当前位置:文档之家› GSM跳频原理

GSM跳频原理

GSM跳频原理
GSM跳频原理

GSM跳频原理

1.概述

引入跳频的原因:GSM体系中的引入有两个主要原因,第一是频率分集,跳频可以保证各个突发在不同的频率上发射,这样就可以对抗由于瑞利衰落等引起的影响,因为这些影响是因频

率而异的。第二是干扰分集,在高业务地区,由频率复用带来的干扰显得较为突出。

引入跳频后,我们可以对使用相同频率组的远地蜂窝小区配置不同的跳频序列,这样

就可以分散使用相同频率集的信道之间的干扰,从中得到收益。

引入跳频的目的:提高系统抗干扰,抗衰落能力。GSM的无线接口,也相应采用了跳频的方法+。

概念:跳频就是按要求改变信道所用的频率。

GSM中的说明:在GSM系统中,整个突发期间,传输频率保持不变,每个突发的持续时间为577us,故GSM系统的跳频属于慢速跳频(SFH)。

图一是不跳频信道的时间和频率关系,图2表示了一个跳频信道的时间和频率关系。从图中可以看出,信道频率在每个突发期间维持不变,而在突发与突发之间,频率的改变则是一种看似杂乱的伪随机序列关系。

图1 信道不跳频时的时间频率关系图

图2 信道跳频时的时间频率关系示意图

在图2中,如果跳频实现是在一个TRU内实现就是射频跳频,如果在一个小区内的多个TRU间实现就是基带跳频。

下面举例说明:

下图在基带跳频方式下,HSN=0、RTSL(radio Time SLot no)=2时在不同FN时刻下的信道的使用的跳频序列。在该BTS下,配置有4个TRX。

下图为另一个实例。

使用的为射频跳频和不跳频方式。

该实例中,BTS有2个TRX。

2.跳频实现流程

跳频的实现包括信道分配和信道激活过程。首先,由OMC(操作维护中心)配置BSS及BSS中各信道的参数,这些参数通过BSC下发到BTS的每个信道。再有用户通信需要时,由BSC激活相应的信道进行业务数据传送。

A.信道分配过程

信道分配通过由BSC向BTS在Abis接口上发送的若干条消息完成。包括BTS属性设置消息(Set BTS Attributes),无线载频属性设置消息(Set Radio Carrier Attributes)和信道属性设置消息(Set Channel Attributes)。其中与BTS中跳频实现直接相关的是信道属性设置消息。该消息由OMU接收,再由OMU传给OAMM模块。其详细说明可参考协议12.21。

FH

图3 FUC中

SET FH MODE中的跳频方式

0 不跳频

1 基带跳频BB FH

2 射频跳频RF FH

在BSC后台的数据表R_FHS表中可查看跳频模式及相关信息。

A中Object Instance参数表明本消息的目标信道,包括BTS号,收发信机号,时隙号。Starting Time指明该信道配置的起始时间即起始帧号。FU根据此消息确定本FU所管辖的8个时隙的跳频参数包括HSN、MAIO和ARFCN List(用于构成MA表),这些参数将在跳频算法中详细说明。

B.信道激活过程

在信道配置完成之后,该信道在指定的起始帧号到来时,便开始使用该参数。但此时该信道处于空闲状态,不能传输业务数据,必须通过信道激活后,该信道才真正用于业务数据传输。信道激活是通过BSC 向BTS下发一条CHANNEL ACTIV A TION消息实现。该消息将原来处于空闲的信道转换为传输信息的激活信道。一个信道在激活前与激活后,使用的跳频参数是相同的。只是在激活前,该信道发送虚拟突发序列,若使用不连续发送方式,则激活前关断发送。

C.跳频实现

一个信道通过分配,得到了跳频参数后,由FU根据FN帧号(FHM跳频的计算由FN的中断激活),即可计算得到该突发即将使用的无线频道号,FU将计算所得的频道号组织在下行数据中通知CU(载频单元),CU再根据该信息确定该频道号的频率值,将此突发数据向空中发射。

3.跳频算法

GSM系统中,跳频的频道号计算有其特定的算法。根据GSM协议05.02的规定,跳频必须遵循该算法,包括伪随机序列的产生,跳频实现中涉及的参数及算法描述如下。

A.算法中涉及的参数

1.BTS通用参数,指定到每个BTS,并在BCCH,SCH上广播。

(1)C A:小区频率集,由系统频率分配指派到本小区所有可以使用的频率的总和,数量限制1≤CA

频率数≤64。

CA由BSC进行管理,MS根据广播信息获取CA信息,结合MS信道分配时的参数,确定本MS使用信道的MA参数,进一步确定跳频信道。在BTS中信道直接由BSC指定MA参数,故在FU中可跳过该参数

说明:CA即是我们在无线资源小区的载频频率中设置的值,可以设置至多64个数值,对于基带跳频,有用的只是顺序排列的前几个,个数等于本小区配置的TRX的数目,而RF跳频可以利用所有设置的频率值。

(2)F N::TDMA帧号,来自时钟单元,由T1、T2、T3构成,在MS中,由缩减帧号T1、T2、T3’构

成。

T1 (11bits) 0~2047 =FN div (26*51)

T2 (5bits) 0~25 =FN mod 26

T3 (6bits) 0~50 =FN mod 51

T3’ (3bits) 0~4 =(T3-1) div 10

其中FN为TDMA帧号,范围0~2715647(26*51*2048-1)

FN通过时钟单元向每个FU发送,FN本身的值不发送,只发送T1、T2、T3的值。FN参与跳频的计算,使得跳频序列以FN为周期,重复时间约为3小时,充分保证了跳频的随机性。

2.信道专用参数,在信道分配信息中指定到每个信道。

(1)M A:跳频频率子集(移动台频率分配表),定义本信道使用的跳频频率集,是CA的一个子集,频

率数量N限制1≤N≤CA频率数,(1≤N≤64)。

该参数由信道分配过程所描述的设置信道属性消息指定。在设置信道属性消息中的ARFCN List参数即反映了

ARFCN。

(2)M AIO:频率子集初始偏移(移动台频率分配表初始偏移),用于指示使用相同MA的不同信道所

使用的频率在MA中的初始偏移。

该参数也由信道分配过程所描述的设置信道属性消息指定。在设置信道属性消息中的MAIO参数的结构如下。

(3)HSN:跳频序列号,可取64种不同的值,0≤HSN≤63。

该参数也由信道分配过程所描述的设置信道属性消息指定。在设置信道属性消息中的HSN参数的结构如下。

B.G SM系统中的跳频算法

对于一个给定的参数集,为了得到每一信道的绝对频道号ARFCN,使用MAI作为该信道在MA频率集中的索引,MAI取值0到N-1,MAI=0时即指向MA中最低的绝对频道号ARFCN。具体算法如下:1.HSN=0时

MAI=(FN+MAIO) MOD N

ARFCN=MA(MAI)

其中:FN=51*((T3-T2) MOD 26)+T3+51*26*T1

MA(i)是一张查ARFCN的表0≤i≤N-1

2.HSN≠0时,ARFCN的计算参看图4

其中NBIN=INT(log2N+1)

图4 跳频算法(HSN≠0)

上图中,查随机表RNT(i)过程的RNT表如下:

4. ZXG10中以BBX方式实现跳频的过程

在本BTS系统中,要求兼顾基带跳频与射频跳频的实现,故系统中专门设立了一个BBX基带交换单元作为跳频实现的硬件环境。下面具体结合BBX描述跳频功能在本系统中的实现过程。

BBX介绍:

ZXG10同时具有BB FH 和RF FH 的功能,为此特别设计了一个BBX(基带交换)模块,具体原理如图所示。

FU模块 X 6BBX总线CU模块 X 6

图5 BBX电路原理示意图

图中的RBBX模块实际上同与FU在同一单板上实现,TBBX同CUI做在同一单板上。跳频总线由机架背

后的总线连接到各框的FU-BUS。

在实现基带跳频的方案中,BBX的作用是在帧单元和载频单元之间,起一个交叉连接的作用。实际上是在下行方向的载频单元一侧,用总线选择的方法,选取多路帧单元信号中的一路,进行发射。而在上行方向的帧单元一侧,也同样用总线选择的方法,选取多路载频单元信号中的一路,进行接收处理。从而达到了实现基带跳频的目的。

具体的:

(1)在载频单元的下行数据入口处(TBBX中),根据帧单元对跳频的计算结果,对来自帧单元的下行数据进

行选择,选取符合本载频单元发射频率的一路信号,将其转接到载频单元上进行发射。对于一个装备N个帧单元的BTS系统而言,就是要在N条下行数据链路中完成一个N选1的功能。在本DCS1800系统中,每个BTS最多配置6个FU和CU,故N取值为6。

(2)在帧单元的上行数据入口处,根据帧单元的跳频计算结果,或者根据下行链路的选择结果,对来自多

个载频单元的上行数据进行选择。由于接收分集的原因,从每个载频单元来的数据有两路,所以对一个装备N个载频单元的BTS系统而言,存在2N条上行链路。BBX需要完成2个同步的N选1的功能。

本系统中N取值为6。另外在时间上,由于GSM协议规定上行和下行链路在无线接口上有3个时隙的时间延时,同时考虑到上下行数据在CU中各有一个接收转发的过程,所以在BBX接口上,上下行数据的整个时间差将达到5BP。在具体实现时应满足该时间要求。

(3)实现BBX与帧单元及载频单元的接口,采用串行无帧格式连接。考虑到跳频实现的需要及上下行数据

本身的需要,串行数据内容定义如表1和表2所示。

在下行数据中byte0的3bit有效位(取值0~5)信息表明,本下行数据即将发往几号载频单元,在每个TBBX中,将同时监视下行总线上6条下行链路中的byte0,并利用该信息,选取下行总线中地址相符的一路发往与之相连的CU。

同时,在RBBX中,将监视与其相连的FU下发数据中的byte0(3bit),并予以保存,在5个时隙之后,RBBX将根据此信息在上行总线中选取其中的2条(分集原因)链路,连往该RBBX所在的FU。

在下行数据格式中byte1~byte2中的10bit信息,指明了该时隙数据将在哪个绝对频道号上发射。在系统跳频方案以基带跳频实现时,该数据不起任何作用,在CUI中将byte1~byte2滤掉即可。而当系统跳频以射频跳频实现时,CUI则将利用该信息去控制TRX的频率合成器,以达到射频跳频的目的。同时在采用射频跳频时,应将FU与CU进行一对一的直连。

上下行数据格式中,链路校验字节(LRC)的设立是为了防止数据链路的传输错误,对检验出传输错误的数据,可以不予发射或接收处理,以免扩大错误。这样可使系统更加可靠。

(TRU 上下行校验错会关功放)

在实现射频跳频的方案中,BBX只是起一个完全透明的直接连接的作用。将来自帧单元的N路信号直接连接到相应的N路载频单元上,而不进行任何交换与处理。跳频则完全交由帧单元的绝对频道号计算以及载频单元的频率合成器控制来实现。

A.基带跳频的实现

在系统跳频以基带跳频方式实现时,由于跳频总线BBX_Bus仅在同一BTS内部连接,而一个BTS内部最多只装备6个TRX,所以分配给每个信道的跳频频率集MA的频率数有其特殊的限制,具体视BTS

装备TRX数而定,若装备N个TRX,则MA频率数小于等于N,且N<=6。另外,对于BCCH及其扩展信道,协议规定其不参与跳频。故分配给这些信道的频率集只包含一个频率,这只是一种跳频的退化,与整个跳频算法是相统一的。

基带跳频具体实现过程:

1.在BTS内部,OMU根据信道配置情况确定本BTS内部各CU模块使用的绝对频道号,然后将初始频率设置下发到各CU单元,并形成反映本BTS内部反映CU绝对频道号配置的情况表。结合CU连接的BBX 总线,形成BBX_Bus—ARFCN对照表,格式如下。考虑到每个BTS最多装备6个CU,故该表共包含6行信息。此表由OMU形成后下发到本BTS中各个FU,即在同一BTS内部的所有FU必须具有相同的

OMU应根据从BSC来的指令进行调整,并将不使用的BBX总线号对应的绝对频道号置NULL。在CU一侧,CUI同时根据在背板上识别的模块号设置自生的BBX总线号,以备接收来自FU的相应下行数据。

2.在信道分配到一个FU的时候,FU从Set Channel Attributes消息中获取本FU所处理的每个信道(8个时隙),的HSN、MAIO、ARFCN List参数,ARFCN List参数参见跳频算法部分的参数说明。用ARFCN List

CA频率的子集MA。FU在基带跳频时,MA表最多只应有6个频率。在一个FU中,应该存在8张MA表,对应8个时隙。这样可以支持时隙跳频。

3.结合MA—BBX_Bus表如下。

在一个

4.帧单元根据GSM跳频算法及所获参数在FN到来时,根据HSN、MAIO计算获得MAI,,再查表MA—BBX_Bus表,得到该信道此突发数据所对应的绝对频道号ARFCN和应该下发的BBX_Bus Number BUSN,将这两个数据打入下行数据包的byte0,byte1~2中下发即可。在CU侧,由TBBX截取下行数据byte0中的有效位,确定对下发至本CU的数据进行接收,并送MOD发射至MS。此过程即可完成跳频的目的。

B.射频跳频的实现

射频跳频时,对信道的频率规划提出了另一限制条件,BCCH载波上的8个时隙,均不能参与跳频,因为规范要求BCCH及其扩展信道不参与跳频,所以,与BCCH及其扩展信道处在同一帧,或者说由同一FU处理的信道均不可参与跳频,总共8个时隙。另外,对整个系统中处于同一帧内的8个时隙内的信

道,应分配给相同的跳频参数,包括MA、HSN、MAIO。

射频跳频具体实现过程:

1在BTS内部,在CU一侧,CUI根据在背板上识别的模块号设置自生的BBX总线号,以备接收来自FU的相应下行数据。在FU一侧,根据FU自身的模块号,确定FU的BBX总线号,并将此参数BBX_Bus Number作为一个参数保存,作为下行数据总线选择打入下行数据包的byte0,通过这种办法,可在FU 与CU之间通过总线号建立一个一一对应的关系,相当于将同一TRU中的FU和CU进行直连,取消基带交换功能。

2.在信道分配到一个FU的时候,FU从Set Channel Attributes消息中获取本FU所处理的每个信道(8个

时隙),的HSN、MAIO、ARFCN List参数,ARFCN List参数参见跳频算法部分的参数说明。用ARFCN

即该信道使用的CA频率的子集MA。FU在射频跳频时,对MA的最大频率数限制为协议规定的64,而无基带跳频时的附加限制。另外,对同一FU处理的8个时隙,MA参数必须相同,所以一个FU仅需构造一个MA表,这样可以支持帧跳频。

3.FU根据GSM跳频算法及所获参数在FN到来时,根据HSN、MAIO计算获得MAI,再查MA表,

得到该信道此突发数据所对应的绝对频道号ARFCN,再将BBX_Bus Number和ARFCN这两个数据打入下行数据包的byte0,byte1~2中下发即可。在CU侧,由TBBX截取下行数据byte0中的有效位,确定对下发至本CU的数据进行接收,并送MOD。同时由CUI将其中的ARFCN参数分离,用于预置频率合成器的频率值,在下一帧,即以该频率将此突发数据向MS发送。同时,在5BP后,CUI又根据此ARFCN值,确定接收频率值,接收来自MS的突发数据。此过程即可完成跳频的目的。

参考协议:

GSM 04。08

GSM 05。XX

GSM 08。05

GSM 12。21

蓝牙跳频算法.

蓝牙跳频算法 1. 引言 “蓝牙”,英文名称为“Bluetooth”,是一种开放性短距离无线通信技术标准。其宗旨是提供一种短距离、低成本的无线传输应用技术。它同IEEE802.11b一样,使用2.4GHz ISM(即:工业、科学、医学)频段。跳频是蓝牙的关键技术,对应于单时隙分组,蓝牙的跳频速率为1600跳/秒;对应于多时隙分组,跳频速率有所降低;但在建立链接时则提高为3200跳/秒。以2.45GHz为中心频率,来得到79个1MHz带宽的信道。在发射带宽为1MHz时,其有效数据速率为721kbps。蓝牙跳频技术,是实现蓝牙扩谱的关键技术。由于2.4GHz ISM频段是对所有无线电系统都开放的频段,而蓝牙系统不是工作在该频段的第一个系统,大多数无线局域网、某些无绳电话以及某些军用或民用通信都在使用该频段,微波炉、高压钠灯的无线电波也在此频率范围之内,所以ISM频谱已变得相当拥挤而嘈杂,使用ISM频段的任何系统都会遇到干扰。蓝牙技术通过使用扩频的方式,使得系统所传输的信号工作在一个很宽的频带上,传统的窄带干扰只能影响到扩频信号的一小部分,这就使得信号不容易受到电磁噪声和其他干扰信号的影响,从而更加稳定。同时,蓝牙以跳频技术作为频率调制手段,如果在一个频道上遇到干扰,就可以迅速跳到可能没有干扰的另一个频道上工作;如果在一个频道传送的信号因受到干扰而出现了差错,就可以跳到另一个频道上重发,从而加强了信号的可靠性和安全性。 2. 蓝牙跳频算法 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多个频率频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中,跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率。 2.1 蓝牙跳频序列标准 蓝牙基带标准共定义了10种类型跳频序列,其中79跳系统和23跳系统各有5种类型(欧洲/美国使用的是79条系统,日本/法国/西班牙使用的是23跳系统)。呼叫(paging)跳频序列为32(16)个不同唤醒频率(不同的系统对应的频点数不同),均匀分布在79(23)MHz范围内,周期为32(16)。呼叫响应序列为32(16)个不同响应频率,与当前呼叫频率序列一一对应,主,从单元使用不同规则得到该序列。查询(inquire)跳频序列为32(16)个不同唤醒频率,均匀分

扩频 LoRa跳频扩频通信(FHSS)的原理

扩频LoRa跳频扩频通信(FHSS)的原理 LoRa的扩频技术:LoRa是基于扩频的调制方案,通过扩频将信号扩展到宽带噪声,以获得扩频增益。 扩频的概念和原理 扩频通信(SSC)或扩频通信技术具有其用于传输信息的信号带宽远远大于其本身带宽的基本特征。信号带宽较大可以降低信噪比的要求。如果带宽增加到一定水平,则可进一步降低信噪比。扩频通信的优点是利用宽带传输技术交换信噪比,是扩频通信的基本思想和理论基础。 扩频技术是将信息信号的带宽进行多次扩展来进行通信的技术。传输信号的带宽远大于信息信号的带宽。例如,如果发送64Kbps的数据流,则基带带宽约为64KHz,但是在使用扩频技术的情况下,它占用的信道带宽可以被增加到5MHz和10MHz以上。同时,发射到宇宙的无线功率谱(单位带宽内的功率)也大幅度减少。 扩频信号的解扩过程

信息的频谱扩展过程 常规数字数据通信的原理是使用适配于数据率的最小可能的带宽。这是因为带宽数量有限,很多用户共享。扩频通信的原理是尽可能多地使用最大带宽,并且相同能量分布在宽带宽上。 另外,扩频通信具有以下特征 ●数字传输方式 ●使用与要发送的信息无关的功能(扩展功能)对要发送的信息进行调制,从而实现带宽的扩大●在接收侧使用相同扩频功能来解调扩频信号,恢复传输到的信息 ●扩频通信的优点 ●发送功率密度低,不易对其他设备造成干扰。 ●机密性很高,被监听的可能性极低。 ●具有较强的抗干扰能力,和很强的抑制同频噪声和各种噪声的能力。 ●具有良好的抗多径衰落能力。 LoRa跳频通信(FHSS)原理 FHSS跳频方式的工作原理是,各LoRa分组的内容的一部分在MCU管理中设定的跳频信道中

跳频扩频系统

跳频扩频系统 一、定义及原理 跳频扩频系统: 采用码序列控制信号的载波,使之在多个频率上跳变而产生扩频信号。接收端产生一个与信号载波频率变化相同移频信号,用它作变频参考,再把信号恢复到原来的频带。调频系统可随机选取的频率数通常是几百个或更多。 跳频系统的载频受一个伪随机码控制,不断地、随机地跳变,因此跳频系统可视作载频按照一定规律变化的多频频移键控(MFSK)。与直扩系统不同,跳频系统中的伪随机序列并不直接传输,而是用来选择信道。跳频系统主要由PN码产生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。频率跳变系统的发射机在一个预定的频率集中,由PN码序列控制频率合成器,使发射频率能随机地由一个跳到另一个。接收机中的频率合成器也按相同的顺序跳变,产生一个与发射频率只差一个中频的本振频率,经混频后得到固定的中频信号,该中频信号经放大后送到解调器,恢复传送的信息。此处,混频器实际上担当了解调器角色,只要收发双方同步,就可将频率跳变信号转换为一个固定频率的信号。 二、跳频系统的结构

三、跳频系统的波形 发送端的波形

接收端的波形 四、跳频系统的优点 跳频扩频技术的优点如下: (1)抗单频干扰,部分带宽干扰能力强 跳频系统的抗干扰原理和直扩系统不同,直扩是靠频谱的扩展和解扩处理来提高信噪比的;跳频是靠躲避干扰,来达到提高信噪比的。虽然不能像直扩系统那样,但由于载波频率是跳变的,减少了单频干扰和窄带干扰进入接收机的概率。故调频系统具有抗单频及部分带宽干扰的能力。当跳频的概率数目足够多、跳频的带宽足够宽时,其抗干扰能力是很强的。 (2)抗多径衰落的能力强 利用载波频率的快速跳变,具有频率分集的作用,从而增强了系统抗多径衰落的能力。 (3)便于实现多址通信 应用跳频通信可以很容易地组建一个多址网络,网络内的各

跳频和扩频通信

跳频通信和扩频通信 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。 2 跳频通信的基本概念 2.1 定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。 2.2 同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3 跳频通信的主要特点 3.1 抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。

军用跳频电台

军用跳频电台 军用跳频电台大多是短波或超短波电台。 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。 通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频( Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。 在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。 在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。 90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。 与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。 在自适应跳频中,同步还包括收发双方频率集更新的同步,保证双方同步地实现坏频点替代,否则会使收发双方频率表不一致,导致通信失败。 频合器是跳频通信系统中的关键部分,目前大多数跳频电台中使用的频率合成器采用的是锁相环(PLL)频率合成技术,但是该技术的频率转换速度已经接近其极限,要进一步改善的技术难度越来越大,而且分辨率较低。为了能够进一步提高跳频速率,提出了直接式数字频合器(DDS)。它采用全数字技术,具有频率分辨率高,频率转换时间快,输出频率可以很高而且稳定性好,相位噪声低等优点,可满足快速跳频电台对频率合成器的要求。例如在美国的JTIDS中,跳速达到每秒35800跳,只有采用直接数字频合器才能实现。但是DDS的价格昂贵,复杂度大,直接用于战术跳频电台有一定的难度。如果采用DDS+PLL的方法,结合两者的长处,可以获得单一技术难以达到的效果。 在跳频系统中,即使在信道条件良好的情况下,仍有可能在少数跳中出现错误,因此有必要进行差错控制。差错控制的方法主要分为两类:一是自动请求重发纠错(ARQ)技术;二是采用前向纠错(FEC)技术。 ARQ技术可以很好的对付随机错误和突发错误,它要求有反馈电路,当信道条件不好时,需要频繁的重发,最终可能导致通信失败。 FEC技术不需要反馈电路,但是需要大量的信号冗余度以实现优良的纠错,从而会降低信道效率。由于纠错码对突发错误的纠错能力较差,而通过交织技术可以使信道中的错误随机化,因此,经常采用编码与交织技术相结合的办法来获得良好的纠错性能。 在跳频系统中常用的纠错编码技术有汉明码、BCH码、trellis码、RS码、Golay码、卷积码和硬判决译码、软判决译码等。1993年提出了TURBO码,其信噪比接近于Shannon极限,引起了人们的极大兴趣。与RS码等常用的跳频编码相比, TURBO码在跳频系统中显示了极大的应用潜能。此外,还可以把不同的编码方法结合在一起,取长补短,进行联合编码。在快跳频方式下,还可以运用重发大数判决来克服跳频频段内的快衰落。 跳频电台在实际应用中通常要组成跳频通信网,以实现网中的任何两个通信终端均能够做到点到点的正常通信。组网除了要避免近端对远端的干扰、码间干扰、电磁干扰等其它干扰以及由系统引起的热噪声等噪声干扰以外,还要注意避免由组网引起的同道干扰、邻道干扰、互调干扰、阻塞干扰等。采用跳频的多址通信网具有很多优点:抗干扰能力强,低截获概率,低检测概率,对频率选择性衰落有很好的抑制作用等等。但是,与常用的DS/CDMA系统相比,跳频网的最大用户数相对较小。 跳频通信网可以分为同步通信网和异步通信网。跳频通信网有多种组网方式,如分频段跳频组网方式、全频段正交跳频组网方式等。在分频段跳频组网方式中,系统把整个频段分成若干个子频段,不同的通信链路采用不同的子频段进行通信,从而有效地防止同一通信网间的干扰。全频段正交跳频组网方式仅用于同步跳频通信网中,也就是说整个通信网中只有一个基准时钟,通过设计在某一相同时刻t的N个相互正交的跳频频率序列来进行组网,这样尽管各个终端间的通信均使用相同频段,但是由于瞬时的跳频频率点不相同,因此可保证它们之间不会出现同频道干扰。自适应跳频通信系统中,由于在通信过程中会去除那些通信条件恶劣的信道,因此频率更新后可能会出现同频道干扰现象,故必须设计一种良好的频点更新算法,保证更新后的跳频序列之间依然是正交的,否则可能会使各通信节点之间频繁出现频率碰撞,导致无法正常通信。实际应用中也可以把以上两种组网方式结合进行。例如英国Recal-Tacticom公司的Jaguar系列电台在组网中就同时采用了这两种组网方式,可组网数目达到200—300个。 除了以上这些关键技术以外,调制解调方法在跳频系统中也很重要,可以采用FSK、QAM、QPSK、QASK、DPSK、QPR、数字chirp调制等多种调制方式。 自适应跳频系统是在常规跳频系统的基础上,实时地去除固定或半固定干扰,从而自适应地自动选择优良信道集,进行跳频通信,使通信系统保持良好的通信状态。也就是说,它除了要实现常规跳频系统的功能之外,还要实现实时的自适应频率控制和自适应功率控制功能,因此就需要一个反向信道以传输频率控制和功率控制信息。 通过可靠的信道质量评估算法,发现了干扰频点后,应当在收发双方的频率表中将其删除,并以好的频点对它们进行替换,以维持频率表的固定大小。这种检测和替换是实时进行的。为增加跳频信号的隐蔽性和抗破译能力,跳频图案除具有很好的伪随机性、长周期外,各频率出现次数在长时间内应具有很好的均匀性。在引入自适应频率替换算法对频率表进行实时更新后,为保障系统性能,仍然要求跳频图案具有很好的均匀性,所以应当依次用不同的质量较好的频点来分别替换被干扰的频点。 收端频率表的更新会导致收发频率表的不一致性。为了使收发频率表同步更新,必须通过反馈信道将收端的频率更新信息通知发方。这种信息的相互交换是一种闭环控制过程,需要制定相应的信息交换协议来保证频表可靠的同步更新。衡量协议有效性的另一个重要指标便是频点去除的速度。在检测出干扰频点后,干扰频点去除的速度越快,对通信的影响越小。 信道质量评估的另一个作用是进行自适应功率控制。功率控制就是要把有限的发送功率最好地分配给各个跳频信道,使得各个信道都能够以最小发射机功率实现正常通信,从而提高跳频信号的隐蔽性和抗截获能力。在自适应跳频系统中,系统检测每个信道的通信状况,并通过信道质量评估单元中的功率控制算法对每个跳频信道单独进行功率控制。 功率控制算法可以基于两种原则:一是比特误码率最小原则,算法为各个跳频信道选择适当的功率,

nRF24L01点对点跳频技术应用

nRF24L01点对点跳频技术应用(转载) 分类:技术应用 关键字:nRF24L01;射频;无线通信;跳频 1 nRF24L01概述 nRF24.L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。 nRF24L01主要特性如下: GFSK调制: 硬件集成OSI链路层; 具有自动应答和自动再发射功能; 片内自动生成报头和CRC校验码; 数据传输率为l Mb/s或2Mb/s; SPI速率为0 Mb/s~10 Mb/s; 125个频道: 与其他nRF24系列射频器件相兼容; QFN20引脚4 mm×4 mm封装; 供电电压为1.9 V~3.6 V。 2 引脚功能及描述 nRF24L01的封装及引脚排列如图1所示。各引脚功能如下:

图(1) CE:使能发射或接收; CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01: IRQ:中断标志位; VDD:电源输入端; VSS:电源地: XC2,XC1:晶体振荡器引脚; VDD_PA:为功率放大器供电,输出为1.8 V; ANT1,ANT2:天线接口; IREF:参考电流输入。 3 工作模式 通过配置寄存器可将nRF241L01配置为发射、接收、空闲及掉电四种工作模式,如表1所示。

跳频系统概述

6.1 跳频系统概述 6.1.1 为什么要跳频 通常我们所接触到的无线通信系统都是载波频率固定的通信系统,如无线 对讲机,汽车移动电话等,都是在指定的频率上进行通信,所以也称作定频通信。这种定频通信系统,一旦受到干扰就将使通信质量下降,严重时甚至使通信中断。 例如:电台的广播节目,一般是一个发射频率发送一套节目,不同的节目占用不同的发射频率。有时为了让听众能很好地收听一套节目,电台同时用几个发射频率发送同一套节目。这样,如果在某个频率上受到了严重干扰,听众还可以选择最清晰的频道来收听节目,从而起到了抗干扰的效果。但是这样做的代价是需要很多额谱资源才能传送一套节目。如果在不断变换的几个载波频率上传送一套广播节目,而听众的收音机也跟随着不断地在这几个频率上调谐接收,这样,即使某个频率上受到了干扰,也能很好地收听到这套节目。这就变成了一个跳频系统。 另外在敌我双方的通信对抗中,敌方企图发现我方的通信频率,以便于截获所传送的信息内容,或者发现我方通信机所在的方位,以便于引导炮火摧毁。定频通信系统容易暴露目标且易于被截获,这时,采用跳频通信就比较隐蔽也难以被截获。因为跳频通信是“打一枪换一个地方”的游击通信策略、使敌方不易发现通信使用的频率,一旦被敌方发现,通信的频率也已经“转移”到另外一个频率上了。当敌方摸不清“转移规律”时,就很难截获我方的通信内容。 因此,跳频通信具有抗干扰、抗截获的能力,并能作到频谱资源共享。所以在当前现代化的电子战中跳频通信已显示出巨大的优越性。另外,跳频通信也应用到民用通信中以抗衰落、抗多径、抗网间干扰和提高频谱利用率。 6.1.2 什么是跳频图案? 为了不让敌方知道我们通信使用的频率,需要经常改变载波频率,即“打一枪换一个地方”似地对载波频率进行跳变,跳频通信中载波频率改变的规律,叫作跳频图案。

跳频原理

1、跳频技术 跳频就是按照预先定义的跳频序列(FHS)随机地改变正在进行通信的信道所占用频率的技术。在同一个频道组内,各跳频序列应是正交的,各信道在跳频传输过程中不能被碰撞。 过去采用跳频技术是为了确保通信的秘密性和抗干扰性,它首先被用于军事通信,后来发现在移动通信中,电波传播多径效应引起的瑞利衰落与传输的发射频率有关,衰落空洞将因频率的不同发生在不同地点,如果在通话期间载波频率在几个频点上变化,则传送信息仅在短时间内受到衰落空洞的影响,尤其是处于多径环境中的漫速移动的移动台通过采用跳频技术,能大大改善移动台的通信质量,可达到频率分集的效果。此外,跳频还具有干扰分集的作用。由于跳频频道间的不相关性,分离了来自许多小区的同频干扰,可提高蜂房小区的容量。 跳频系统分为快跳频和慢跳频两种。慢跳频的跳频频率低于或等于调制符号速率,即在一个或几个调制符号周期内跳频一次;快跳频的跳频频率大于调制符号速率,即在一个调制符号周期内跳频一次以上。 1、GSM的跳频技术 在GSM标准中采用慢跳频技术。每秒217跳,每跳周期为1200比特。GSM系统中的跳频分为基带跳频和射频跳频两种。 基带跳频的原理是将话音信号随着时间的变换使用不同频率发射机发射,其原理图如图6.26所示。 TR X1 TR X2 TR X3 TR X4 图6.26 基带跳频原理

由上图可见,基带跳频中可供跳频的频率数N(hop)≦基站载频数N(TRX)。基带跳频适用于合路器采用空腔耦合器的基站,由于这种空腔耦合器的谐振腔无法快速改变发射频率,故基站无法靠改变载频频率的方法实现跳频。实施的方框图如图6-27所示,其中,收发信机负责无线信号的接收与发送,基带处理单元进行信道的处理。 图6.27基带跳频实施框图 为了实现基带跳频,如上图所示,收发信机与基带处理单元之间的连接由路由转接器来控制,在用户通信过程中,要求无论移动台通信频率如何变化,负责处理用户链路的基带处理单元要保持不变,而基带跳频中所有收发信机的频率也不变。那么,怎样才能确保跳频实现呢?其实只要在路由转接器中根据预先设定的跳频方式来改变收发信机与基带处理单元之间的连接,就能保证该基带处理单元与用户之间的通信链路始终保持畅通。由此可见,由于频率变换的范围仅限于基站所拥有的收发信机的个数,故跳频的频率数N(hop) ≦基站载频数N(TRX)。 射频跳频是将话音信号用固定的发射机,由跳频序列控制,采用不同频率发射,原理图如图6-28所示。射频跳频为每个时隙内的用户均跳频(TRX1因为是BCCH 信道所在的载频,故不跳频),可供跳频的频率数N(hop)不受基站载频数N(TRX)的限制,GSM 规范规定每个小区最多可有64个频率供跳频。 1 2 3 4 5 6 7 TR X 1TR X 2 图6.28 射频跳频原理图 射频跳频适用于合路器采用宽带耦合器的基站,由于这种宽带耦合器与发射器频率的变化无关,故在跳频时载频与手机根据预设的跳频序

跳频通信技术的研究

跳频通信技术的研究 当今信息时代,如何有效的利用宝贵的频带资源,如何进行准确可靠的信息通信是通信领域中至关重要的问题。扩频通正是在这种背景下迅速发展起来的。从20世纪40年代起,人们就开始了对扩频技术的研究,其抗干扰、抗窃听、抗测向等方面的能力早已为人们所熟知。但由于扩频系统的设备复杂,对各方面的要求都很高,在当时的技术条件下,要制成适应军事和民用需要的扩频系统是不可能的,因而扩频技术发展缓慢。进入20世纪60年代后,随着科学技术的迅速发展,许多新型器件的出现,特别是大规模、超大规模集成电路、微处理器、数字信号处理(DSP)器件、扩频专用集成电路(ASIC)以及像声表面波(SAW)器件、电荷耦合器件(CCD)这样的新型器件的问世,使扩频技有了重大的突破和发展,许多新型系统相继问世,兵在实际的使用和实验中显示出了它们的优越性,使扩频通信成为未来通信的一种重要方式。并因此受到了人们极大的重视。扩展频谱系统主要包括以下几种扩频方式: (1)直接序列扩频(DS) (2)跳频(FH) (3)跳时(TH) (4)线性调频(Chirp) 本文中主要讲述对跳频通信的研究。本论文共分X章, 第一章扩频技术及其理论基础 1.1概论 扩展频谱系统具有很强的干扰性,其多址能力、保密、抗多径等功能也倍受人们的关注,被广泛地应用于军事通信和民用通信中。 扩展频谱系统是指发送的信息被展宽到一个很宽的频带上,这一频带比要发送的信息的带宽宽得多,在接收端通过相关接收,将信号恢复到信息带宽的一种系统,简称为扩频系统或SS(Spread Spectrum)系统。

1.2 扩频通信的理论基础 扩频通信技术是把要发送的信号扩展到一个很宽的频带上,然后再发送出去,系统的射频带宽比原始信号的带宽宽得多。这样做,系统的复杂度比常规系统的复杂度要高得多,付出的代价是昂贵的,能得到什么好处呢?可以从著名的香农定理来看。 香农定理指出:在高斯白噪声干扰条件下,通信系统的极限传播速率(或称信道容量)为 C=B lb(1+S/N)b/s (1-1)式中:B为信号带宽,S为信号平均功率,N为噪声功率。若白噪声的功率谱密度可为,噪声功率N= B,则信道容量C可表示为 (1-2) 由上式看出,B、、S确定后,信道容量C就确定了。由香农第二定理知,若信源的信息速率R小于或等于信道容量C,通过编码,信源的信息能以任意小的差错概率通过信道传输。为使信源产生的信息以尽可能高的信息速率通过信道,提高信道容量是人们所期望的。 由香农公式可以看出: (1)要增加系统的信息传输速率,则要求增加信道容量。增加信道容量的方法可以通过增加传输信号带宽B,或增加信噪比S/N来实现。由式(1-1)可知,B与C成正比,而C与S/N呈对数关系,因此,增加B比增加S/N 更有效。 (2)信道容量C为常数时,带宽B与信噪比S/N可以互换,即可以通过增加带宽B来降低系统对信噪比S/N的要求;也可以通过增加信号功率,降低信号的带宽,这就为那些要求小的信号带宽的系统或对信号功率要求严格的系统找到了一个减小带宽或降低功率的有效途径。 (3)当B增加到一定程度后,信道容量C不可能无限地增加。由式(1-1)可知,信道容量与信号带宽成正比,增加B,势必会增加C,但当B增加到一定程度后,C增加缓慢。由式(1-2)知,随着B的增加,由于噪声功率N= B,因而N也要增加,从而信噪比S/N要下降,影响到C的增加。1-2扩频系统的物理模型

GSM网络跳频原理介绍

题目:跳频原理介绍 内容简介: 跳频技术的性能,跳频原理的介绍,比较基带跳频与综合 跳频的优缺点,基本原理适用于所有系统。 目录1.序 (3)

2. 跳频的性能 (3) 2.1 频率分集 (3) 2.2 干扰分集 (4) 2.3 结论 (5) 3.技术描述 (6) 3.1跳频的方式 (6) 3.1.1 基带跳频 (6) 3.1.2 综合跳频 (7) 3.2 系统配置 (8) 3.2.1基带跳频 (8) 3.2.2综合跳频(配置成两个频率组) (9) 3.2.3综合跳频(包括BCCH频点) (10) 3.3跳频法则 (10) 3.3.1循环跳频 (10) 3.3.2随机跳频 (10) 3.3.3正交跳频序列 (11) 3.4通用分组无线服务(GPRS) (11) 4.工程指引 (12) 4.1应用 (12) 4.1.1概述 (12) 4.1.2跳频增益 (12) 4.1.3跳频和用户感觉的语音质量 (13) 4.2参数························································错误!未定义书签。 4.3跳频对GSM系统掉话的影响 (14) 4.4不同跳频频点数对系统质量掉话的改善程度 (15) 4.4.1两个跳频频点情况 (15) 4.4.2三个跳频频点惰况 (16)

4.4.3四个及四个以上跳频频点 (17) 1.序 移动无线传播在遇到障碍时会遭受短期的幅度变化,这些变化称为瑞利衰落。不同频率的信号的衰落特性不同。随着频率差别的增大,衰落更加独立。 GSM中通过跳频(载波频率跳变)频率分集技术,保证了一个信息按几个频率发送,使包含码字一部分的所有突发脉冲不会被瑞利衰落以同一种方式破坏,从而提高了传播性能。 在通话过程中,当移动台移动到正在使用频点的瑞利衰落谷点(fading dip)或者频点受到干扰时,脉冲非常容易丢失。如果采用跳频技术,同一个位置对于下一个脉冲来说,该位置具有很好的接收特性。由于采用了GSM原理中的编码和交织技术使单一脉冲的丢失对语音质量的影响达到最小。在跳频系统中,每一个小区(cell)都预先分配了一个频率集。通话过程中移动台在每个TDMA帧都改变频率,也就是每秒217跳。 2. 跳频的性能 2.1 频率分集

基于matlab的跳频通信系统的仿真

摘要 跳频通信系统是一种典型扩展频谱通信系统,它在军事通信、移动通信、计算机无线数据传输和无线局域网等领域有着十分广泛的应用,已成为当前短波保密通信的一个重要发展方向。本文介绍了跳频通信系统的基本工作过程,从跳频系统的结构组成、工作原理、主要技术指标、跳频通信系统的解跳和解调等方面阐述了跳频通信基本原理,并对跳频通信系统的抗干扰技术及其性能进行了仿真研究和理论分析。本文从理论上分析了跳频通信系统的抗干扰性能,其组成部分包括信号生成部分、发送部分、接收部分、判决部分、跳频子系统模块五个部分,并以2FSK系统为例,给出了上述通信干扰样式下的误码率理论分析结果,并利用Matlab中的Simulink仿真系统实现跳频系统的仿真和分析,达到了预期的效果。 关键词:跳频系统; 扩频通信; Matlab; Simulink仿真

目录 第1章绪论 (1) 1.1 概述 (2) 1.2 跳频通信简介 (1) 1.2.1 跳频通信系统概述 (1) 1.2.2 跳频技术的应用背景和发展趋势 (2) 1.3 MATLAB简介 (3) 1.4 本文研究内容及章节安排 (3) 第2章跳频通信系统的基本原理 (4) 2.1 跳频通信系统的结构组成 (4) 2.1.1 跳频系统的发送部分 (4) 2.1.2 跳频系统的接收部分 (5) 2.2 跳频通信系统的性能指标 (6) 2.3 跳频通信系统的调制方式 (7) 2.4 频率合成器 (8) 2.5 跳频信号的解跳与解调 (8) 2.5.1 跳频信号的解跳 (8) 2.5.2 跳频信号的解调 (9) 第3章跳频通信系统仿真及性能分析 (10)

GSM跳频原理

GSM跳频原理 1.概述 引入跳频的原因:GSM体系中的引入有两个主要原因,第一是频率分集,跳频可以保证各个突发在不同的频率上发射,这样就可以对抗由于瑞利衰落等引起的影响,因为这些影响是因频 率而异的。第二是干扰分集,在高业务地区,由频率复用带来的干扰显得较为突出。 引入跳频后,我们可以对使用相同频率组的远地蜂窝小区配置不同的跳频序列,这样 就可以分散使用相同频率集的信道之间的干扰,从中得到收益。 引入跳频的目的:提高系统抗干扰,抗衰落能力。GSM的无线接口,也相应采用了跳频的方法+。 概念:跳频就是按要求改变信道所用的频率。 GSM中的说明:在GSM系统中,整个突发期间,传输频率保持不变,每个突发的持续时间为577us,故GSM系统的跳频属于慢速跳频(SFH)。 图一是不跳频信道的时间和频率关系,图2表示了一个跳频信道的时间和频率关系。从图中可以看出,信道频率在每个突发期间维持不变,而在突发与突发之间,频率的改变则是一种看似杂乱的伪随机序列关系。 图1 信道不跳频时的时间频率关系图 图2 信道跳频时的时间频率关系示意图 在图2中,如果跳频实现是在一个TRU内实现就是射频跳频,如果在一个小区内的多个TRU间实现就是基带跳频。 下面举例说明: 下图在基带跳频方式下,HSN=0、RTSL(radio Time SLot no)=2时在不同FN时刻下的信道的使用的跳频序列。在该BTS下,配置有4个TRX。

下图为另一个实例。 使用的为射频跳频和不跳频方式。 该实例中,BTS有2个TRX。

2.跳频实现流程 跳频的实现包括信道分配和信道激活过程。首先,由OMC(操作维护中心)配置BSS及BSS中各信道的参数,这些参数通过BSC下发到BTS的每个信道。再有用户通信需要时,由BSC激活相应的信道进行业务数据传送。 A.信道分配过程 信道分配通过由BSC向BTS在Abis接口上发送的若干条消息完成。包括BTS属性设置消息(Set BTS Attributes),无线载频属性设置消息(Set Radio Carrier Attributes)和信道属性设置消息(Set Channel Attributes)。其中与BTS中跳频实现直接相关的是信道属性设置消息。该消息由OMU接收,再由OMU传给OAMM模块。其详细说明可参考协议12.21。 FH 图3 FUC中 SET FH MODE中的跳频方式 0 不跳频 1 基带跳频BB FH 2 射频跳频RF FH 在BSC后台的数据表R_FHS表中可查看跳频模式及相关信息。 A中Object Instance参数表明本消息的目标信道,包括BTS号,收发信机号,时隙号。Starting Time指明该信道配置的起始时间即起始帧号。FU根据此消息确定本FU所管辖的8个时隙的跳频参数包括HSN、MAIO和ARFCN List(用于构成MA表),这些参数将在跳频算法中详细说明。 B.信道激活过程

蓝牙技术原理

蓝牙技术原理 蓝牙无线技术是一种短距离通信系统,旨在取代连接便携设备和/或固定电子设备的缆线。蓝牙无线技术的主要特点在于功能强大、耗电量低、成本低廉。核心规格的许多功能均为可选功能,以实现产品多样性。蓝牙核心系统包括射频收发器、基带及协议堆栈。该系统可以提供设备连接服务,并支持在这些设备之间交换各种类别的数据。操作概览蓝牙射频(物理层)在无需申请许可证的 2.4GHz ISM 波段运行。系统采用了跳频收发器来防止干扰和衰落,并提供多个 FHSS(跳频扩频)载波。射频操作采用了成形的二进制频率调制,降低了收发器复杂性。符率为每秒 1 兆符 (Msps),支持每秒 1 兆位 (Mbps) 的比特率;对于增强的数据率,可支持 2 或 3Mb/s 的总空气比特率。这些模式分别称为“基本速率”和“增强数据率”。在一般操作情况下,同步至共用时钟及跳频图的一组设备将共享一个物理无线电信道。提供同步基准的设备称为主设备。所有其它设备称为从设备。以此方式同步的一组设备形成了一个微微网 (piconet)。这就是蓝牙无线技术通信的基本形式。微微网中的设备使用特定跳频图,该图由蓝牙规格地址中的特定字段和主设备时钟依据特定算法来确定。基本跳频

图是对 ISM 波段中的 79 个频率进行伪随机排序。跳频图可以调整以排除干扰设备使用的一部分频率。自适应跳频技术改善了蓝牙技术与静态(非跳频)ISM 系统的共存状态(当两者共存时)。物理信道被复分为称作时隙的时间单位。数据以时隙中数据包的形式在启用蓝牙的设备之间传送。如果条件允许,可以将多个连续时隙分配给一个数据包。跳频发生在传输或接收数据包时。蓝牙技术通过使用时分双工 (TDD) 方案提供全双工传输效果。物理信道上方有一个链路、信道及相关控制协议层。物理信道以上的信道及链路层级为物理信道、物理链路、逻辑传输、逻辑链路及 L2CAP 信道。在物理信道内,任意两个传输设备之间可以形成物理链路,并且可双向传输数据包。在微微网物理信道中,对哪些设备可以形成物理链路有一些限制。每个从设备和主设备间有一个物理链路。微微网中的从设备之间不会直接形成物理链路。物理链路可作为一个或多个逻辑链路的传输层,支持单播同步、异步和等时通信量及广播通信量。逻辑链路上的通信量可通过占有资源管理器中的调度功能分配的时隙分化到物理链路上。除用户数据外,逻辑链路还负载了基带和物理层的控制协议。即链路管理协议 (LMP)。微微网中的活动设备具有默认的面向异步连接的逻辑传输,用于传输 LMP 协议信令。由于历史原因,这被称作为 ACL 逻辑传输。每次有设备加入微

跳频扩频技术

华北水利水电大学扩频通信结课报告 跳频扩频技术 学院:信息工程 专业:通信工程 :建 学号: 201215707

跳频扩频系统的组成及工作原理 1、跳频系统的组成 跳频扩频(FHSS)通信是扩频通信的一种,是以载波频率的跳变进行通信的。这种通信可以有效地躲避干扰,已成为抗电子干扰的主要手段。系统的信道数、载波的带宽、跳频的速率和跳变的伪随机性是抗干扰的重要技术指标。信道数越多,带宽围越大,跳变的速率越快,频率跳变的规律越接近随机变化,就越难以被外界干扰。 跳频扩频(FHSS)系统组成框图如图1所示。 图1 跳频扩频系统组成框图 跳频系统的载频受一个伪随机码控制,不断地、随机地跳变,因此跳频系统可视作载频按照一定规律变化的多频频移键控(MFSK)。与直扩系统不同,跳频系统中的伪随机序列并不直接传输,而是用来选择信道。跳频系统主要由PN 码产生器和频率合成器两部分组成,快速响应的频率合成器是频率跳变系统的关键部件。频率跳变系统的发射机在一个预定的频率集中,由PN码序列控制频率合成器,使发射频率能随机地由一个跳到另一个。接收机中的频率合成器也按相同的顺序跳变,产生一个与发射频率只差一个中频的本振频率,经混频后得到固

定的中频信号,该中频信号经放大后送到解调器,恢复传送的信息。此处,混频器实际上担当了解调器角色,只要收发双方同步,就可将频率跳变信号转换为一个固定频率的信号。 2、跳频系统的工作原理 在传统的定频通信系统中,发射机中的主振荡器的振荡频率是固定设置的,因而它的载波频率是固定的。为了得到载波频率是跳变的跳频信号,要求主振荡器的频率应能遵照控制指令而改变。这种产生跳号的装置叫跳频器。通常,跳频器是由频率合成器和跳频指令发生器构成的,如图2(a)所示。 (a) 发送

自适应跳频技术及其实现概要

东南大学移动通信国家重点实验室 俞世荣李渊渊 ∥飞 主题专栏UollLlllln 丰颢毒喾麟kmn摘要本文在简要介绍自适应跳频通信基本原理的基础上,叙述自适应跳频通信系统的组成及通信过程,重点讨论自适应跳频所涉及的实时信道质量评估、频率自适应控制、功率自适应控制1引言 和有关协议等关键技术及其实现。 关键词跳频 自适应频率控制功率控制 跳频技术是扩频通信中一种抗干扰的实用技术。 心议∥∥ 后在无线局域网规范中也被确定为一种主要的通信方式。随着通信技术和电子对抗技术的发展,以及数据的频点,使跳频通信在无干扰的可使用的频点上进通信对通信质量提出更高的要求,在近十年来,一种行,从而大大提高跳频通信中接收信号的质量。所称为自适应跳频的技术已被广泛地应用到跳频通信中。谓功率自适应控制,是指自适应跳频系统中,各站自适应跳频技术是建立在自动信道质量分析基础上的台相互以最小的发射功率获得可靠的通信,以达到尽一种频率自适应和功率自适应控制相结合的跳频技术。可能增加系统的隐蔽性。 该技术能使跳频通信过程自动避开被干扰的跳频频率为了实现频率和功率自适应控制自适应跳频通信点,并以最小的发射功率、最低的被截获概率,达到系统中各个台站必须具有接收信道信号质量实时评估部在无干扰的跳频信道上,长时间保

持优质的通信。本件和反向通信链路,以便实时测定信道接收功率大小和文简要介绍这种白适应跳频通信的基本原理、系统和信道受干扰的情况,并用有关的自适应控制协议,通过设备的组成特点,重点讨论自适应跳频所涉及的关键反向链路及时通知发送站,调整发送站发射机功率,使技术及其实现方法。 收发双方同时从跳频频率集中去除受干扰的跳频频点。2基本原理 2.2系统结构及功能 图1给出了自适应跳频系统的单端设备结构示意 2.1定义 图。在自适应跳频系统单端设备中,核心的部件是发 自适应跳频通信是指除了常规跳频(盲跳频)通信送和接收自适应跳频控制单元。它与常规跳频控制单 所必须具备的功能外,还必须具有频率自适应控制和元的区别是:具有一个实时信道质量评估单元和用自功率自适应控制。所谓频率自适应控制是在跳频通信适应跳频图案发生器代替常规的跳频图案发生器。 过程中,拒绝使用那些曾经用过但是传输不成功的跳在发送白适应跳频控制单元中,发送数据处理 频频率集中的频点,即实时去除跳频频率集中被干扰 主要完成发送同步信息、通信信令和信息数据的综 万万方数据 方数据[2001年无线电工程第31卷第1期]

跳频技术的特点在现有网络中的应用

跳频技术的特点在现有网络中的应用 随着数字移动通信网络的飞速发展,移动用户的急剧增加,网络中单位面积的话务量也在不断地增加。在某些城市的市中心等繁华地段,在忙时甚至出现严重的话务拥塞情况,面对日益增长的话务需求,需要对网络进行扩容以满足容量和覆盖的要求。对于网络扩容,通常我们可以采用以下几种方法:小区分裂、增加新的频段、提高频率复用度来增加每个小区配置等方法。很显然在网络建设的初期通常采用小区分裂,通过不断增加新的基站(宏蜂窝和微蜂窝基站)来达到扩容的目的,但是随着站距的不断接近,网络的干扰也在不断的增加,因此当宏蜂窝基站的站距达到一定程度之后就很难在网络中增加新的基站。在这种情况下就采用在GSM900网络的基础上引入DCS1800网络,通过引入这一新的频段来解决网络瓶颈问题,这也是我们现在所看到中国移动和联通公司现在所采用的DCS双频网络。但是由于GSM900/DCS1800频段有限而且各个运营商所分配到的频率资源不同,而且考虑到引入双频网的成本很高,因此可以考虑通过在现有的GSM900单频网络或在引入DCS1800的双频网络中通过提高频率复用度,增加单位面积的容量配置来达到节省网络成本和提高容量的目的。通过引入跳频、功率控制、不连续发射等无线链路控制技术来达到扩容的目的。 一、跳频系统的特点及使用 跳频是指载波频率在很宽频带范围内按某种图案(序列)进行跳变。信息数据D经信息调制成带宽为Bd的基带信号后,进入载波调制。载波频率受伪随机码发生器控制,在带宽Bss(Bss>>Bd)的频带内随机跳变,实现基带信号带宽Bd扩展到发射信号使用的带宽Bss的频普扩展。可变频率合成器受伪随机序列(跳频序列)控制,使载波频率随跳频序列的序列值改变而改变,因此载波调制又被称为扩频调制。GSM的无线接口使用了慢速跳频,其要点是按固定间隔改变一个信道使用的频率。系统使用慢速跳频(SFH),每秒跳频217次,传输频率在一个突发脉冲传输期间保持一定。 跳频系统具有以下优点:能大大提高通信系统抗干扰、抗衰落的能力;能多址工作而尽量

相关主题
文本预览
相关文档 最新文档