当前位置:文档之家› 弹性力学的求解方法和一般性原理

弹性力学的求解方法和一般性原理

弹性力学的求解方法和一般性原理
弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理

一.内容介绍

通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。

弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个:

一是综合弹性力学的基本方程,并按边界条件的性质将问题分类;

二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。

三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。

如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。

二. 重点

1.弹性力学基本方程与边界条件分类;

2.位移解法与位移表示的平衡微分方程;

3. 应力解法与应力表示的变形协调方程;

4. 混合解法;

5. 逆解法和半逆解法;

6. 解的唯一性原理、叠加原理和圣维南原理

知识点

弹性力学基本方程边界条件位移表示的平衡微分方程应力解法

体力为常量时的变形协调方程物理量的性质逆解法和半逆解法

解的迭加原理弹性力学基本求解方法位移解法位移边界条件

变形协调方程混合解法应变能定理解的唯一性原理圣维南原理

§5.1 弹性力学的基本方程及其边值问题

学习思路:

通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。

弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。

由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。

根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。

上述三种求解方法对应于偏微分方程的三种边值问题。

学习要点:

1. 弹性力学基本方程;

2. 本构方程;

3. 边界条件;

4. 弹性力学边值问题;

首先将弹性力学基本方程综合如下:

1. 平衡微分方程

用张量形式描述

2. 几何方程

用张量形式描述

变形协调方程

3.本构方程-广义胡克定律

用应力表示的本构方程

用应变表示的本构方程

4.边界条件:

如果物体表面的面力F s x,F s y,F s z为已知,则边界条件应为:

称为面力边界条件,用张量符号表示为

如果物体表面的位移已知,则边界条件应为

称为位移边界条件。除了面力边界条件和位移边界条件,还有混合边界条件。

综上所述,弹性力学的基本未知量为三个位移分量,六个应力分量和六个应变分量,共计十五个未知量。基本方程为三个平衡微分方程,六个几何方程和六个物理方程,也是十五个基本方程。

这里没有考虑变形协调方程,原因是位移已经作为基本未知量。对于任意的单值连续的位移函数,如果设其有三阶的连续导数,则变形协调方程仅仅是几何方程微分的结果,自然地满足,所以位移作为基本未知量时,不需要考虑变形协调方程。

要使基本方程有确定的解,还要有对应的面力或位移边界条件。

弹性力学的任务就是在给定的边界条件下,就十五个未知量求解十五个基本方程。

当然,具体求解弹性力学问题时,并不需要同时求解十五个基本未知量,可以而且必须做出必要的简化。根据几何方程和本构方程可见,位移、应力和应变分量之间不是相互独立的。

假如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量。反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。

基于上述的理由,为简化求解的难度,选取部分未知量作为基本未知量。

若以位移函数作为基本未知量求解,称为位移解法;

若以应力函数作为基本未知量,称为应力解法;

若以部分位移分量和部分应力分量作为基本未知量,称为混合解

法。

在给定的边界条件下,求解偏微分方程组的问题,数学上称为偏微分方程的边值问题。

按照不同的边界条件,弹性力学有三类边值问题。

第一类边值问题:已知弹性体内的体力F b x,F b y,F b z和其表面的面力F s x,F s y,F s z,求平衡状态的弹性体内各点的应力分量和位移分量,这时的边界条件为面力边界条件。

第二类边值问题:已知弹性体内的体力分量F b x,F b y,F b z以及表面的位移分量,求平衡状态的弹性体内各点的应力分量和位移分量,这时的边界条件为位移边界条件。

第三类边值问题:已知弹性体内的体力分量F b x,F b y,F b z,以及物体表面的部分位移分量和部分面力分量,求平衡状态的弹性体内各点的应力分量和位移分量。这时的边界条件在面力已知的部分,用面力边界条件,位移已知的部分用位移边界条件,称为混合边值问题。

以上三类边值问题,代表了一些简化的实际工程问题。若不考虑物体的刚体位移,则三类边值问题的解是唯一的。

§5.2 位移解法-位移表示的平衡微分方程

学习思路:

以位移函数作为基本未知量求解弹性力学问题的方法称为位移法。

位移解法的基本方程是位移表示的平衡微分方程。位移分量求解后,则可以通过几何方程和物理方程求出相应的应变分量和应力分量。

如果问题的边界条件为位移边界条件,边界条件描述比较简单。如果问题为面力边界条件,由于边界条件是通过位移函数的导数描述的,因此应用困难。

总之若以位移为基本未知函数求解时,归结为在给定的边界条件下求解位移表示的平衡微分方程,即拉梅方程。

学习要点:

1. 位移表示的应力分量;

2. 位移表示的平衡微分方程;

3. 位移边界条件。

位移解法是以位移函数作为基本未知函数求解的,所以需要通过几何方程将位移函数表达为应变分量,再通过物理方程将其表达为应力分量,代入平衡微分方程即可得到位移解法的基本方程。

首先,根据物理方程和几何方程,可以得到由位移分量表达的应力分量,即

其中

将上述位移表示的应力分量代入平衡微分方程,整理后可得

这里是拉普拉斯运算符号,即

上述方程是以位移表示的平衡微分方程,称为拉梅(Lamé)方程,它可以表示为张量形式

或表达为矢量形式

上式中为拉普拉斯算符矢量。

对于边界条件,如果物体表面的位移已知,则直接由位移形式给定,即使用位移边界条件。

如果给定的边界条件是物体表面的面力,则面力边界条件式需用位移分量表示,将应力分量代入物理方程,整理可得位移分量表示的面力边界条件:

或表达为张量形式

显然,如果给定的边界条件是面力边界条件,那么位移解法的边界条件表达式十分复杂,因此求解的难度将是比较大的。

总之,如果以位移函数作为基本未知函数求解弹性力学问题,归结为在给定的边界条件下求解位移表示的平衡微分方程,即拉梅方程。

位移分量求解后,则可通过几何方程和物理方程求出相应的应变分量和应力分量。

§5.3 应力解法-应力表示的应变协调方程

学习思路:

如果选用应力分量或者应力函数作为基本未知量求解弹性力学问题称为应力解法。

应力解法的基本方程不仅有平衡微分方程,而且有变形协调方程。因为仅仅满足平衡微分方程的应力分量并不一定是真实应力,这组应力分量求出的应变分量代入几何方程,将可能得到一组矛盾方程,这就不可能求出单值连续的位移分量。

由于变形协调方程是应变表示的,在应力解法中,需要转化为基本未知量应力分量表示。

利用平衡微分方程的求导形式简化变形协调方程,可以得到应力分量表示的变形协调方程。

总之,在以应力函数作为基本未知量求解时,归结为在给定的边界条件下,求解平衡微分方程和应力表达的变形协调方程所组成的偏微分方程。

学习要点:

1. 应力解法的基本方程;

2. 变形协调方程的简化;

3. 应力分量表达的变形协调方程;

4. 体力为常量时的变形协调方程。

以应力作为基本未知函数求解弹性力学问题时,应力分量必须满足平衡微分方程和面力边界条件。

但是仅此还不够,仅仅满足上述条件的应力分量并不是真正的应力。因为这组应力分量求出的应变分量代入几何方程,将可能得到一组矛盾方程,不可能求出单值连续的位移分量。要使这组方程不矛盾,则要求应力分量不仅满足平衡微分方程和面力边界条件,而且应力分量对应的应变分量必须满足变形协调方程。

这个问题也可以从物理上解释,应力分量满足平衡微分方程和面力边界条件,只能保证物体的平衡,但是不能保证物体的连续。只有这组应力分量求出的应变分量满足变形协调方程时,才能保证变形后的物体是连续的。

当位移分量作为基本未知函数求解时,变形协调方程是自然满足的。如果位移表示基本未知量,只有应力作为基本未知函数求解时,变形协调方程作为一组补充方程是必须的。

因此,对于应力解法,应力分量必须满足平衡微分方程和变形协调方程。

由于变形协调方程是由应变分量表达的,在应力解法中,需要将其转换为由应力分量表达。

将物理方程改写为

其中

将上式代入变形协调方程的第一,四两式,可得

轮换x,y,z可得其余四个方程。由此可得应力表达的变形协调方程。

为了使问题进一步简化,就是使上式有更简单的形式,利用平衡微分方程再次对变形协调方程作进一步的简化。

将上式代入应力分量表示的变形协调方程第一式

并且注意到,可得

轮换x,y,z以后,可得另外两个类似的公式。

将轮换后得到的三个公式相加,可得

将上式回代到简化方程

,可得

轮换x,y,z以后,可得另外两个类似的公式。

下面我们对应力分量表示的变形协调方程的第二式

作简化。

可以得到

将上式与变形协调方程的第二式相加后并整理,可得

上式为简化后的方程,轮换x,y,z以后,可得另外两个类似的公式。

综上所述,我们一共得到以下六个关系式:

上述方程即为应力分量表达的变形协调方程,通常称为贝尔特拉米--米切尔方程。

如果弹性体体力为常量,则应力分量表达的变形协调方程可以简化为

上述方程为应力分量表达的变形协调方程,通常简称为应力协调方程。但是应该注意:应力是不需要协调的,其实质仍为应变分量所满足的变形协调关系。

如果用张量形式表达,则上述公式可写作

总而言之,在以应力函数作为基本未知量求解时,归结为在给定的边界条件下,求解平衡微分方程和应力表达的变形协调方程所组成的偏微分方程组。

§5.4 混合解法

学习思路:

如果选取应力分量和位移分量作为基本未知量求解弹性力学问题,称为混合解法。

基本方程为平衡微分方程和应力分量表达的几何方程。

混合解法三个平衡微分方程和六个几何方程,共计九个方程对应九个未知函数,加上给定的边界条件,则可得到唯一的解。

学习要点:

1. 弹性力学的混合解法。

混合解法以六个应力分量和三个位移分量作为基本未知量求解弹性力学问题。通过物理方程中消去应变分量,其基本方程为平衡微分方程和由应力分量表达的几何方程,即

这里有三个平衡微分方程和六个几何方程,共计九个方程对应九个未知函数,加上给定的边界条件,则可得到唯一的解。

弹性力学的基本求解方法的应用要根据问题性质,主要是根据边界条件选择使用。

对于面力边界条件问题,使用应力解法;

位移边界条件应用位移解法;

混合解法主要应用于混合边界条件,即弹性体的部分边界位移已知,部分边界面力已知的问题。

弹性力学基础讲解

一、基本物理量 应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为: ??? ? ??????=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量 的方向。应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。 3、应变 弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ?,变形后的长度为'l ?,定义P 点l 方向的正应变为:l l l l ll ??-?=→?'lim 0ε。即正应变表示单位长度线段的伸长 或缩短。 弹性体内某一点的剪应变(角应变):设r l ?和s l ?为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。 应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分 量,得:??? ? ? ?????=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。 关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。 4、外力 体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。设V ?为包含P 点的微元体,作用于该微元体上的体积力为V F ?,则定义P 点的体积力为:{}T z y x V V f f f V =??=→?F f 0lim 。 表面力:作用于弹性体表面,如压力,约束力等。设S ?为包含P 点的微元面,作用于该微元面上的表面力为S F ?,则定义P 点的表面力为:{}T z y x S S s s s S =??=→?F s 0lim 。 二、基本方程 1、平衡方程

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

分析力学基础 一

分析力学基础(一) 华中科技大学CAD中心 张云清 2009-12-18机械系统动力学计算机辅助分析

分析力学基础() 分析力学基础(一) 一.经典力学概论 概 二.分析力学的基本概念 三.虚位移原理、达朗伯原理 四.动力学方程的三种形式 四动力学方程的三种形式 五.分析力学的变分原理 2009-12-18机械系统动力学计算机辅助分析

经典力学概论 典力学研象于 ?经典力学的研究对象是速度远小于光速的宏观物体的机械运动; 牛力学 ?牛顿力学 ?拉格朗日力学 ?变分原理 变原 ?哈密尔顿力学 ?分析力学(拉格朗日力学和哈密尔顿力学)析力学(格力学和密尔力学)?运动稳定性 ?刚体动力学学 ?多体系统动力学是经典力学的在现代工程需求下的进一步发展 2009-12-18机械系统动力学计算机辅助分析

牛顿力学 ?1687年牛顿(Newton )《自然哲学的数学原理》出版-------〉牛力学; 牛顿力学; ?牛顿贡献--发现了制约物质宏观机械运动的普遍规律:–万有引力定律 –动力学基本规律 –研究这些规律的方法—微积分 速度加速度力力牛力学–力学的概念—速度、加速度、力、力矩-----矢量------〉牛顿力学----矢量力学; 牛顿力学天体运动的观测资料归纳产生的力学理论,研究对象是不受–---- 约束的自由质点; ?1743年,法国的达朗贝尔(D’Alembert)--D’ Alembert原理;?1755年、1765年,瑞士的欧拉(Euler)将牛顿定律推广到刚体和理想流体,矢量力学------Newton-Euler力学; 2009-12-18机械系统动力学计算机辅助分析

第二章弹性力学基础

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力?比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

第2章 弹性力学基础(1)

第2章弹性力学基础 内容提要:本章主要介绍弹性力学的基本概念,主要包括应力、应变的定义和性质,应力平衡方程、几何方程和物理方程,并对弹性力学问题的基本求解方法进行简介。为了便于对机械结构有限元计算结果能够很好地分析评价,本章还介绍了结构强度与失效的基本理论。有关能量法的简单知识是后续有限元法的重要理论基础。 教学要求:学习掌握应力、应变基本概念和主要性质,掌握弹性力学基本方程、应力边界条件、协调方程等,了解弹性力学平面问题的应力函数法,掌握结构强度失效准则中的等效应力理论等内容,了解能量法的基本思想。 2.1 引言 弹性力学(Elastic Theory)作为一门基础技术学科,是近代工程技术的必要基础之一。在现代工程结构分析,特别是航空、航天、机械、土建和水利工程等大型结构的设计中,广泛应用着弹性力学的基本公式和结论。 弹性力学与材料力学(Foundamental Strengths of Materials)在研究内容和基本任务方面,是基本相同的,研究对象也是近似的,但是二者的研究方法却有较大的差别。弹性力学和材料力学研究问题的方法都是从静力学、几何学、物理学三方面入手的。但是材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件,分析这类构件在拉压、剪切、弯曲、扭转等几类典型外载荷作用下的应力和位移。在材料力学中,除了从静力学、几何学、物理学三方面进行分析外,为了简化推导,还引用了一些关于构件的形变状态或应力分布的假定(如平面截面的假定、拉应力在截面上均匀分布的假定等等)。杆件横截面的变形可以根据平面假设确定,因此综合分析的结果,即问题求解的基本方程,是常微分方程。对于常微分方程,数学求解是没有困难的。而在弹性力学里研究杆状构件一般都不必引用那些假定,所以其解答要比材料力学里得出的解答精确得多。当然,弹性力学在研究板壳等一些复杂问题时,也引用了一些有关形变状态或应力分布的假定来简化其数学推导。但是由于弹性力学除研究杆状构件之外,还研究板、壳、块,甚至是三维物体等,因此问题分析只能从微分单元体入手,以分析单元体的平衡、变形和应力应变关系,因此问题综合分析的结果是满足一定边界条件的偏微分方程。也就是说,问题的基本方程是偏微分方程的边值问题。从理论上讲,弹性力学能解决一切弹性体的应力和应变问题。但在工程实际中,一般构件的形状、受力状态、边界条件都比较复杂,所以除少数的典型问题外,对大多数工程实际问题,往往都无法用弹性力学的基本方程直接进行解析求解,有些只能通过数值计算方法来求得其近似解。 弹性力学的研究方法决定了它是一门基础理论课程,把弹性力学的理论直接用于分析工程问题具有很大的困难。原因主要在于它的基本方程——偏微分方程边值问题求解的困难。由于经典的解析方法很难用于工程构件分析,因此探讨近似解法是弹性力学发展中的特色。近似求解方法,如差分法和变分法等,特别是随着计算机的广泛应用而发展的有限单元法,为弹性力学的发展和解决工程实际问题开辟了广阔的前景。 本章主要介绍弹性力学基本概念、用解析法求解简单弹性力学问题的基础知识,主要包括弹性

分析力学

分析力学的基本内容和基本研究方法 分析力学的研究手段和研究内容 分析力学是经典力学的一部分。它应用纯粹数学分析方法研究质点组机械运动的普遍规律, 由法国数学家和力学家拉格朗日,英国数学家和天文学家哈密顿等人总结发而成。分析力学使牛顿力学得到更广泛的应用。在量子力学、统计物理、量子场论等部门中也都有重要应用。学好这门课程,不但为以后学习专业课打下基础,而主要的是训练我们如何运用力学原理把一个实际问题加以分析、简化,然后借助于数学分析来解决这个问题,最后,再对所得结果加以讨论,并和实际情况相比较。在“四化”建设中,经典力学仍然有它的重大作用,作为一个物理工作者,对这些知识和技能,应当熟练掌握才行。根据自己过去学习的经验,把研究分析力学的方法介绍出来供大家参考。由于笔者水平的限制,难免有错误之处, 欢迎读者批评指正。 研究分析力学的方法:(1)建立原理(虚功原理、达朗贝尔原理、哈密顿原理、最小作用量原理);(2)由原理推导方程(拉格朗日第二类方程、哈密顿正则方程);(3)解方程即方程式积分(正则变换、泊松定理、哈密顿定理)。 分析力学研究的主要内容是:导出各种力学系统的动力方程,如完整系统的拉格朗日方程、正则方程,非完整系统的阿佩尔方程等;探求力学的普适原理,如汉密尔顿原理、最小作用量原理等;探讨力学系统的特性;研究求解运动微分方程的方法,例如,研究正则变换以求解正则方程;研究相空间代表点的轨迹,以判别系统的稳定性等。 分析力学解题法和牛顿力学的经典解题法不同,牛顿法把物体系拆成分离体,按反作用定律附以约束反力,然后列出运动方程。 分析力学中也可用变分原理(如汉密尔顿原理)导出运动微分方程。它的优点是可以推广到新领域(如电动力学)和应用变分学中的近似法来解题。从20世纪60年代开始,为了设计复杂的航天器和机器人的需要,发展多刚体系统,并且跳出了使用动力学函数求导的传统方法来建立动力学方程,所建立的方程能方便地应用电子计算机进行计算。 一、虚位移原理(虚功原理) 虚位移原理:对于具有理想约束的质点系,其平衡条件是:作用于质点系的主动力在任何虚位移中所做的虚功和等于零。 虚位移原理是应用功的概念分析系统的平衡问题,是研究静力学平衡问题的一种途径。对于只有理想约束的物体系统,由于求知的约束反力不做功 二、动力力学普遍方程 虚功原理设某力学组处在平衡状态, 在组中任取一质点 p,并设作用在质点上的 i

分析力学

《分析力学》简介 The Brief Introduction of Analytical Mechanics 一.分析力学与经典力学 分析力学是理论力学的一个分支,是对经典力学的高度数学化的表达,它通过用广义坐标为描述质点系的变数,运用数学分析的方法,研究宏观现象中的力学问题。分析力学是独立于牛顿力学的描述力学世界的体系,其基本原理同牛顿运动三定律之间可以互相推出。 经典力学最初的表达形式由牛顿给出,大量运用几何方法和矢量作为研究工具,因此它又被称为矢量力学(也称为“牛顿力学”)。拉格朗日,哈密顿,雅可比等人使用广义坐标和变分法,建立了一套同矢量力学等效的力学表述方法。同矢量力学相比,分析力学的表述方法具有更大的普遍性。很多在矢量力学中极为复杂的问题,运用分析力学可以较为简便的解决。分析力学的方法可以推广到量子力学系统和复杂动力学系统中,在量子力学和非线性动力学中都有重要应用。 分析力学解题法和牛顿力学的经典解题法不同,牛顿法把物体系拆开成分离体,按反作用定律附以约束反力,然后列出运动方程。 分析力学是经典物理学的基础之一,也是整个力学的基础之一。它广泛用于结构分析、机器动力学与振动、航天力学、多刚体系统和机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。 二.发展历程 从十八世纪开始,在力学发展史上又出现了与矢量力学并驾齐驱的另一力学体系,即分析力学。 1788 年拉格朗日出版的《分析力学》是世界上最早的一本分析力学的著作。分析力学是建立在虚功原理和达朗贝尔原理的基础上。两者结合,可得到动力学普遍方程,从而导出分析力学各种系统的动力方程。1760~1761 年,拉格朗日用这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的。 分析力学的特点是对能量与功的分析代替对力与力矩的分析。为了避免未知理想约束力的出现,分析力学的一种方法是在理想约束力与约束方程间建立起一种直接的关系,导出了比矢量力学一般方法程式化更为明显的动力学方程-拉格朗日第一类方程。分析力学的另一种方法是从独立坐标出发,利用纯数学分析方法,将用独立坐标描述的动力学方程用统一的原理与公式进行表达,克服了在矢量动力学中建立这种方程依赖技巧的缺点。这种统一的方程即拉格朗日第二类方程。上述工作均由拉格朗日(https://www.doczj.com/doc/3611444828.html,grange)于1788年奠定的。以拉格朗日方程为基础的分析力学,称为拉格朗日力学。 1834年哈密顿(Hamilton)将拉格朗日第二类方程变换成一种正则形式,将动力学基本原理归纳为变分形式的哈密顿原理,从而建立了哈密顿力学。对于一个动力学系统,尽管建立该系统的拉格朗日第二类方程或哈密顿正则方程不依赖于技巧,但它的数学推导过程相当繁琐,因此用来建立自由度比较多的系统动力学方程相当困难,并且容易出错。利用拉格朗日第一类方程解决系统的动力学问题,与矢量动力学的一般方法一样,尽管建立方程比较容易,但其求解规模很大。正是由于这个原因,在力学发展史上因拉格朗日第一类方程并不比矢量动力学一般方法优越,而被搁置一边。 随着近代计算技术的发展,解决具有程式化特征的数学问题,规模再大也能迎刃而解。

弹性力学基础(程尧舜 同济大学出版社)课后习题解答

1 图2.4 习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 解:(1)pi iq qj jk pq qj jk pj jk pk δδδδδδδδδδ===; (2)()pqi ijk jk pj qk pk qj jk pq qp e e A A A A δδδδ=-=-; (3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ???=?=a b c d e e ()()()()()i j l m il jm im jl i i j j i i j j a b c d a c b d a d b c δδδδ=-=- ()()()()=??-??a c b d a d b c 。 2.5设有矢量i i u =u e 。原坐标系绕z 轴转动θ系,如图2.4所示。试求矢量u 在新坐标系中的分量。 解:11cos βθ'=,12sin βθ'=,130β'=, 21sin βθ'=-,22cos βθ'=,230β'=, 310β'=,320β'=,331β'=。 1112cos sin i i u u u u βθθ''==+,

弹性力学的变分原理

第十一章弹性力学的变分原理 一.内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二.重点 1. 几何可能的位移和静力可能的应力; 2. 弹性体的虚功原理; 3. 最小势能原理及其应用; 4. 最小余能原理及其应用; 5. 有限元原理的基本概念。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力

应变余能函数 应力变分方程 最小余能原理的近似解法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有限元整体分析 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 附录3 变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

分析力学解题指导

第五章分析力学 解题指导 在前面各章都是按“牛顿方式”研究力学问题,即为矢量力学。它和分析力学在观点和方法上都有区别。矢量力学所牵涉到的量大都是矢量。力和动量是它的两个基本量;而分析力学是拉格朗日和哈密顿等人所建立的变分原理为基础的,牵涉到的量为标量,基本量是能量。搞清矢量理学与分析力学的主要区别,对解决分析力学有关问题大有好处。我们将其主要区别归纳如下: 1、处理有关约束问题时:在矢量力学中须用约束力代替约束条件,但往往由于约束力性质未知,所以事先既要讨论对它作出的某些假设,事后又常常要将它从方程中消去;分析力学在承认这些条件的前提下进行讨论,而不追问需要在何处用什么力来维持这些条件。这样,解题就会方便得多,这是分析力学的一个优点。 2、在建立运动微分方程时,在分析力学中可以根据统一的最小作用量原理求得。这样又极值原理所得方程与坐标系无关。当应用矢量力学寻找加速度时,尤其在空间问题中往往要用坐标系或柱坐标中的分量是去解题,这无疑给读者会带来一些困难,这也是在矢量力学中很少使用柱,球坐标系的原因(除非迫不得已);而在分析力学中这个困难就不复存在。 3、在处理质点组问题时,矢量力学是将个别质点孤立出来,分析每个质点所受的力,再用牛顿定律建立它们的运动微分方程;而分析力学是将质点组看成一个整体,只需求出一个仅与各质点位置(速度)有关的标函数。单凭微分便能获得有关各力的知识,并得到整个质点组的运动微分方程。 4、分析力学是以普通原理为基础(微分或积分的方法),采用分析手段导出系统整体的基本运动微分方程,并研究这些方程本身及积分的方法,与数学的关联更加紧密。因此,线性常微分方程组及非线性微分方程经常会碰到,数学上求泛函数的极值方法则是分析力学中哈密顿原理的基础了。所以,具有高等数学知识的读者不难解决较复杂的力学问题。为了能更具体理解分析力学的解体方法,

弹性力学

弹性力学 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。 弹性力学的发展简史 同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。 在17世纪末第二个时期开始时,人们主要研究粱的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。 第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。 1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力

学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。 在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利──里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。 从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。 弹性力学的基本内容 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

§1.1分析力学

第一章分析力学 到现在为止,我们所研究的力学问题,基本上是用牛顿运动定律来求解的。但用牛顿运动运动定律来求质点组的运动问题时,常常需要求解大量的微分方程组。如果质点组受到约束,则因约束反力都是未知的,所以并不能因此而减少,甚至是增加了问题的复杂性。十八、十九世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题。因此迫切需要寻求另外的方法来处理这一问题。 1788年,拉格朗日写了一本大型著作《分析力学》,在这一本著作中,完全用数学分析的方法来解决所有的力学问题,而无需借助以往常用的几何方法,全书一张图也没有。在此基础上逐步发展成为一系列处理力学问题的新方法,称之为分析力学。 分析力学以拉格朗日和哈密顿等所建立的变分原理为基础,将力学的基本定律表示为分析数学的形式。通过分析的方法来解决任意力学体系的运动问题,它所涉及的量是标量。而牛顿力学涉及的量如力、速度、加速度等多为矢量。由此看来,分析力学和牛顿力学只是同一个力学领域应用不同的数学描述而已。对于自由质点和简单问题,两种方法无优劣(lie)之分,对复杂问题,分析力学的优越性就体现出来了。 分析力学是从能量的观点来研究力学问题,因而具有更广泛的应用价值。它广泛的应用于结构分析、机器动力学与振动、航天力学、多刚体系统、机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。许多新兴学科,如量子力学、相对论、电动力学、连续介质力学、天体力学、统计力学等等,都可以用到分析力学的理论和方法。但是,由于分析力学中的数学推理较多,在历史上也发生过一些不良倾向,容易使人忘记力学的物理实质,对此我们应当引以为戒。

分析力学的形成及其不同的表示

分析力学的形成及其不同的表示 摘要:分析了分析力学的历史背景及发展历程,介绍了分析力学的一些重要方程 和几种不同的表示方法. 关键词:约束力;虚功原理;非惯性系;拉格朗日方程;哈密顿原理;哈密顿正 则方程;积分形式;微分形式 引言:分析力学的基本内容是阐述力学的普遍原理,由这些原理出发导出质点系 的基本运动微分方程,并研究这些方程本身以及它们的积分方法.分析力 学作为一般力学的一个分支,以广义坐标为描述质点系的变量,以虚位移 原理和达朗贝尔原理为基础,运用数学分析方法研究宏观现象中的力学问 题,不必考虑理想约束,可以很方便地建立力学体系的运动微分方程,对一 些力学问题的解法进行优化,可以更加快速的求解.近20年来,又发展出 用近代微分几何的观点来研究分析力学的原理和方法.分析力学是经典物 理学的基础之一,也是整个力学的基础之一.它广泛用于结构分析、机器动 力学与振动、航天力学、多刚体系统和机器人动力学以及各种工程技术领 域,也可推广应用于连续介质力学和相对论力学. 一、分析力学的历史背景 分析力学是18世纪后叶随着工业革命的迅速发展而建立起来的. 到现在为止,我们所研究的力学问题基本上是以牛顿运动定律来求解的,但是在求质点组的运动问题时,常常要解算大量的微分方程组,如果质点组受到约束,则因约束反力都是未知的,所以并不能因此减少甚至增加了问题的复杂性.18、19世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题.因此,迫切需要寻求另外的方法来解决这些问题.许多科学家将分析的方法用于力学解决了许多当时没有解决的问题,分析力学正是在这种历史的大背景下产生的. 二、分析力学的发展历程 1788年拉格朗日出版的《分析力学》是世界上最早的一本分析力学的著作.分析力学是建立在虚功原理和达朗贝尔原理的基础上.两者结合,可得到动力学普遍方程,从而导出分析力学各种系统的动力方程.1760~1761年,拉格朗日用这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的.1834年,汉密尔顿推得用广义坐标和广义动量联合表示的动力学方程,称为正则方程.汉密尔顿体系在多维空间中,可用代表一个系统的点的路径积分的变分原理研究完整系统的力学问题.从1861年有人导出球在水平面上作无滑动的滚动方程开始,到1899年阿佩尔在《理性力学》中提出阿佩尔方程为止,基本上已完成了线性非完整约束的理论.20世纪分析力学对非线性、不定常、变质量等力学系统作了进一步研究,对于运动的稳定性问题作了广泛的研究. 三、分析力学的形成 (一)分析力学的基本方程及条件 对于完整保守系统,其基本方程及条件如下: 1、广义速度广义位移关系 q dt q d v ==/, (3.1.1) 式中广义速度向量()()()[] T n t v t v t v v ,,,21 =,广义位移向量

相关主题
文本预览
相关文档 最新文档