地下车库冲洗水采用直供水外,所有楼层考虑加压供水。 住宅生活给水系统分高、低两个区: 低区: 4、5栋 3~14层, 6~8栋 2~14层,保障房3~14层 高区: 4~6栋 15~32层, 7、8栋 15~31层 商业给水系统分高、中、低两个区: 低区:-1~2层 中区:公寓:3~16层,办公楼3~11层(其中3层无卫生间)

相关主题
文本预览
相关文档 最新文档