当前位置:文档之家› 弹性力学总结

弹性力学总结

弹性力学总结
弹性力学总结

弹性力学关于应力变分法问题

一、起源及发展

1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse 理论与极小极论(Minimax Theory )。变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。

由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分”的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。以下,就应力变分法进行讨论。

二、定义及应用

(1)、应力变分方程

设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量,它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分量发

生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。

既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

0,0,0x xy zx y yz xy z zx yz x y z y z x z x y δσδτδτδσδτδτδσδτδτ????

++=?????

????

++=?????

????

++=?????。 (a ) 在位移给定的边界上,应力分量的变分必然伴随着面力分量的变分

x y z f f f δδδ、、。

根据应力边界条件的要求,应力分量的变分在边界上必须满足

,,x xy zx x y yz xy y z zx yz z l m n f m n l f n l m f δσδτδτδδσδτδτδδσδτδτδ?

++=??

++=??

++=??。 (b )

则应变余能的变分应为

(

)c

c

C c x x

yz

v v V v dxdydz dxdydz δδδσστ??=???=???++

+??。 x x c v εσ=??,y y c v

εσ=??,z z c v εσ=?? yz yz c v γτ=??,zx zx c v γτ=??,xy xy

c v

γτ=??

将上式代入,得

()C x x yz yz V dxdydz δεδσγδτ=???+

++。

再将几何方程代入,得

[()]C x yz u

w v

V dxdydz x

y z

δδσδτ???=???+

+++???。

根据分部积分和奥—高公式,对上式右边进行处理:

(),x x x u dxdydz lu dS u dxdydz x x

δσδσδσ??

???

=??-????? 最后可得

[()][()]c x xy zx x xy zx V u l m n dS u dxdydz x y z

δδδτδτδσδτδτ=??+++-

???

???+++

???。

再将(a )、(b )代入,即得 =()c x y z V u f v f w f dS δδ

δδ??++。

这就是所谓应力变分方程,有的文献把它叫做卡斯蒂利亚诺变分方程。 最小余能原理:

c ()0x y z V u f v f w f dS δδδδ-??++=。

上式也可以改写为:

[()]0c x y z V u f v f w f dS δ-??++=。

(2)、应力变分法

由推到出的应力变分方程,使其满足平衡方程和应力边界条件,但其中包含若干待定系数,然后根据应力变分方程解决这些系数,应力分量一般可设为:

()()

m

m

ij m ij ij A ∑+=σσσ0 (c )

其中m A 是互不依赖的m 个系数,

()0ij σ 是满足平衡微分方程和应力边界条件的设定函数,()m ij σ是满足“没有体力和面力作用时的平衡微分方程和应力边界条件”的设定函数。这样,不论系数A m 如何取值,()0ij σ总能满足平衡微分方程和应力边界条件。

注意:应力的变分只是由系数Am 的变分来实现 。

如果在弹性体的每一部分边界上,不是面力被给定,便是位移等于零,则应力变分方程 得0=c v δ, 即:

0=??m

c

A V (d )

应变余能c V 是m A 的二次函数 ,因而方程(d )将是Am 的一次方程 。这样的方程共有m 个,恰好可以用来求解系数,Am 从而由表达式(c )求得应力分量。

如果在某一部分边界上,位移是给定的,但并不等于零,则在这一部分边界上须直接应用变分方程(11-18),即

()c x y z V u f v f w f dS δδδδ=??++。

在这里,u 、v 、w 是已知的,积分只包括该部分边界,面力的变分与应力的变分两者之间的关系即:

,,x xy zx x y yz xy y z xz yz z f l m n f m n l f n l m δδσδτδτδδσδτδτδδσδτδτ?

=++??

=++?

?

=++??。

带入方程的右边积分后,将得出如下的结果:

()m m x y z m u f v f w f dS B A δδδδ??++=∑。

其中Bm 是常数,另一方面,我们有:

*

c =m m m U V A A δδ??∑。

因而得:

(1,2,)c

m m

V B m A ?==?。

这将仍然是m A 的一次方程而且总共有m 个 ,仍然可以用来求解系数m A ,从而由表达式(c )求得应力。

(3)、应力函数方法

由于应力分量的数量有点多,确定起来较为困难,通常用应力函数方法。 在平面应力问题中,如果体力分量为常数,则存在应力函数。将应力函数设为:

0,m m

m

A Φ=Φ+

Φ

其中m A 为互不依赖的m 个系数。 这样就只需使0Φ给出的应力分量满足实际的应力边界条件,并使m Φ给出的应力分量满足无面力时的应力边界条件。

在平面应力问题中, 有0z yz zx σττ===, 而且x y xy σστ、、不随坐标z 而变。在z 方向取一个单位厚度,则用应力分量表示的应变余能表达式为

2221

[22(1)]2c x y x y xy V dxdy E

σσμσσμτ=

??+-++。

对于平面应变问题,

2221+[(1)()22]2c x y x y xy V dxdy E

μ

μσσμσστ=

??-+-+。

如果所考虑的弹性体是单连体,体力为常量 ,应力分量x y xy σστ、、应当与

μ无关 ,可以取μ=0, 于是平面应力情况下的表达式和平面应力情况下的表达式都简化为

2221

(2)2c x y xy V dxdy E

σστ=

??++。

即得用应力函数表示应变余能的表达式

22222

2221[()()2()]2c x y V f x f y dxdy E y x x y

?Φ?Φ?Φ=??-+-+????。

在应力边界问题中,因为面力不能有变分,

0c V δ=。

应为应力分量以及应变余能的变分是通过系数Am 的变分来实现的,所以上式归结为

0c

m

V A ?=? 将将应力函数表达式代入,即得

2222222222[()()()()2

()]0,(1,2,)

x y m m m f x f y y A y x A x dxdy x y A x y

m ?Φ??Φ?Φ??Φ??-+-+

???????Φ??Φ

=?????=

可以用来决定系数Am ,从而确定应力函数?,再由应力函数?求得应力分量。 由于是近似解,应力分量不能精确满足相容条件,由应力分量求得的应变分量也不能精确满足变形协调条件,不能根据几何方程求得位移分量。

应力函数法的要点是要找到满足全部边界条件的应力函数,二这种函数一般

任然难以找到,尤其在边界不规整的情况下。所以应力方法的应用在这一点上受到极大的限制。

(4)、典型例题:

例1:设有宽度为2a ,高度为b 的矩形薄板,左右两边和下边被固定约束,上边的位移被给定为)1(022

a

x v u --==η,不计体力。试求薄版的位移分量和

应力分量。

解:取坐标系底部为x 轴,对称轴为y 轴,则该问题是一个轴对称问题——及约束情况,几何形状以及所受的外来因素都对称于某个坐标轴。 本题中,对称轴显然是y 轴。这样,位移u,v 关于y 轴对称。 首先考察位移u :

薄板左右两边:0)(=±=a x u (说明u 中含有)(22a x -项或)(22x a -项) 薄板下边:0)(0==y u (说明u 中含有(y-0)项)

薄板上边:0)(==b y u (说明u 中含有(y-b)项或(b-y)项)

所以u 所以表达成:)()(221y b y x a A u --=(这里m=1,即取一个系数1A ) 由此可得u,v 的表达式为:

??

?

????--+--=--=)1()1()1()1()1(22

122221b y

b y a x B b y a x v a y

a y a x a x A u η 可以满足位移边界条件:

)

1()(0

)(0)(0)(0)(0

)(22

00a

x v u v u v u b

y b y y y a x z x --==========±=±=η

由于u 是x 的奇函数,v 是x 的偶函数,对称条件满足。

此外,由(i )得:))(1()

)((22

22122

331b

y b y a x v b

y b y a x a x u --=--=

即)2()

1(211112B vA B A v Eab

U ++-=

ds v f B U

ds u f A U y

x 1111,??=??=??

ab q B U

ab q A U 21

11,-=??-=?? ab q vA B v Eab

ab q vB A v Eab

2112

1112

)22()

1(2)22()

1(2-=+--=+-

y

E vq q v x E vq q u E vq q B E vq q A 12211

2

1211,,--=--=--=--

= 例2:已知悬臂梁,抗弯刚度为EI ,求最大挠度值。

解:设)(3322x a x a w += 满足固定端的边界条件。

0,00'0====x x w w

在不考虑剪切效应时,直杆弯曲的应变能为,

dx dx w d EI dx EI x M u l 2

220221)(21???

?

??==? 下面用最小势能原理来确定参数,

)()62(2)

()62(2)(213

3

222

3233222

00

322

L a L a F dx a a EI V U E L a L a F Fw v dx

a a EI

dx EI x M u l t L x l

l

+-+=+=+-=-=+==

???=

由最小势能原理

0)62(12210)62(4210

303222

0322t =-+=??=-+=??=??FL dx a a EI a E FL dx a a EI

a E E l t l t δ

三、总结与思考

所谓弹性力学的变分解法就是基于力学能量原理求解弹性力学的变分方法,这种方法从其本质而言,是要把原来在给定的边界条件下求解的微分方程组的问题变为泛函求极值的问题,而在求问题的近似解时,泛函的极值问题又可变成函数的极值问题,因而最终把问题归结为求解线性代数方程组。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。

应力变分法在力学领域同样拥有很高的地位,这正说明了力学在学术界的重要地位,通过应力变分法地学习,许多难题将更容易得到解答,所以,在以后的学习生活中,我们将不会停止对力学的探究和学习,相信力学对我们的影响将是巨大的。

参考文献:【1】弹性力学 第四版 徐芝纶 高等教育

【2】弹性力学复习解题指导致 王俊民 同济大学

【3】弹性力学理论概要与典型题解 王光钦 西南交通大学 【4】弹性力学容精要与典型题解 章军 水利水电

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

(完整word版)徐芝纶弹性力学主要内容及知识点,推荐文档

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。 2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。 3内力,即物体本身不同部分之间相互作用的力。 3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。 4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。 5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负) 6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。 7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。 6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。 7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。 8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0 V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。 9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。 10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

第10章 弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? ,σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? ,εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学主要内容

1、弹性力学的研究对象、内容及范围 弹性力学是研究在外界因素(外力、温度变化)的影响下,处于弹性阶段的物体所产生的应力、应变及位移。 弹性力学的研究对象为一般及复杂形状的构件、实体结构、板、壳等。 2、弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随 位置坐标的变化而变化) (2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。 (用处:弹性体的所用物理量均可用连续的函数去表示) (3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关 系。(用处:可以使用线性虎克定律来表示应力与应变的关系) (4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数) (5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量)3、弹性力学的基本量 表1 直角坐标表示的各种基本量情况

4、两类平面问题的概念 (1)平面应力问题(应力是平面的;变形是空间的) 如图所示薄板,其z方向的尺寸比其他两个方向上的尺寸小得多;外力和体力都平行于板面,并且沿着板的厚度没有变化,这样的问题称为平面应力问题。(2)平面应变问题 若物体在z方向的尺寸比在其他两个方向上的尺寸大得多,如图所示很长的坝体,外力及体力沿着z方向没有变化,则这类问题称为平面应变问题。 (3)两类平面问题的一些特征 空间问题的基本未知量共有8个,每个基本未知量仅仅是坐标(),x y的函数。 表2 两类平面问题的一些特征

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

弹性力学题库

第一章绪论 1、所谓“完全弹性体”是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识是(A)。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的是(D)。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于弹性阶段的应力、应变和位移。 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。 7、弹性力学对杆件分析(C)。 A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力和位移分析要用什么分析方法?(C)

A 、材料力学 B 、结构力学 C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞和键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都是体力。(√) 11、下列外力不属于体力的是(D ) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它是质量力。 13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D ) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学教案.doc

弹性力学教案 第一章绪论(4学时) 介绍弹性力学研究的内容、基本概念和基本假设。 1、主要内容: 第一节弹性力学的内容 第二节弹性力学的基本概念 第三节弹性力学的基本假设 2、本章重点: 弹性力学的基本概念。 3、本章难点: 弹性力学的基本概念。 4、本章教学要求: 理解弹性力学的基本假设、基本概念。 5、教学组织: 弹性力学是在学习了理论力学、材料力学等课程的基础上开设的专业课程。学生已经建立了关于应力、应变、位移的概念。而且能够用材料力学的方法对杆件进行应力计算;并进一步对其进行强度、刚度和稳定性的分析。 在本章第一节的教学中,要明确弹性力学、材料力学和结构力学在研究对象上的分工的不同;在研究方法上的不同;及其不同的原因。并且让学生初步了解弹性力学的研究方法。 在本章第二节的教学中,要进一步深入研究作用在弹性体上的力。明确内力与外力、体力与面力、应力矢量与应力张量等概念及其表达方式。 在本章第三节的教学中,研究弹性力学的基本假设。通过基本假设的讲解,让学生明白合理的科学假设在科学研究中的必要性和重要性。要启发学生理解弹性力学的各个假设及其限定的缘由。 第二章弹性力学平面问题的基本理论(14学时) 本章研究平面问题的基本方程、边界条件及其解法。 1、主要内容: 第一节平面问题 第二节平衡微分方程 第三节斜截面上的应力、主应力 第四节几何方程、刚体位移 第五节斜截面上的应变及位移 第六节物理方程 第七节边界条件 第八节圣维南原理 第九节按位移求解的平面问题 第十节按应力求解的平面问题、相容方程 第十一节常体力情况下的简化 第十二节应力函数、逆解法与半逆解法 2、本章重点: 平面问题的基本方程、应力函数及边界条件。 3、本章难点: 平面问题的基本方程及边界条件的确定。

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

弹性力学基本知识考试必备

弹性力学基本知识考试必备 一、 基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变 问题。

(5)一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6)圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7)差分法的基本概念: 是微分方程的近似解法,具体的讲,差分法就是把微分用差分来代替,把导数用差分商来代替,从而把基本方程和边界条件(微分方程)近似用差分方程来表示,把求解微分方程的问题变成求解代数方程问题。 (8)极小势能原理: 在给定外力作用下,在满足位移边界条件的所有各组位移中间,实际存在的一组位移应使总势能成为极值,对于稳定平衡状态,这个值是极小值。 (9)轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

弹性力学基本概念

弹性力学中的基本假定1连续性假定在物体体积内都被连续介质所充满,没有任何空隙,亦即从宏观角度上认为物体是连续的。因此,所有的物理量均可以用连续函数来表示,从而可以应用数学分析工具2完全弹性假定物体是完全弹性的。这个假定包含两点含义:a.当外力取消时,物体回复到原状,不留任何残余变形,即所谓“完全弹性”b.应力与相应的应变成正比,即所谓“线性弹性”。根据完全弹性假定,物体中的应力与应变之间的物理关系可以用胡克定律来表示3均匀性物体是由同种材料组成的,物体内任何部分的材料性质均相同。这样,物体的弹性常数等不随位置坐标而变化4各向同性物体内任一点各方向的材料性质都相同。这样,弹性常数等也不随方向而变化。凡符合以上四个假定的物体,称为理想弹性体5小变形假定假定物体的位移和应变是微小的。物体在受力后,其位移远小于物体的尺寸,其应变远小于1。用途:a.简化几何方程,使几何方程成为线性方程。b.简化平衡微分方程面力是作用于物体表面上的外力 体力是作用于物体体积内的外力 应力单位截面积上的内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的 形变就是物体形状的改变。通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面,且沿厚度不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于柱面上,其方向平行于横截面,且沿长度方向不变 平衡微分方程表示区域内任一点(x,y)的微分体的平衡条件 平衡问题中一点应力状态1求斜面应力分量2由斜面应力分量求斜面上的正应力和切应力3求一点的主应力及应力方向4求一点的最大和最小的正应力和切应力 几何方程表示任一点的微分线段上,形变分量与位移分量之间的关系式 形变与位移的关系1如果物体的位移确定,则形变完全确定2当物体的形变分量确定时,位移分量不完全确定 边界条件表示在边界上位移与约束,或应力与面力之间的关系式。可分为:位移边界条件、应力边界条件和混合边界条件 位移边界条件实质上是变形连续条件在约束边界上的表达式 应力分量和正的面力分量的正负号规定不同在正坐标面上,应力分量与面力分量同号;在负坐标面上,应力分量与面力分量异号 应力边界条件两种表达方式:1在边界点取出一个微分体,考虑其平衡条件2在同一边界上,应力分量应等于对应的面力分量(数值相同,方向一致) 圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计只能应用于一小部分边界上(又称局部边界、小边界和次要边界) 圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计 应力边界条件上应用圣维南原理就是在小边界上将精确的应力边界条件式,代之为静力等效的主矢量和主矩的条件 形变协调条件的物理意义1形变协调条件是连续体中位移连续性的必然结果2形变协调条件是形变对应的位移存在且连续的必要条件

弹性力学教材习题及解答完整版

弹性力学教材习题及解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃 钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没 有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力 应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足 线性弹性关系。 2-1. 选择题 a.所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不 同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截 面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边

界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。 2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如

最新弹性力学答案

【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。 面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。 由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力 正的面力 【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。 【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有0===z xz yz σττ,只存在平面应力分量,,x y xy σστ,且它们不沿z 方向变化,仅为x ,y 的函数。可以认为此问题是平面应力问题。 【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x ,y 向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。 【解答】板上处处受法向约束时0z ε=,且不受切向面力作用,则 0xz yz γγ==(相应0zx zy ττ==)板边上只受x ,y 向的面力或约束,所以仅存在,,x y xy εεγ,且不沿厚度变化,仅为x ,y 的函数,故其应变状态接近于平面 应变的情况。 O z y

【2-3】在图2-3的微分体中,若将对形心的力矩平很条件C M 0=∑改为对角点的力矩平衡条 件,试问将导出什么形式的方程? 【解答】将对形心的力矩平衡条件 C M 0=∑, 改为分别对四个角点A 、B 、D 、E 的平衡条件,为计算方便,在z 方向的尺寸取为单位1。 0A M =∑ 1()1()11222()1()1110 222 xy x y x xy y y yx y yx x x dx dy dy dx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ????++??-+??-?? ????-+??++??+??-??=?? (a) 0B M =∑ ()1()1()122 111110 2222 yx y x x yx y xy x y x y dy dx dx dy dy dx dy dy dx x y y dy dx dy dx dy dx dy dx f dxdy f dxdy τσσστστσσ???+ ??++??++?????-??-??-??+??+??= (b) 0D M =∑ ()111122 1()1110 2222 y y xy x yx x x x x y dx dy dy dx dy dx dy dx dy y dx dy dy dx dx dx dy f dxdy f dxdy x σστστσσσ?+ ?? -??+??+????-??-+??-??+??=? (c) 0E M =∑ ()1111222 ()1()1110 222y y x yx y xy x x xy x y dx dy dx dy dx dy dx dy dx y dy dy dx dx dy dx dy dx f dxdy f dxdy x x σσστστσστ?-+ ?? +??+??+??- ???+??-+??-??+??=?? (d) 略去(a)、(b)、(c)、(d)中的三阶小量(亦即令2 2 ,d xdy dxd y 都趋于0),并将各式都除以dxdy 后合并同类项,分别得到xy yx ττ=。 【分析】由本题可得出结论:微分体对任一点取力矩平衡得到的结果都是验证了切应力互等定理。

弹性力学简明习题提示与参考答案

题提示和答案 《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切 应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取

它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得 出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。 3-2 用逆解法求解。由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出 应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是:主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边 界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在 x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到

弹性力学基础知识点复习

固体力学的重要分支,它研究弹性物体在外力和其他外界因素作用下产生的变形和内力,又称弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。

弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 ①变形连续规律弹性力学(和刚体的力学理论不同)考虑到物体的变形,但只限于考虑原来连续、变形后仍为连续的物体,在变形过程中,物体不产生新的不连续面。如果物体中本来就有裂纹,则弹性力学只考虑裂纹不扩展的情况。 反映变形连续规律的数学方程有两类:几何方程和位移边界条件。几何方程反映应变和位移的联系,它的力学含义是,应变完全由连续的位移所引起,

弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 一.内容介绍 通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。 弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个: 一是综合弹性力学的基本方程,并按边界条件的性质将问题分类; 二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。 三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。 如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。 二. 重点 1.弹性力学基本方程与边界条件分类; 2.位移解法与位移表示的平衡微分方程; 3. 应力解法与应力表示的变形协调方程; 4. 混合解法; 5. 逆解法和半逆解法; 6. 解的唯一性原理、叠加原理和圣维南原理 知识点 弹性力学基本方程边界条件位移表示的平衡微分方程应力解法 体力为常量时的变形协调方程物理量的性质逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法位移边界条件 变形协调方程混合解法应变能定理解的唯一性原理圣维南原理

§5.1 弹性力学的基本方程及其边值问题 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。 学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程

相关主题
文本预览
相关文档 最新文档