当前位置:文档之家› 汽车转向梯形优化设计

汽车转向梯形优化设计

汽车转向梯形优化设计
汽车转向梯形优化设计

转向梯形的优化设计

1.转向梯形机构概述 (3)

2.整体式转向梯形结构方案分析 (3)

3.整体式转向梯形机构优化分析 (4)

4.整体式转向梯形程序编写 (7)

5.转动传动机构强度计算 (12)

6.转向梯形的优化结果 (13)

7.转向梯形结构设计图形 (13)

8.结论 (15)

转向梯形机构优化设计方案

一、转向梯形机构概述

转向梯形机构用来保证汽车转弯行驶时所有车轮能绕一个瞬时转向中心,在不同的圆周上做无滑动的纯滚动。设计转向梯形的主要任务之一是确定转向梯型的最佳参数和进行强度计算。一般转向梯形机构布置在前轴之后,但当发动机位置很低或前轴驱动时,也有位于前轴之前的。转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。

二、整体式转向梯形结构方案分析

图5.1 整体式转向梯形

1—转向横拉杆 2—转向梯形臂 3—前轴

整体式转向梯形是由转向横拉杆1,转向梯形臂2和汽车前轴3组成,如图5.1所示。其中梯形臂呈收缩状向后延伸。这种方案的优点是结构简单,调整前束容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。

当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。对于发动机位置低或前轮驱动汽车,常采用前置梯形。前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干涉,所以在布置上有困难。为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。

三、整体式转向梯形机构优化分析

汽车转向行驶时,受弹性轮胎侧偏角的影响,所有车轮不是绕位于后轴沿长线上的点滚动,而是绕位于前轴和后轴之间的汽车内侧某一点滚动。此点位置与前轮和后轮的侧偏角大小有关。因影响轮胎侧偏角的因素很多,且难以精确确定,故下面是在忽略侧偏角影响的条件下,分析有关两轴汽车的转向问题。此时,两转向前轮轴线的延长线应交在后轴延长线上,如图5-2所示。设θi 、θo 分别为内、外转向车轮转角,L 为汽车轴距,K 为两主销中心线延长线到地面交点之间的距离。若要保证全部车轮绕一个瞬时转向中心行驶,则梯形机构应保证内、外转向车轮的转角有如下关系:

L

K

i o =

-θθcot cot (1)

图1 理想的内、外车轮转角关系简图

若自变角为θo ,则因变角θi 的期望值为:

)/cot(cot )(0L K arc f o i -==θθθ (2)

现有转向梯形机构仅能近似满足上式关系。以图所示的后置梯形机构为例,在图上作辅助用虚线,利用余弦定理可推得转向梯形所给出的实际因变角i '

θ为

[])

cos(212cos )cos(cos 2arccos )

cos(21)sin(arcsin

02

002

0'θγγθγγθγθγγθ+-+??

?

??-+--+-+??

?

??+-=m K m K m K

m K m K i (3)

式中:m 为梯形臂长;γ为梯形底角。

所设计的转向梯形给出的实际因变角i '

θ,应尽可能接近理论上的期望值i θ。其偏差在最常使用的中间位置附近小角范围内应尽量小,以减少高速行驶时轮胎的磨损;而在不经常使用且车速较低的最大转角时,可适当放宽要求。因此,再引入加权因子

)( θω0,构成评价设计优劣的目标函数为)(x f

%100)()()()()(max

1???

?

???-=∑=oi i oi i oi i i oi o oi x f θθθθθθθωθθ (4) 由以上可得:

[]%100cot cot )

cos(212cos )cos(cos 2arccos

cot cot )

cos(21)

sin(arcsin

)()(02

002

01max

??

????

?

-+-+??

?

??-+--

?

?????

-+-+??

?

??+-=∑=L K arc m K m K m K

L K arc m K m K x f oi i oi i i oi o oi θθγγθγγθθγθγγθωθθ (5) 式中:x 为设计变量,??

?

???=??????=m x x x γ21;θomax 为外转向车轮最大转角,由图2

得 a D L

-=2a r c s i n m i n

m a x o θ (6)

式中,Dmin 为汽车最小转弯直径;a 为主销偏移距。

考虑到多数使用工况下转角θo 小于20°,且10°以内的小转角使用得更加频繁,因此取:

???

?

???≤<≤<≤<=max

205.020100

.11005

.1)(o o o o o θθθθθω (7)

建立约束条件时应考虑到:设计变量m 及γ过小时,会使横拉杆上的转向力过大;当m 过大时,将使梯形布置困难,故对m 的上、下限及对γ的下限应设置约束条件。因γ越大,梯形越接近矩形,值就越大

,而优化过程是求

的极小值,故可不必对γ的上限加以限制。综上所述,各设计变量的取值范围构成的约束条件为:

00

min max min ≥-≥-≥-γγm m m m (8)

梯形臂长度m 设计时常取在mmin=0.11K ,mmax=0.15K 。梯形底角γmin=70°

此外,由机械原理得知,四连杆机构的传动角δ不宜过小,通常取δ≥δmin =40°。如图5-2所示,转向梯形机构在汽车向右转弯至极限位置时达到最小值,故只考虑右转弯时δ≥δmin 即可。利用该图所作的辅助用虚线及余弦定理,可推出最小传动角约束条件为:

02c o s )c o s (c o s )c o s (c o s 2c o s m i n m a x m i n ≥--++-K m

o γγδθγγδ (9)

式中:δmin 为最小传动角。δmin=40°,故由式a D L o -=2

arcsin

min

max θ可知,δmin

为设计变量m 及γ的函数。

由式(6)、式(7)、式(8)和式(9)四项约束条件所形成的可行域,如图3所示的几种情况。

图3b 适用于要求δmin 较大,而γmin 可小些的车型;图5-3c 适用于要求γmin 较大,而δmin 小些的车型;图3a 适用介于图3b 、c 之间要求的车型。

图3 转向梯形机构优化设计的可行域

四、整体式转向梯形程序编写

(1)优化编程所需数据:

轴距:L=2775mm 轮距:K=1560mm 最小转弯半径:R=5300mm 转向梯形臂:m 计算可得底边长:L-2*a (2)function fuun .m 编辑过程 在MATLAB 窗口新建一个空白M 文件

将下式输入

function c=theatar()

%建立主函数

global options L b r a K thetamax cl cr fi0 %定义全局变量

K=1638; %input('输入主销中心线间距(mm)'); %依次给予几个变量赋值

L=3308; %input('输入轴距(mm)');

thetamax=40; %input('输入外转向轮最大转角(度)');

x(1)=175; %input('臂长(mm)');

x(2)=74.5; %input('底角(度)');

b=8; %input('内倾角(度)');

r=2; %input('后倾角(度)');

a=1; %input('外倾角(度)');

thetamax=thetamax*pi/180; %单位转换,弧度与度数转变

lb(1)=0.11*K; %设置上下限

lb(2)=1.2217; %acot(K/(1.2*L));

ub(1)=0.13*K;

ub(2)=pi/2;

fil=linspace(0,thetamax,61);

lb=[lb(1),lb(2)];

ub=[ub(1),ub(2)];

x0=[x(1),x(2)];

% A=[0.251 0.372];

% b=[0.143];

[y,fval]=fmincon('fuun',x0,[],[],[],[],lb,ub,[]);

%利用工具箱中的x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)进行计算

Y=y;

%[y,resnorm]=lsqnonlin('fuun',x0,lb,ub,options) %betae(i) y = fmincon(fuun,x0,[],[],[],[],lb,ub) for i=1:61 %设置60个区域

fil=linspace(0,thetamax,61);

%betae(i)=acot(cot(fil(i))-(K/L));

fi=fii(r*pi/180,b*pi/180);%以下将各公式单位转换,并代入公式

dt=delta(r*pi/180,fii(r*pi/180,b*pi/180));%=dt

d=Di(fii(r*pi/180,b*pi/180),a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180)));%=d

Mid_w=Ww(a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180)),Di(fii(r*pi/180,b*pi/180),a*pi/180,d elta(r*pi/180,fii(r*pi/180,b*pi/180))));%=w

a1(i)=alfa(fi,d,fil(i),Mid_w);

A(i)=K*cos(b*pi/180)-x(1)*cos(2*(b*pi/180))*cos(x(2)*pi/180+fil(i));

B(i)=x(1)*sin(x(2)*pi/180+fil(i));

C(i)=K*cos(b*pi/180)*cos(x(2)*pi/180+fil(i))-2*K*cos(b*pi/180)*cos(x(2)*pi/180)+2*x(1)*(cos(b* pi/180)^2)*(cos(x(2)*pi/180)^2)-x(1);

fir(i)=abs(fiir(A(i),B(i),C(i),x(2)*pi/180));

a2(i)=alfa2(fi,d,fir(i),Mid_w);

cl(i)=acos((cos(lamta(d,fil(i)))-sin(a*pi/180)*sin(a1(i)))/(cos(a*pi/180)*cos(a1(i))))*180/pi;

cr(i)=acos((cos(lamta(d,fir(i)))-sin(a*pi/180)*sin(a2(i)))/(cos(a*pi/180)*cos(a2(i))))*180/pi; betae(i)=acot(cot(cl(i)*pi/180)-(K/L));

Aa(i)=K*cos(b*pi/180)-y(1)*cos(2*(b*pi/180))*cos(y(2)+fil(i));

Ba(i)=y(1)*sin(y(2)+fil(i));

Ca(i)=K*cos(b*pi/180)*cos(y(2)+fil(i))-2*K*cos(b*pi/180)*cos(y(2))+2*y(1)*(cos(b*pi/180)^2)*(c os(y(2))^2)-y(1);

fira(i)=abs(fiir(Aa(i),Ba(i),Ca(i),y(2)));

a2a(i)=alfa2(fi,d,fira(i),Mid_w);

% cl(i)=acos((cos(lamta(d,fil(i)))-sin(a*pi/180)*sin(a1(i)))/(cos(a*pi/180)*cos(a1(i))))*180/pi; cr1(i)=acos((cos(lamta(d,fira(i)))-sin(a*pi/180)*sin(a2a(i)))/(cos(a*pi/180)*cos(a2a(i))))*180/pi; end

plot(cl,betae*180/pi,'r',cl,cr,'b',cl,cr1,'--g');

% plot(cl,cr1,'--b');

axis([0,40,0,45]);

xlabel('外转向轮输入角(单位:度)');

ylabel('内转向轮输出角(单位:度)');

title('右轮初始值实际转角-理想转角-优化值实际转角随左输入角的变化曲线');

text( 2,38,'红线代表理想转角的变化曲线','FontSize',8,'backgroundcolor',[1 0.4 0.4]);

text( 2,36,'蓝线代表实际转角的变化曲线','FontSize',8,'backgroundcolor',[0.4 0.4 1]);

text( 2,34,'绿线代表优化后转角的变化曲线','FontSize',8,'backgroundcolor',[0.6 1 0.8]);

hold on

End

%子函数,定义个变量的意义

function lt=lamta(d,fil)

lt=acos((cos(d))^2+(sin(d))^2*cos(fil));

end

function a1=alfa(fi,d,fil,w)

a1=asin(-cos(fi)*cos(d)-sin(fi)*sin(d)*cos(fil-w));

end

function a2=alfa2(fi,d,fir,w)

a2=asin(-cos(fi)*cos(d)-sin(fi)*sin(d)*cos(fir+w));

end

function d=Di(fi,a,dt)

d=acos(-cos(fi)*sin(a*pi/180)-sin(fi)*cos(a*pi/180)*cos(dt));

end

function w=Ww(a,dt,d)

w=asin(cos(a*pi/180)*sin(a*pi/180)/sin(d));

end

function dt=delta(r,fi)

dt=asin(sin(r*pi/180)/sin(fi));

end

function fi=fii(r,b)

fi=acos(cos(r*pi/180)*cos(b*pi/180));

end

function fir=fiir(A,B,C,fi0)

fir=fi0-2*atan((B+(sqrt(A^2+B^2-C^2)))/(A-C));

end

附录二

在同一文件下编辑theatar.m 进行绘图编辑

function c=theatar()

%主函数

global options L b r a K thetamax cl cr fi0 %定义全局变量

K=1638; %input('输入主销中心线间距(mm)'); %给予几个变量赋值

L=3308; %input('输入轴距(mm)');

thetamax=40; %input('输入外转向轮最大转角(度)');

x(1)=175; %input('臂长(mm)');

x(2)=74.5; %input('底角(度)');

b=8; %input('内倾角(度)');

r=2; %input('后倾角(度)');

a=1; %input('外倾角(度)');

thetamax=thetamax*pi/180; %单位转换

lb(1)=0.11*K; %设置上下限

lb(2)=1.2217; %acot(K/(1.2*L));

ub(1)=0.13*K;

ub(2)=pi/2;

fil=linspace(0,thetamax,61);

lb=[lb(1),lb(2)];

ub=[ub(1),ub(2)];

x0=[x(1),x(2)];

% A=[0.251 0.372];

% b=[0.143];

[y,fval]=fmincon('fuun',x0,[],[],[],[],lb,ub,[]);

Y=y;

%[y,resnorm]=lsqnonlin('fuun',x0,lb,ub,options) %betae(i) y = fmincon(fuun,x0,[],[],[],[],lb,ub) for i=1:61 %设置60个区域

fil=linspace(0,thetamax,61);

% betae(i)=acot(cot(fil(i))-(K/L));

fi=fii(r*pi/180,b*pi/180);%以下将各公式单位转换,并代入公式

dt=delta(r*pi/180,fii(r*pi/180,b*pi/180));%=dt

d=Di(fii(r*pi/180,b*pi/180),a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180)));%=d

Mid_w=Ww(a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180)),Di(fii(r*pi/180,b*pi/180),a*pi/180,d elta(r*pi/180,fii(r*pi/180,b*pi/180))));%=w

a1(i)=alfa(fi,d,fil(i),Mid_w);

A(i)=K*cos(b*pi/180)-x(1)*cos(2*(b*pi/180))*cos(x(2)*pi/180+fil(i));

B(i)=x(1)*sin(x(2)*pi/180+fil(i));

C(i)=K*cos(b*pi/180)*cos(x(2)*pi/180+fil(i))-2*K*cos(b*pi/180)*cos(x(2)*pi/180)+2*x(1)*(cos(b* pi/180)^2)*(cos(x(2)*pi/180)^2)-x(1);

fir(i)=abs(fiir(A(i),B(i),C(i),x(2)*pi/180));

a2(i)=alfa2(fi,d,fir(i),Mid_w);

cl(i)=acos((cos(lamta(d,fil(i)))-sin(a*pi/180)*sin(a1(i)))/(cos(a*pi/180)*cos(a1(i))))*180/pi;

cr(i)=acos((cos(lamta(d,fir(i)))-sin(a*pi/180)*sin(a2(i)))/(cos(a*pi/180)*cos(a2(i))))*180/pi; betae(i)=acot(cot(cl(i)*pi/180)-(K/L));

Aa(i)=K*cos(b*pi/180)-y(1)*cos(2*(b*pi/180))*cos(y(2)+fil(i));

Ba(i)=y(1)*sin(y(2)+fil(i));

Ca(i)=K*cos(b*pi/180)*cos(y(2)+fil(i))-2*K*cos(b*pi/180)*cos(y(2))+2*y(1)*(cos(b*pi/180)^2)*(c os(y(2))^2)-y(1);

fira(i)=abs(fiir(Aa(i),Ba(i),Ca(i),y(2)));

a2a(i)=alfa2(fi,d,fira(i),Mid_w);

%cl(i)=acos((cos(lamta(d,fil(i)))-sin(a*pi/180)*sin(a1(i)))/(cos(a*pi/180)*cos(a1(i))))*180/pi;

cr1(i)=acos((cos(lamta(d,fira(i)))-sin(a*pi/180)*sin(a2a(i)))/(cos(a*pi/180)*cos(a2a(i))))*180/pi; end

%绘制图像

plot(cl,betae*180/pi,'r',cl,cr,'b',cl,cr1,'--g');

% plot(cl,cr1,'--b');

%定义各轴意义

axis([0,40,0,45]);

xlabel('外转向轮输入角(单位:度)');

ylabel('内转向轮输出角(单位:度)');

title('右轮初始值实际转角-理想转角-优化值实际转角随左输入角的变化曲线');

%定义各曲线意义

text( 2,38,'红线代表理想转角的变化曲线','FontSize',8,'backgroundcolor',[1 0.4 0.4]);

text( 2,36,'蓝线代表实际转角的变化曲线','FontSize',8,'backgroundcolor',[0.4 0.4 1]);

text( 2,34,'绿线代表优化后转角的变化曲线','FontSize',8,'backgroundcolor',[0.6 1 0.8]);

hold on

End

%进行子函数定义

function lt=lamta(d,fil)

lt=acos((cos(d))^2+(sin(d))^2*cos(fil));

end

function a1=alfa(fi,d,fil,w)

a1=asin(-cos(fi)*cos(d)-sin(fi)*sin(d)*cos(fil-w));

end

function a2=alfa2(fi,d,fir,w)

a2=asin(-cos(fi)*cos(d)-sin(fi)*sin(d)*cos(fir+w));

end

function d=Di(fi,a,dt)

d=acos(-cos(fi)*sin(a*pi/180)-sin(fi)*cos(a*pi/180)*cos(dt));

end

function w=Ww(a,dt,d)

w=asin(cos(a*pi/180)*sin(a*pi/180)/sin(d)); end

function dt=delta(r,fi)

dt=asin(sin(r*pi/180)/sin(fi)); end

function fi=fii(r,b)

fi=acos(cos(r*pi/180)*cos(b*pi/180)); end

function fir=fiir(A,B,C,fi0)

fir=fi0-2*atan((B+(sqrt(A^2+B^2-C^2)))/(A-C)); end

程序运行结果

%100)()()()()(max

1???

?

???-=∑=oi i oi i oi i i oi o oi x f θθθθθθθωθθ考虑到多数使用工况下转角θo 小于20°

,且10°以内的小转角使用得更加频繁,因此取:

五、转动传动机构强度计算

1、转向拉杆

???

?

???≤<≤<≤<=max

205.020100

.11005

.1)(o o o o o θθθθθω

拉杆应该有较小的质量和足够的刚度。拉杆的形状应符合布置要求,有事不得不做成弯的,这就减小了纵向刚度。拉杆应应用《材料力学》中的有关压杆稳定性计

算的公式进行验算。稳定性安全系数不小于1.5—2.5。拉杆用20、30或40钢无缝钢制成。 2、转向摇臂

在球头销上作用的力F ,对转向摇臂构成弯曲和扭转力矩的联合作用。危险断面在摇臂根部,应按第三强度理论验算其强度,即

2

^2^*2^*42^2^d *2^wn e F ww F +=σ

式中,ww 、wn 为危险断面的抗弯界面系数和抗扭界面系数。

六、优化的结果如下:

转向梯形臂长m=160mm 转向梯形底角 γ=70ο

七、转向梯形优化设计三维图形

转向前桥

转向节臂

转向横拉杆

结论

转向系是汽车行驶中必不可少的系统,本次设计一开始对汽车转向系很陌生,但本着对汽车转向的强烈兴趣和此次设计的责任感,通过大量的想关文献参考和网络搜索,使我逐渐认识并最终了解了汽车转向机构。

汽车转向机构中,轿车使用的一般都是齿轮齿条式。所以本文主要以齿轮齿条式液动助力转向转向器为中心。按照任务书的要求对轿车助力转向进行了分析和一些的设计,包括齿轮齿条转向实现的原理以及相关零件的校核等等。还对汽车转向系统的一些重要参数进行了分析,尤其像转向系统的正逆效率、传动比、最小转弯半径等。但是由于相关转向设计所需的基本参数本人我法获得,还有时间限制,以及篇幅所限,所以对一些重要参数只进行分析未能进行设计。

由于转向梯形优化是本设计的独立部分故被放入最后一章。为保证轿车转向后的自动回正能力,转向系的主销一般都是向内倾和向后倾的,但为计算简单,本优化把倾角都设计为零,即设计主销垂直。

由于水平限制和相关数据的缺乏,本设计难免有诸多不足之处,肯请老师批评指正。

新能源汽车白车身结构拓扑及尺寸优化设计研究

新能源汽车白车身结构拓扑及尺寸优化设计研究 摘要随着科学技术的不断进步,新能源汽车凭借高能效、低污染的优势成为汽车行业发展的新潮流。但是很多新能源汽车只更换了动力系统,却依旧沿用传统汽车的车身结构,然而使用电动机替换发动机且增加蓄电池的使用就一定会导致车身载荷发生变化,从而使得新能源汽车和传统汽车在结构设计上有很大不同,这就要求必须要改变车身结构设计。此外,新能源汽车的动力系统被大大简化,这也为车身结构轻量化提供了更大的可能。所以,加强新能源汽车白车身结构和尺寸优化成为汽车行业的重要研究方向,而结构拓扑技术成为实现上述设想的重要技术。 关键词新能源汽车;结构拓扑;尺寸优化 随着社会经济的快速发展,汽车数量在迅速增加,由燃油汽车造成的环境问题和能源问题成为人们面临的重要问题。作为一种新型的绿色交通工具,新能源汽车凭借其能效高、噪音低、污染少等优势成为世界各国关注的热点。当前阶段,对整车结构的拓扑优化相关研究较少,应用于新能源汽车整个车身设计的研究成果更是缺乏。在汽车整车概念设计过程中,如果能够依据新能源汽车的特征有针对性的对白车身结构进行设计,就能够在很大程度上提升材料利用率,更好地实现轻量化设计。 1 结构拓扑优化方法 随着学者们的不但探究,现在的拓扑优化技术已经日渐成熟,结构拓扑优化方法主要包括均匀化方法、水平集法及变密度法等,且从这些方法中又演变出很多新形式。 1.1 均匀化方法 在连续体结构拓扑优化的众多方法中,均匀化方法是使用最广泛的方法,这种方法的基本思想是把拓扑结构材料划分成众多单胞微结构,确保单胞的尺寸、形状参数和材料的弹性模型密度呈现出线性关系,这样单胞尺寸的变化就决定了微结构的有无。通过对形状参数的优化,可以影响设计区域的密度分布情况,从而最大程度提升结构拓扑优化和尺寸优化的性能。 对均匀化方法的研究成果主要分为理论研究、实际应用两个方面,其中理论研究更多在微结构模型中应用,而实际应用更多的应用在均匀化模型中[1]。微型结构模型的理论研究侧重于对方形结构掏空、挖洞的理论探究,均匀化模型实际应用则主要是指对三维连续问题、多工况二维平面问题等的探究。 1.2 变密度法 在连续体结构拓扑优化中,变密度法也是十分常见的一种方法,它是材料描

汽车转向梯形机构图解解析

轮式车辆转向梯形结构的图解解析 常州工业技术学院钨华芝常州市政工程管理处魏晓静 摘要介绍几种简单实用的车辆转向梯形结构的图解解析设计法。通过事先设定内、外转向轮实际特性曲线与理论特性的交点位置来控制转角偏差的方法,选择转向梯形机构参数,可以大大减少图次数,提高工作效率,减小转角误差。 关键词:转向梯形机构解析图解 1 引言 轮式车辆一般都是依靠转向车轮偏转一个角度来实现转弯或曲线行驶。转向是的基本要求是保证所有车轮滚动而不发生滑动,这一要求通常由平面四杆机构来达到。传统的设计都采用图解转向梯形的方法。这种方法需要按经验数据选择机构的几何参数,然后作图校核该梯形机构在运动过程中转向轮的转角偏差是否大于允许偏差,若大于允许偏差,则重新选择或调整几何参数,再校核图,直至转角偏转小于允许偏差为止。这实际上是一种试凑的方法,带有较大的盲目性,工作量大。随着计算机的发展,解析法得到了较好的应用,但是传统的图解法仍有它直观、方便的优点,因此仍然被工程设计人员广泛采用。本文介绍一种简单高效且实用的图解解析设计法,可以大大减少作图校核的次数,提高工作效率。 2 转向理论特性 机动车辆或装卸搬运车辆的转向大多采用双轴线式转向方式,见图1。为了满足纯滚动条件,转向时所有车轮必须以不同的半径围绕同一转向中心滚动,各个车轮的轴线交于瞬时转向中心O点。虽然两个转向轮偏转的角度不同,但是两个转角之间应满足下列几何关系: ctg?-ctga=M/L (1)式中?-外轮转角a-内轮转角M-转向轴两主销中心距L-车辆前后轴轴距 为了满足运动学上的这一几何关系,一般都是通过设计转向梯形机构来实现的。式(1)称为转向理论特性。

汽车转向梯形优化设计

转向梯形的优化设计 1.转向梯形机构概述 (3) 2.整体式转向梯形结构方案分析 (3) 3.整体式转向梯形机构优化分析 (4) 4.整体式转向梯形程序编写 (7) 5.转动传动机构强度计算 (12) 6.转向梯形的优化结果 (13) 7.转向梯形结构设计图形 (13) 8.结论 (15)

转向梯形机构优化设计方案 一、转向梯形机构概述 转向梯形机构用来保证汽车转弯行驶时所有车轮能绕一个瞬时转向中心,在不同的圆周上做无滑动的纯滚动。设计转向梯形的主要任务之一是确定转向梯型的最佳参数和进行强度计算。一般转向梯形机构布置在前轴之后,但当发动机位置很低或前轴驱动时,也有位于前轴之前的。转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。 二、整体式转向梯形结构方案分析 图5.1 整体式转向梯形

1—转向横拉杆 2—转向梯形臂 3—前轴 整体式转向梯形是由转向横拉杆1,转向梯形臂2和汽车前轴3组成,如图5.1所示。其中梯形臂呈收缩状向后延伸。这种方案的优点是结构简单,调整前束容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。 当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。对于发动机位置低或前轮驱动汽车,常采用前置梯形。前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干涉,所以在布置上有困难。为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。 三、整体式转向梯形机构优化分析 汽车转向行驶时,受弹性轮胎侧偏角的影响,所有车轮不是绕位于后轴沿长线上的点滚动,而是绕位于前轴和后轴之间的汽车内侧某一点滚动。此点位置与前轮和后轮的侧偏角大小有关。因影响轮胎侧偏角的因素很多,且难以精确确定,故下面是在忽略侧偏角影响的条件下,分析有关两轴汽车的转向问题。此时,两转向前轮轴线的延长线应交在后轴延长线上,如图5-2所示。设θi 、θo 分别为内、外转向车轮转角,L 为汽车轴距,K 为两主销中心线延长线到地面交点之间的距离。若要保证全部车轮绕一个瞬时转向中心行驶,则梯形机构应保证内、外转向车轮的转角有如下关系: L K i o = -θθcot cot (1)

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

转向梯形优化设计matlab程序

优化计算MATLAB程序 首先,将目标函数写成M文件,其程序语句如下; function f = fun (x) global K L thetamax alpha for i=1:61 f = 0 betae = atan(tan(alpha(i)/(1-(K/L)*tan(alpha(i)))); A(i)=2*x(1).^2*sin(x(2)+alpha(i)); B(i)=2*K*x(1)-2*x(1).^2*cos(x(2)+alpha(i)); C(i)=2*x(1).^2-4*x(1).^2*(cos(x(2)).^2+4*K*x(1)*cos(x(2))-2*K*x(1)* cos(x(2)+alpha(i)); theta3(i)= 2*acot((A(i)+sqrt(A(i).^2+B(i).^2-C(i).^2))/(B(i)+C(i))); beta(i)=x(2)+theta3(i)-pi; if alpha(i)<=pi/18 f(i)=1.5*abs(beta(i)-betae3(i)); elseif alpha>=pi/18,alpha(i)<=pi/9;f(i)=abs(betaa(i)-betae3(i)); elsef(i)=0.5*abs(beta(i)-betae3(i)); global K L thetamax alpha K=input L=input thetamax=input x0(1)=input

x0(2)=input thetamax = thetamax*pi/180; x0(2)=x0(2)*pi/180;lb(1)=0.17K; lb(2)=0.17*K; ub(1)=acot(K/(1.2*L))ub(2)=pi/2; alpha=linspace (0, theamax ,61); lb=[lb(1),lb(2)]; ub=[ub(1),ub(2)];x(0)=[x0(1),x0(2)]; options = optimset ( ‘TolFun’,‘le-10’,‘TolCon’,‘le-6’) [x,resnorm] = lsqnonlin(‘fun’,x0,lb,ub,options) g lobal K L thetamax alpha K = input L= input thetamax= input x ( 1) = input x ( 2) = input thetamax = thetamax * pi/ 180; x ( 2) = x ( 2) * pi/ 180; alpha= linspace( 0, thetamax , 61) ; fo r i= 1∶61 betae= atan( tan( alpha( i) ) / (( 1- K/ L) * tan( alpha( i) ) ) ) ; A ( i) = 2* ( x ( 1) ) .∧2* sin ( x ( 2) + alpha( i) ) ; B( i) = 2* K* x( 1) - 2* ( x ( 1) ) . ∧2* cos( x( 2) + alpha( i) ) ) ;

轿车车身功能尺寸系统优化设计及应用研究

轿车车身功能尺寸系统优化设计及应用研究 泛亚汽车技术中心有限公司曾贺胡敏 上海交通大学机械与动力工程学院金隼 从上世纪90年代以来,通过以“2mm工程”为代表的统计质量管理方法在整个汽车领域的应用和全面推广,已经使得全球的整车制造水平在过去的20年中整体提升了一个台阶。但随着汽车构造越来越复杂以及客户对汽车的质量要求越来越高,各汽车企业都已逐步认识到,整车质量的形成不仅与生产制造过程有关,还与包括产品设计在内的其他许多过程、环节和因素密切相关。只有将影响质量的所有因素全部纳入到质量管理中,并保持系统、协调的运作,才能确保整车的高质量。因此,全面质量管理的理论也就应运而生,而在全面质量管理方法中,设计质量又是重中之重。 在此背景下,近年来,功能尺寸这 一过去仅用于生产制造阶段,监控车身 尺寸偏差的工具被逐步扩展应用到了产 品设计阶段。所谓功能尺寸(Functional Dimension)就是指“从一般产品尺寸特 征中选择出来的一部分反映产品重要功能而且必须保证的尺寸”,它是由德国大众在上世纪90年代率先提出,并全面推广的概念。相对于传统的整车尺寸检测控制方法,功能尺寸在车身尺寸偏差控制方面有着“直观、效率高、与整车质量表现关联性强”等特点。 目前,国内企业在车身尺寸偏差监控方面,应用的功能尺寸控制标准主要是直接从国外引进,或者是工程师在实际生产中根据经验而定义的,至今国内还没有一套系统是针对功能尺寸从设计到验证再到应用的完整开发流程。但随着国际合作的增加,以及自主开发的不断深入,越来越多的汽车企业在设计过程中开始运用功能尺寸这一工具对设计进行优化,功能尺寸的设计开发也因此得到了各个整车企业的重视。 车身功能尺寸系统概述 1.车身功能尺寸的分类 功能尺寸按照不同的用途大致可分为:产品功能尺寸、基准功能尺寸和控制功能尺寸三大类。 (1)产品功能尺寸,是指为了保证下一级装配质 量而在上一级零件、分总成、总成上规定的功能尺寸, 是从整车性能要求中分解出来的对各总成、分总成和 零件的关键特征的相对公差要求。通过产品功能尺寸 的定义,可确定总成、分总成和零件的设计目标,驱 动总成或分总成中所有零件的结构关系、定位策略、 工艺过程、公差要求等的设计。 (2)基准功能尺寸,是指为了保证产品功能尺寸, 而在下一级的分总成、总成上对上一级的零件、分总成、总成的基准提出的公差要求。实现基准功能尺寸的主要方法就是在汽车产品设计和制造

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

基于MATLAB的断开式转向梯形的优化设计

华北水利水电大学 《汽车设计》课程设计任务书 设计题目:乘用车整车设计 转向系统——转型梯形的优化设计 专业:机械设计制造及其自动化 班级学号:201108207 姓名:刘鹏飞 指导教师:郭朋彦 设计期限:2014年12 月29日开始 2015年1 月9日结束 机械学院 2014年12月26日

一.设计的目的和意义 课程设计题目——乘用车整车设计是针对2011级汽车方向《汽车设计》课程设计而设置的。设置本选题具有以下的目的和意义: 1.通过对轻型乘用车的设计,可以使我们的理论知识更扎实,加深我们对于《汽车构造》、《汽车理论》、《汽车设计》等专业知识的理解,同时使我们学到的理论知识得以应用。 2.在设计的过程中,需要对参考车型的零部件进行了解、分析、设计、建模与装配、验证等这个过程,可以使我们了解产品的研发过程,位我们步入工作岗位,快速适应工作打下良好的基础。 3.本次设计运用三维设计软件CATIA、UG、Pro-E、Solidworks、Solidedge进行建模和仿真,使我们有机会学习和应用目前三维软件领域最为领先的软件的具体操作,了解行业最前沿,同时使用三维软件进行设计可以缩短产品开发周期,提高设计质量。 二、设计参数 1. 加速时间(0—100 km/h):11.8s; 2. 最小转弯半径:5.3m; 3. 整备质量:1457kg; 4. 满载质量:1940kg; 5. 最高车速:190km/h; 6.外形尺寸(长X宽X高):4850mmX 1795mmX 1475mm; 7 轴距:2775mm; 8.前轮距:1560mm; 9.后轮距:1560mm; 10. 最小离地间隙:135mm; 11. 行李箱容积:506L; 12. 燃油箱容积:70L; 13.驱动方式:前置前驱,发动机横置; 14:供油方式:多点电喷; 15.发动机排量、燃油、气缸排列型式、进气型式:2000mL、汽油93号(北京92号)、L型、自然吸气式;

汽车转向梯形的优化设计

齿轮齿条式转向梯形的优化设计 学院:车辆与能源学院 专业:2012级车辆工程 学号:S12085234009 姓名:刘建霞 日期:2014年4月15日

齿轮齿条式转向器(如图1)具有结构简单紧凑,制造工艺简便等优点,不仅适用于整体式前轴也适用于前轮采用独立悬架的断开式前轴,目前被广泛地用于轿车、轻型客货车、微型汽车等车辆上。与该转向器相匹配的转向梯形机构与传统的整体式转向梯形机构相比有其特殊之处,下面举一实例加以说明。 图1 齿轮齿条式转向梯形机构运动实体模型 题目:已知某微型汽车(如图2所示)各参数如下:1274.24K mm =, 0()=2.5β主销后倾角,L(轴距)=2340mm ,=mm r (车轮滚动半径)266, =oy B y 梯形臂球头销中心的()42坐标.12mm ,由最小转弯半径得最大外轮转角为 28o ,许用齿条行程[]62.3S mm =,选用参数624M mm =,试设计转向传动机构。 要求: (1)用优化方法设计此转向梯形传动机构。 (2)优化后校验,压力角40o α≤。 (3)计算出l 1长度,齿条左右移动最大距离。

图2 齿轮齿条转向梯形机构 一 建模 由转向基本要求可知,在不计轮胎侧偏时,实现转向轮纯滚动、无侧滑转向的条件是内、外轮转角符合Arckerman 理想转角关系:cot cot /O i k L θθ-=,如图3所示。 图3 理想的内外轮转角关系 (1)设计变量: 选取变量 1(,,) X l h γ=

图4 外轮一侧杆系运动情况 由图4内外轮转角的关系得: 221o 21o l cos(r )l [sin()h]2 K M S l r θθ-=-+-+- S M K h 22arctan +-=? (2) 2 212 2 2221)2 (2)2(arccos h S M K l l h S M K l ++--++-+=γ (3) i r θφγ=-- (4) 联立上式可得o ()i g θθ=的函数关系式。 对于给定的汽车和选定的转向器,转向梯形机构有横拉杆长l 1和梯形臂长m 两个设计变量。在计算过程中,以梯形底角r 代替横拉杆长l 1作为设计变量,再代入式(1)得到l 1。底角r 可按经验公式先选一个初始值 43r arctan()67.88L K ==,进行优化搜索。 12

怎样把汽车优化设计

汽车设计 目录 前言 1、轿车车身 2、轿车造型与空气动力学 3、导流板与扰流板 5、汽车档风玻璃 6、汽车档风玻璃2 8、现代汽车的造型设计 9、轿车车身上的三大立柱车身外型设计的两对矛盾汽车风阻的五个组成部分汽车外形的演变 车身要紧构件 轿车的面漆 汽车的噪声 轿车的降噪措施 汽车的色彩 汽车内饰件的材料

内饰件与模块化 汽车木质内饰件 电动玻璃升降器 电动座椅 现代轿车座椅的要求 车顶盖 轿车的门 车用塑料燃油箱 轿车的仪表板总成 轿车的前照灯 以后的轿车大灯 汽车内的雨刮器 现代轿车音响 氙灯——一种新型的前大灯人机工程学与汽车设计 现代轿车设计概况 “优化设计”与轿车产品 材料疲劳——汽车安全的大敌塑料在汽车内的应用

镁合金在汽车内的应用车用材料的新进展 汽车铝质材料 纳米技术和汽车 车用钢板 新型车身材料 绿色浪潮与汽车 汽车信息化 网络汽车 蓝牙技术与汽车 汽车移动影院与信息化Wi-Fi与汽车 车载燃料电池 混合动力汽车 汽车保险杠 安全气囊 轿车内的安全带

前言 ....汽车作为一种商品,首先向人们展示的确实是它的外型,外型是否讨人喜爱直接关系到这款车子甚至汽车商的命运。在全球各大汽车企业中,汽车造型工作差不多上由公司的最高层直接领导。因此除了汽车公司自己的设计队伍,还有一些独立的、专业的汽车设计公司,如闻名意大利设计大师乔治亚罗的设计公司[ www.italdesign.it]、意大利博通设计室[ www.bertone.it] 等等。 ....好,先让我们看一下什么是汽车造型设计? ....汽车造型设计是依照汽车整体设计的多方面要求来塑造最理想的车身形状。汽车造型设计是汽车外部和车厢内部造型设计的总和。它不是对汽车的简单装饰,而是运用艺术的手法科学地表现汽车的功能、材料、工艺和结构特点。 ....汽车造型的目的是以其的美去吸引和打动观者,使其产生拥有这种车的欲望。汽车造型设计尽管是车身设计的最初步骤,是整车设计最初时期的一项综合构思,但却是决定产品命运的关键。汽车的造型已成为汽车产品竞争最有力的手段之一。 ....汽车造型设计需要你掌握哪些知识? ....汽车造型要紧涉及科学和艺术两大方面。设计师需要明白得车身结

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

转向梯形机构计算及优化案.doc

转向梯形机构确定、计算及优化 转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为达到总体布置要求的最小转弯直径值,转向轮应有足够大的转角。 5.5.1转向梯形结构方案分析 1.整体式转向梯形 图5-14 整体式转向梯形 1—转向横拉杆2—转向梯形臂3—前轴 整体式转向梯形是由转向横拉杆1,转向梯形臂2和汽车前轴3组成,如图5-14所示。其中梯形臂呈收缩状向后延伸。这种方案的优点是结构简单,调整前束容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。 当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。对于发动机位置低或前轮驱动汽车,常采用前置 梯形。前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干涉,所以在布置上有困难。为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。 2.断开式转向梯形 转向梯形的横拉杆做成断开的,称之为断开式转向梯形。断开式转向梯形方案之一如图5-15所示。断开式转向梯形的主要优点是它与前轮采用独立悬架相配合,能够保证一侧车轮上、下跳动时,不会影响另一侧车轮;与整体式转向梯形比较,由于杆系、球头增多,所以结构复杂,制造成本高,并且调整前束比较困难。

图5-15断开式转向梯形 横拉杆上断开点的位置与独立悬架形式有关。采用双横臂独立悬架,常用图解法(基于三心定理)确定断开点的位置。其求法如下(图5-16b): 1)延长B K B 与A K A ,交于立柱AB 的瞬心P 点,由P 点作直线PS 。S 点为转向节臂球销中心在悬架杆件(双横臂)所在平面上的投影。当悬架摇臂的轴线斜置时,应以垂直于摇臂轴的平面作为当量平面进行投影和运动分析。 2)延长直线AB 与B A K K ,交于AB Q 点,连AB PQ 直线。 3)连接S 和B 点,延长直线SB 。 4)作直线BS PQ ,使直线AB PQ 与BS PQ 间夹角等于直线A PK 与PS 间的夹角。当S 点低于A 点时,BS PQ 线应低于AB PQ 线。 5)延长PS 与B BS K Q ,相交于D 点,此D 点便是横拉杆铰接点(断开点)的理想的位 置。

汽车转向机构设计

目录 中文摘要、关键词 (1) 英文摘要、关键词 (2) 引言 (3) 第1章轿车转向系统总述 (4) 1.1轿车转向系统概述 (4) 1.1.1转向系统的结构简介 (4) 1.1.2轿车转向系统的发展概况 (4) 1.2轿车转向系统的要求 (5) 第2章转向系的主要性能参数 (7) 2.1转向系的效率 (7) 2.1.1转向器的正效率 (7) 2.1.2转向器的逆效率 (8) 2.2 传动比变化特性 (9) 2.2.1 转向系传动比 (9) 2.2.2 力传动比与转向系角传动比的关系 (9) 2.2.3 转向器角传动比的选择 (10) 2.3 转向器传动副的传动间隙 (10) 2.4 转向盘的总转动圈数 (11) 第3章轿车转向器设计 (12) 3.1 转向器的方案分析 (12) 3.1.1 机械转向器 (12) 3.1.2 转向控制阀 (12)

3.1.3 转向系压力流量类型选择 (13) 3.1.4 液压泵的选择 (14) 3.2 齿轮齿条式液压动力转向机构设计 (14) 3.2.1 齿轮齿条式转向器结构分析 (14) 3.2.3 参考数据的确定 (20) 3.2.4 转向轮侧偏角计算 (21) 3.2.5 转向器参数选取 (21) 3.2.6 选择齿轮齿条材料 (22) 3.2.7 强度校核 (22) 3.2.8 齿轮齿条的基本参数如下表所示 (23) 3.3 齿轮轴的结构设计 (23) 3.4 轴承的选择 (23) 3.5 转向器的润滑方式和密封类型的选择 (24) 3.6 动力转向机构布置方案分析 (24) 第4章转向传动机构设计 (26) 4.1 转向传动机构原理 (26) 4.2 转向传送机构的臂、杆与球销 (27) 4.3 转向横拉杆及其端部 (28) 第5章转向梯形机构优化 (30) 5.1 转向梯形机构概述 (30) 5.2整体式转向梯形结构方案分析 (30) 5.3 整体式转向梯形机构优化分析 (31) 5.4整体式转向梯形机构优化设计 (34) 5.4.1 优化方法介绍 (34) 5.4.2 优化设计计算 (35)

车辆工程 汽车优化设计论文

优化设计在汽车中的应用 长安大学汽车学院 车辆工程三班

摘要 20世纪90年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。安全、舒适、节能环保是二十一世纪汽车工程领域具有重大意义的研究热点。 随着国内汽车研发水平的提升,优化设计已经逐步应用到整车开发过程当中。本文结合在整车开发中的优化设计经验,对几种不同的优化设计方法进行简单介绍,从而使大家对优化设计有更直观的认识。

关键词 汽车优化设计实践 目录 一、摘要 (1) 二、现代最优化设计简介 (3) 三、优化设计在汽车设计中的应用 (4) 四、CAE在汽车冲压件生产工艺中的优化应用 (5) 五、优化设计在汽车零部件轻量化中的应用 (6) 六、总结 (6)

一、现代最优化设计简介 1.1最优化设计概念及最优值 最优化设计是在现代计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法,综合各方面的因索,以人机配合方式或用自动探索的方式,在计算机上进行的半自动或自动设计,以选出在现有工 程条件下的最好设计方案的一种现代设计方法实践证明,最优化设计是保证产品具有优良的性能,减轻自重或体积,降低工程造价的一种有效设计方法,同时也可使设计者从大量繁琐和重复的计算工作中解脱出来,使 之有更多的精力从事创造性的设计,并大大提高设计效率。最优化设计方法己陆续应用到建筑结构、化工、冶金、铁路、航空、造船、机床、汽车、自动控制系统、电力系统以及电机、电器等工程设计领域,并取得了显著效果。 设计上的“最优值”是指在一定条件(各种设计因素)影响下所能得到的最佳设计值。最优值是一个相对的概念。它不同于数学上的极值,但有很多情况下可以用最大值或最小值来表示。概括起来,最优化设计工作包 括以下两部分内容:(1)将设计问题的物理模型转变为数学模型。建立 数学模型时要选取设计变量,列出目标函数,给出约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式;(2)采用适当的最优化方法,求解数学模型。可归结为在给定的条件(例如约束条件)下求目标函数的极值或最优值问题。 1.2设计方法的分类 在工程优化原理和方法的应用领域,主要是优化设计、优化试验和优化控制三个方面。根据优化问题的不同特征,可有不同的分类方法。 (1)按有无约束分:无约束优化问题和有约束优化问题; (2)按设计变量的性质分:连续变量、离散变量和带参变量;

汽车转向系统EPS设计(论文)

汽车转向系统EPS设计

毕业设计外文摘要

目录 错误!未定义书签。 1 引言?1 1.1汽车转向系统简介?1 1.2汽车转向系统的设计思路 (3) 1.3EPS的研究意义?4 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 11 3 电助力转向系统的设计? 3.1 动力转向机构的性能要求..................................... 11 3.2 齿轮齿条转向器的设计计算...................................... 11 3.3 转向横拉杆的运动分析[9]21? 3.4 转向器传动受力分析......................................... 22 4转向传动机构优化设计?24 4.1传动机构的结构与装配.......................................... 24 4.2利用解析法求解出内外轮转角的关系............................ 25 4.3 建立目标函数?27

5控制系统设计? 29 29 5.1 电助力转向系统的助力特性? 30 5.2 EPS电助力电动机的选择? 5.3 控制系统框图设计........................................... 3132 结论? 致谢................................................ 错误!未定义书签。参考文献......................................... 错误!未定义书签。

整体式转向梯形机构优化设计-2014

整体式转向梯形机构优化设计 SGA3550型自卸式非公路用汽车采用整体式转向梯形机构(如图1所示) ,由转向横拉杆、转向梯形臂和汽车前轴组成。图中,为K主销中心距,L为轴距,为转向梯形底角, W为转向臂长,为内侧车轮转角,为外侧车轮转角(以下符号意义相同) 。这种方案的优点是结构简单,调整容易,制造成本低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。车辆转向时,内侧车轮被迫沿着比外侧车轮小的弧线行进,因此,转向梯形应使汽车在转向时两前轮产生不同的转向角,并沿着各自的弧线滚动,同时前后四个车轮又绕着同一圆心滚动 ,从而消除轮胎的滑动。若忽略车轮的侧偏角,车辆转向时内外轮理想转角应保持以下关系: 若忽略车轮的侧偏角,车辆转向时内外轮理想转角应保持以下关系: cot-cot=K/L (1) 若自变角为,则因变角的期望值为 =arccot(cot-K/L) (2) 现有转向梯形机构仅能近似满足上式关系。利用余弦定理可推得转向梯形的实际因变角如下:

图2 (3) (4) (5) (6) 由(4)(5)(6)式得出 (7) (8) 由(3)(7)(8)式得出: 实际因变角 要求: (1) 列出转向机构的优化数学模型 (2) 已知轮距2900mm;轴距L= 3800 mm;主销中心距K= 2 100 mm; 用Matlab中lsqcurvefit(……)函数或lsqnonlin(……)函数进行优化,求取设计变量梯形底角的值(要求底角范围在60-90度之间),转向梯形臂长度的值(要求在250-450mm之间)以满足设计需求。 该优化问题可以看作是将理想的内外转向轮曲线同待优化的内外转向轮角度关系进行拟合,MATLAB优化工具箱中提供了几种可供选择的优化函数: (1) [x,resnorm]=lsqcurvefit(fun,x0,xdata,ydata,lb,ub),该函数是进行非线性曲线的二次拟合。其中F(x)为待优化的函数,数学模型为:

汽车的优化设计整理

汽车造型 1.汽车造型和汽车设计的关系?那个包括范围广? 造型强调的是成型,设计强调的是构思。汽车造型是汽车设计的先行环节之一,也是汽车设计的重要组成部分。联系:产品的实用性和审美性融会贯通,通过熟练的技艺体现在产品形态上。造型和设计是一对孪生儿,由于产品有实用与精神的双重作用,在产品开发过程中密不可分。创造性是它们共同的精髓。 汽车设计涵盖范围广。 2.汽车造型发展阶段?推动发展的原因? 从整体来看,一百多年来,汽车造型的的变化主要经历了以下几个阶段:马车型汽车,箱型汽车,甲壳虫型汽车,流线型汽车,船型汽车,楔型汽车到现在的复合型汽车; 确定汽车外形有三个基本要素,即机械工程学、人机工程学和空气动力学 3.著名汽车设计公司,大师? 宾尼法利那(Pinifarina)、意大利设计公司(ITALDESlGN)、博通(Bertone)、意迪雅(I.DE.A);乔治亚罗(Qugetto Giugiaro)、Nucc Bertone、波尔舍、 4..汽车造型工作方法流程 产品规划、二维设计、三维设计、样车试制 5.为什么要制造缩小比例模型?作用(4个作用) 1)是造型构思的延续2)比效果图的三维空间感更强3)是模型的前期试验品4)是选型的重要依据 6.车身主要曲线曲面在汽车造型哪个阶段确定?为什么? 7.什么方法时汽车获得动感? 使汽车的外形与运动物体的外形相像;使汽车具有活泼流畅的线条和光顺的车身表面;强调

水平划分线和削弱垂直划分线;运用不同色彩或不同质感的对比方法。 8.汽车色彩三要素? 色相、明度、纯度 9.使配色更好用哪个配色系统?怎么使色彩搭配协调的配色方法? 奥斯特华徳系统(配色系统有孟歇尔系统、奥斯特华徳系统、CIE系统);使色彩搭配协调的方法有:减少一种色彩的面积;加入白色,使色彩变淡;加入黑灰色,使色彩变暗,用白、灰、黑、金、银等色镶边,作调和过渡;两种色彩交接处用邻接色(在色相环或色度图中亮色之间的色彩)隔开

汽车设计转向系统

第一节概述 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。 机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。 对转向系提出的要求有: 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。 2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。 6)操纵轻便。 7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)进行运动校核,保证转向盘与转向轮转动方向一致。 正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。

汽车转向梯形机构设计

设计题目:汽车转向梯形机构的设计 班级:机自 xx 姓名: xxx 指导老师: xx 2010年10月10日 西安交通大学

汽车转向梯形机构设计 机自84班李亚敏 08011098 设计要求: (1)设计实现前轮转向梯形机构; (2)转向梯形机构在运动过程中有良好的传力性能。 原始数据: 车型:无菱兴旺,转向节跨距M:1022mm,前轮距D:1222mm,轴距L:1780mm,最小转弯半径R:4500mm。 前言: 汽车转向系统是用来改变或恢复其行驶方向的专设机构,由转向操纵机构、转向器和转向传动机构三部分组成。转向操纵机构主要由方向盘、转向轴、转向管柱等组成:转向器将方向盘的转动变为转向摇臂的摆动或齿条轴的往复运动,并对转向操纵力进行放大的机构:转向传动机构将转向器输出的力和运动传给车轮,并使左右车轮按一定关系进行偏转运动的机构。 设计过程: 一、设计原理简介 1采用转向梯形机构转向的机动车辆,左右转弯时应具有相同的特征,因此左右摇臂是等长的。 2内外侧转向轮偏转角满足无侧滑条件时的关系式为:

cotα?cotβ=M L (1) 3.转向过程中转向梯形机构应满足的方程为 cos(α+α0)=cos(β+β0)?a M cos(β+β0?α? α0)+2a2?b2+M2 2Ma (2) 且 b=M?2acosα0 (3) 代人整理得: cos(α+α0)=?cos(β?α0)+a M cos(β?α?2α0)+2cosα0? 2cos2α0 M +a M (4) 式中αβ为无侧滑状态下梯形臂转角的对应位置,可视为已知。由(1)式算出来,因此,方程中有两个独立的未知量需求解,要梯形臂转角的两个对应位置即两个方程来求解。 4梯形臂转角的两个对应位置的确定 由函数逼近理论确定梯形臂转角的两个对应位置的方程为:αi= qq 2[1?cos2i?1 4 π](i=1,2) (5)式中, qq为外偏转角的最佳范围值,由计算机逐步搜索获得。由汽车的最

相关主题
文本预览
相关文档 最新文档