当前位置:文档之家› 电子设备电磁兼容的检测技术研究

电子设备电磁兼容的检测技术研究

电子设备电磁兼容的检测技术研究
电子设备电磁兼容的检测技术研究

电子设备电磁兼容的检测技术研究

磁电效应在我们的日常生活中随处可见,而对于我们生活中比较常用的电子产品来讲,其电磁兼容问题一直以来是比较热门的讨论话题。尤其是随着科技水平的不断提高,不同类型的电子产品被广泛应用于我们的生产生活中,所以说加强电磁兼容性的检测尤为关键。本文分析了对电磁兼容进行检测的重要性,同时提出一系列检测技术,从而确保电子产品的稳定性。

标签:电子设备电磁兼容;重要性;检测技术

1.前言

随着我国科技水平的不断提高和进步,在人们的生产生活中有着越来越多的电子产品,其内部包含的技术也变得更加先进,在人们的生产生活中扮演着关键角色,其性能的有效发挥对人们的生活有着关键影响。所以说为了更好的确保电子产品能够稳定发挥其作用,开展电磁兼容性检测是十分有必要的。

2.电子产品电磁兼容检测的重要性

2.1确保电子设备正常工作

因为在电磁兼容性中具备一定的电磁干扰能力,这在一定程度上会使得相关元器件性能下降,造成其电磁敏感度提高,对电子产品的稳定运行影响较大,甚至还会损坏其中某些元器件。所以有必要加强电子产品的电磁兼容检测,确保其内部的相关元件不会受到外界的电磁干扰,进而稳定发挥其作用。

2.2有利于人身安全

因为地质结构的影响,电磁波存在于我们的周围,时刻的影响着人类的生存和发展。如果电子产品的使用不当将会对人体产生较大的影响,特别是我们生活中用到的电子产品,数量正在不断增加,比如比较常见的手机、洗衣机、风扇、计算机、空调等。这些都是我们生活中不可或缺的电子产品,但是在具体应用过程中电磁波在一定程度上会对电子产品内部的电爆设备等产生较大的干扰电流,一旦电流过载将会造成设备燃烧甚至爆炸,严重影响生命健康。同时一定程度的电磁反应还会对人体产生一定的物理伤害,造成人体器官发生器质性改变。所以说加强对电子产品电磁兼容检测技术的研究对人的身体健康有着重要意义。

2.3加强和国际技术的接轨

由于科技水平的不断提高和创新,相应的对电子产品电磁兼容检测技术的水平也在不断提高,同时这也成为整个电子产品形成过程的重要环节。尤其是现阶段电磁兼容达标认证已经成为国际技术标准的关键内容,已被列入有关技术标准中。我国在电子产品的电磁兼容性检测方面也实施了一定的硬性规定,逐渐形成

电气类外文翻译---电力电子系统的电磁兼容问题

外文资料译文 Power Electronics Electromagnetic Compatibility The electromagnetic compatibility issues in power electronic systems are essentially the high levels of conducted electromagnetic interference (EMI) noise because of the fast switching actions of the power semiconductor devices. The advent of high-frequency, high-power switching devices resulted in the widespread application of power electronic converters for human productions and livings. The high-power rating and the high-switching frequency of the actions might result in severe conducted EMI. Particularly, with the international and national EMC regulations have become more strictly, modeling and prediction of EMI issues has been an important research topic. By evaluating different methodologies of conducted EMI modeling and prediction for power converter systems includes the following two primary limitations: 1) Due to different applications, some of the existing EMI modeling methods are only valid for specific applications, which results in inadequate generality. 2) Since most EMI studies are based on the qualitative and simplified quantitative models, modeling accuracy of both magnitude and frequency cannot meet the requirement of the full-span EMI quantification studies, which results in worse accuracy. Supported by National Natural Science Foundation of China under Grant 50421703, this dissertation aims to achieve an accurate prediction and a general methodology. Several works including the EMI mechanisms and the EMI quantification computations are developed for power electronic systems. The main contents and originalities in this research can be summarized as follows. I. Investigations on General Circuit Models and EMI Coupling Modes In order to efficiently analyze and design EMI filter, the conducted EMI noise is traditional decoupled to common-mode (CM) and differential-mode (DM) components. This decoupling is based on the assumption that EMI propagation paths have perfectly balanced and time-invariant circuit structures. In a practical case, power converters usually present inevitable unsymmetrical or time-variant characteristics due to the existence of semiconductor switches. So DM and CM components can not be totally decoupled and they can transform to each other. Therefore, the mode transformation led to another new mode of EMI: mixed-mode EMI. In order to understand fundamental mechanisms by which the mixed-mode EMI noise is excited and coupled, this dissertation proposes the general concept of lumped circuit model for representing the EMI noise mechanism for power electronic converters. The effects of unbalanced noise source impedances on EMI mode transformation are analyzed. The mode transformations between CM and DM components are modeled. The fundamental mechanism of the on-intrinsic EMI is first investigated for a switched mode power supply converter. In discontinuous conduction mode, the DM noise is highly dependent on CM noise because of the unbalanced diode-bridge conduction. It is shown that with the suitable and justified

航空电气电子设备的电磁兼容测试项目有哪些

航空电气电子设备的电磁兼容测试项目有哪些? 答:电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。 机载电子设备电磁兼容EMC测试:RTCA/DO-160G涵盖了航空电气电子设备(航空电子学)的标准步骤和环境测试标准,适用对象包括了所有的航空飞行器,从轻型到重型,从小型到大型,如小型通用航空器、商业喷气式飞机、直升机、区域喷气式飞机和巨型喷气式飞机。它提供了一整套实验室测试方法以判定被测对象在模拟的环境条件下是否满足规定的性能指标要求。 机载电子设备电磁兼容EMC测试项目 磁场效应 该项测试用于测量机载设备所产生的DC磁场发射的量值大小。测量可以通过罗盘指针的偏转程度测定,或者使用一个有足够精度的高斯计测定。设备的分类取决于产生一定偏转量值时的距离。 电源输入 该项测试用于机载设备的电源输入端,测量电源总线上伴随产生的各种电源畸变和浪涌情况。设备的分类基于组件的电源功率和定义的不同状态,如供电电源就有115Vac/400Hz,230Vac/400Hz,28Vdc,14Vdc,或者270Vdc多种类型。 电压尖峰 该项测试是向机载设备的电源线注入脉宽10μs、上升时间小于2μs的瞬态尖峰信号。适用于AC和DC电源的输入端,瞬态尖峰信号的幅度有两个对应的等级。 电源线音频传导敏感度 该项测试是向机载设备的电源线注入正弦波干扰信号,适用于AC和DC的电源输入端。干扰信号的严酷等级根据被测件的电源功率类型而不同。

电子设备的散热问题与新型冷却技术的应用分析

电子设备的散热问题与新型冷却技术的应用分析 摘要:文章结合当前现代电子设备应用面临的各类问题,综合分析常用的电子 散热冷却方法以及新型热管技术在电子冷却中的应用前景,旨在能够通过有效的 散热操作解决电子设备散热问题,提升电子设备性能。 关键词:电子设备;散热问题;新型冷却技术;应用分析 从当前各类电子设备的应用发展实际情况来看,电子及其相关产业的发展体 现出两个发展趋势,一个是追求小型化和集成化发展,另外一个则是追求高效率 和高运算发展。在电子设备的广泛应用发展下,一些单位容积范围内的电子元器 件发热量不断增加,电子设备的散热问题成为当前制约整个微电子工程发展的重 要问题。为此,需要相关人员结合实际积极思考和探究电子设备的散热策略,旨 在能够在实际应用操作中进一步增强电力电子产品的功能。 一、电子散热技术的发展 在社会经济和科技的快速发展下,电子散热技术也发生了深刻的变革。在最早,电子散热技术发展处于真空管时代,电子散热功率较大,电子器械的体积也 较大。之后,伴随晶管体的出现,使得电子散热功率、体积在一定程度上减小。 再之后,受CMOS技术应用的影响,电子设备的运行速度提升,散热技术的应用 发展面临前所未有的发展调整,在电子散热技术方面开始着重研究新型冷却技术。 二、热管的诞生和传热特性 在1942年的时候,美国学者提出在不用动力的情况下,利用介质的变化和毛细吸力能够在较小温差环境下传递大功率热量的构想。在上个世纪六十年代的时候,人们为了解决人造微卫星仪器温度控制问题,应用实践证明了热管这种装置 的导热性能是其他零部件导热性能的几千倍,在一时间,国家对热管的研究得到 了快速发展。从实际应用情况来看,热管的应用具有以下几方面的特点:第一, 热管的传热能力。从热管的传热能力来看,热管在进行传热操作的时候所应用的 材料数量和构件相对较少。第二,热管本身对热度和温度变化反应速度灵敏、快速,传热速度理想。第三,整个热管的表面温度控制均匀,能够在几千米以上进 行传热操作,且传热过程中温度降低较小。第四,整个热管的散热系统结构组成 灵活,热源和散热部分往往能够各自独立存在,在进行吸收散热的时候各个零部 件往往互不影响,使得电力电子产品的设计灵活多样。 近几年,热管技术开始在电器设备、电子元器件冷却、半导体冷却、大规模 集成电路板散热方面得到了广泛的应用,且取得了良好的效果,其中小型散热管、回路热管、脉动热管等体现出良好的发展潜力。 三、电子设备新型冷却方式和冷却介质的选择 (一)冷却方式的选择 电子设备新型冷却方式有自然风冷、强迫风冷、强迫液冷等三部分,其中, 自然风是一种最为理想的冷却方式,在进行冷却操作的时候往往不需要其他冷却 辅助设备的支持,但是冷却能力较差,仅仅适合在热流密度在每平方厘米0.04W 的电子元器件中进行冷却操作。强迫风冷冷却系统的构成则是较为简单,且开发 使用成本费用较低,但是受外形尺寸大小的影响,这类设备所能够为人们提供的 风量较小。液体冷却系统的构造则是较为复杂,设备运行所需要花费和消耗的成 本较高,但是在实际应有中所能够承受的热流密度较大,散热效率较高。 (二)冷却介质的选择 风冷电子设备运行所选择的冷却介质是空气,在选择这类设备的时候还需要

电磁兼容技术的发展状况及应用

电磁兼容技术的发展状况及应用 摘要: 电磁兼容技术是解决电磁干扰相关问题的一门技术.电磁兼容设计的目的是解决电 路之间的相互干扰,防止电子设备产生过强的电磁发射,防止电子设备对外界干扰过度敏感.近 年来,电磁兼容设计技术的重要性日益增加。 电磁兼容技术是解决电磁干扰相关问题的一门技术.电磁兼容设计的目的是解决电路之间 的相互干扰,防止电子设备产生过强的电磁发射,防止电子设备对外界干扰过度敏感.近年来,电磁兼容设计技术的重要性日益增加,这有两个方面的原因:第一,电子设备日益复杂,特别是模拟电路和数字电路混合的情况越来越多、电路的工作频率越来越高,这导致了电路之间的干扰更加严重,设计人员如果不了解有关的设计技术,会导致产品开发周期过长,甚至开发失败.第二,为 了保证电子设备稳定可靠的工作,减小电磁污染,越来越多的国家开始强制执行电磁兼容标准, 特别是在美国和欧洲国家,电磁兼容指标已经成为法制性的指标,是电子产品厂商必须通过的指标之一,设计人员如果在设计中不考虑有关的问题,产品最终将不能通过电磁兼容试验,无法走 上市场. 因此近年来,电磁兼容教育也在迅速发展,一方面,各种有关电磁兼容设计的书籍层出不穷,各种电子设计的期刊上也不断刊登有关的文章,另一方面,电磁兼容培训越来越受到欢迎.20世纪90年代末,美国参加电磁兼容培训的费用平均为每人每天330美元,目前,已经达到450美元左右,并且企业如果需要专场培训,往往需要与提供培训的公司提前半年签订合同,由此可以看 到电子设计人员对电磁兼容技术的需求日益增加. 我国电磁兼容技术起步很晚,无论是理论、技术水平,还是配套产品(屏蔽材料、干扰滤波器等)制造,都与发达国家相差甚远.而与此形成强烈反差的是,在我们加入WTO以后,我们面对的是公平的国际竞争,各国之间唯一的贸易壁垒就是技术壁垒.而电磁兼容指标往往又是众多技术壁垒中最难突破的一道.因此,怎样使设计人员在较短的时间内,掌握电磁兼容设计技术,能够充满信心地面对挑战是我们努力实现的目标. 1 什么是电磁兼容标准 为了规范电子产品的电磁兼容性,所有的发达国家和部分发展中国家都制定了电磁兼容标准.电磁兼容标准是使产品在实际电磁环境中能够正常工作的基本要求.之所以称为基本要求, 也就是说,产品即使满足了电磁兼容标准,在实际使用中也可能会发生干扰问题.大部分国家的 标准都是基于国际电工委员会(IEC)所制定的标准. IEC有两个平行的组织负责制定EMC标准,分别是CISPR(国际无线电干扰特别委员会)和TC77(第77技术委员会).CISPR制定的标准编号为:CISPR Pub. XX ,TC77制定的标准编号为IEC XXXXX . 关于CISPR:1934年成立.目前有七个分会:A分会(无线电干扰测量方法与统计方法)、B分会(工、科、医射频设备的无线电干扰)、C分会(电力线、高压设备和电牵引系统的无线电干扰)、D分会(机动车和内燃机的无线电干扰)、E分会(无线接收设备干扰特性)、F分会(家电、电动工具、照明设备及类似电器的无线电干扰)、G分会(信息设备的无线电干扰) 关于TC77:1981年成立.目前有3个分会:SC77A(低频现象)、 SC77B(高频现象)、 SC77C(对高空核电磁脉冲的抗扰性). 我国的民用产品电磁兼容标准是基于CISPR和IEC标准,目前已发布57个,编号为GBXXXX - XX,例如GB 9254-98. 欧盟使用的EN标准也是基于CISPR和IEC标准,其对应关系如下: EN55××× = CISPR标准, (例: EN55011 = CISPR Pub.11) EN6×××× = IEC标准, (例: EN61000-4-3 = IEC61000-4-3 Pub.11) EN50××× = 自定标准, (例: EN50801) 我国军用产品采用的标准GJB是基于美国军标,例如GJB151A = MIL-STD -461D. 电磁兼容标准分为基础标准、通用标准、产品类标准和专用产品标准. 基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据.基础标准不涉及具体产品.

【CN110099548A】一种电子器件散热装置与方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910359479.0 (22)申请日 2019.04.30 (71)申请人 西安交通大学 地址 710049 陕西省西安市咸宁西路28号 (72)发明人 魏进家 袁博 张永海  (74)专利代理机构 西安通大专利代理有限责任 公司 61200 代理人 安彦彦 (51)Int.Cl. H05K 7/20(2006.01) (54)发明名称一种电子器件散热装置与方法(57)摘要一种电子器件散热装置与方法,包括设置在流动通道内的电子器件,电子器件布置在流动通道的底面上;流动通道顶面上开设有第一出口与第二出口,与第一出口相连的第一管道上设置有第一电磁阀,与第二出口相连的第二管道上设置有第二电磁阀,流动通道底面上开设第一入口和第二入口,与第一入口相连的第三管道上设置有第三电磁阀;与第二入口相连的第四管道上设置有第四电磁阀。由一台PLC控制四枚电磁阀两两一组进行交替的开启与闭合,通过往复流动的液体对电子器件表面气泡的进行持续高效冲击,促使气泡脱离加热表面,并离开流道,显著提升了换热系数和临界热流密度,达到高热流密度条件 下电子器件散热的需求。权利要求书1页 说明书4页 附图3页CN 110099548 A 2019.08.06 C N 110099548 A

权 利 要 求 书1/1页CN 110099548 A 1.一种电子器件散热装置,其特征在于,包括设置在流动通道(5)内的电子器件,电子器件布置在流动通道(5)的底面上;流动通道(5)顶面上开设有第一出口与第二出口,与第一出口相连的第一管道(13)上设置有第一电磁阀(1),与第二出口相连的第二管道(14)上设置有第二电磁阀(2),流动通道(5)底面上开设第一入口和第二入口,与第一入口相连的第三管道(15)上设置有第三电磁阀(7);与第二入口相连的第四管道(16)上设置有第四电磁阀(11)。 2.根据权利要求1所述的一种电子器件散热装置,其特征在于,流动通道(5)的横截面为矩形。 3.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一入口与第二入口之间的距离以及第一出口与第二出口之间的距离均大于电子器件的长度10mm。 4.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一电磁阀(1)、第二电磁阀(2)、第三电磁阀(7)与第四电磁阀(11)均与可编程逻辑控制器相连。 5.根据权利要求1所述的一种电子器件散热装置,其特征在于,第三电磁阀(7)与第四电磁阀(11)的入口均与流量计(6)相连。 6.根据权利要求5所述的一种电子器件散热装置,其特征在于,流量计(6)与离心泵(12)相连。 7.根据权利要求1所述的一种电子器件散热装置,其特征在于,电子器件连接有直流电源(10)。 8.根据权利要求1所述的一种电子器件散热装置,其特征在于,当第一电磁阀(1)与第四电磁阀(11)开启时,第二电磁阀(2)与第三电磁阀(7)闭合;当第二电磁阀(2)与第三电磁阀(7)开启时,第一电磁阀(1)与第四电磁阀(11)闭合。 9.一种基于权利要求1-8中任意一项所述散热装置的散热方法,其特征在于,通过可编程逻辑控制器相连控制第一电磁阀(1)与第四电磁阀(11)开启,第二电磁阀(2)与第三电磁阀(7)闭合,流动通道(5)内液体从右向左流过电子器件表面,进行流动沸腾换热;在经过一个动作周期后,第二电磁阀(2)与第三电磁阀(7)开启,第一电磁阀(1)与第四电磁阀(11)闭合,液体反向,从左向右流过电子器件表面;如此反复切换电磁阀工作状态,实现液体的高频往复流动,从而实现对电子器件的散热。 10.一种根据权利要求(9)所述的散热方法,其特征在于,一个动作周期为50ms。 2

我所认知的电子设备可靠性工程

我所认知的电子设备可靠性工程 04091102班04091061 石坚 摘要:说到到可靠性工程,由于这学期在学校开了个鸡排店,用到了油炸的机器,接触到了有关可靠性设计的部分。所以选了电子设备可靠性工程这门选修课,以便进一步了解机器的可靠性设计,尤其是和我们专业有关的电子设备的可靠性。可靠性是指产品在规定的条件下和规定的时间内完成规定功能的能力。任何产品不论是机械、电子,还是机电一体化产品都有一定的可靠性,产品的可靠性与实验、设计和产品的维护有着极大的关系。通过自己的亲身经历,觉得可靠性是个很重要的参数,而随着社会的进步和科学技术的发展,人们对电子设备、电子器件的可靠性更是要求越来越高。本文就电子元器件的可靠性,包括电子元器件在不同条件下的不同特征,元件失效的规律,发生故障的概率等做了简单的论述。 引言:可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。可靠性技术基于两个重要的理论基础:失效物理和概率统计,同时,它产生了两个重要的应用领域,即系统可靠性和元器件可靠性。在元器件可靠性领域又进一步可分为元器件固有可靠性和使用可靠性。前者主要研究元器件的设计和制造过程中的可靠性,后者侧重研究在电子系统研制过程中如何选好、买好、用好和管好元器件,防止、控制引入过应力而损坏可靠元器件和接收、使用可靠性不能满足要求得元器件。根据电子行业界分析,60%以上的生产故障是由于元器件失效引起的,70%以上的市场返修也是因为器件失效引起的。国内外地有关资料表明:在电子元器件的失效中,由于选择或使用不当等人为因素导致失效的比列高达失效数的50%以上。 一.提高电子产品的可靠性意义重大 提高产品的可靠性,可以防止故障和事故的发生,尤其是避免灾难性的事故发生,从而保证人民生命财产安全。1986年1月28日,美国航天飞机“挑战者”号由于1 个密封圈失效,起飞76s 后爆炸,其中7 名宇航员丧生,造成12 亿美元的经济损失;1992年,我国发射“澳星”时,由于一个小小零件的故障,使“澳星”发射失败,造成了巨大的经济损失和政治影响。

汽车电子电磁兼容测试标准解读

汽车电子电磁兼容测试 标准解读 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

汽车电子EMC测试,正在受到越来越多的关注。其中最重要的三个标准为,CISPR 25、ISO11452-2、ISO11452-4。本文给出了测试设备、所起到的作用和推荐方案,是汽车电子工程师的必备速查手册。 一、CISPR25标准 CISPR25目前用的是2007年第三版标准,与2002年的旧版,还是有很大差别。 1、CISPR25传导骚扰测试设备 CISPR25传导骚扰测试方法分为两种。一种是电压方法:电压测量只能用于单一导线的传导发射特性,故常用于测量电源线的发射,采用人工电源网络做隔离物;另外一种是电流探头方法:测量控制/信号线的发射。 CISPR25传导骚扰测试设备 2、CISPR25辐射骚扰测试方法 1)电波暗室(ALSE)方法:辐射场强测量应在ALSE 内进行,以消除来自电气设备以及广播台站产生的额外电磁骚扰的影响。 2)TEM小室方法:辐射场强度的测量应该在屏蔽室中进行,以消除来自电气设备和广播站的附加干扰。TEM 小室的工作如同屏蔽室一样。 3)带状线法方法:带状线是开方式的波导,由一个接地平板和一个主导电体(隔板)构成,有特征阻抗。一般采用的特征阻抗值是50Ω和90Ω。 目前关于零部件/模块的辐射骚扰测量的常见方法主要是:ALSE方法、TEM小室方法、带状线法。但目前由于TEM小室受电磁环境及场地限

制较多,带状线法则还处于研究和实践中。所以基本上都是用ALSE方法来进行汽车电子的辐射骚扰测量。 CISPR25辐射骚扰测试设备 二、ISO11452-2标准 ISO11452介绍的是用各种不同的测试方法来对车载电子进行抗骚扰类的测试。所以我们将对最常用的两种测试方法进行介绍。分别是电波暗室法(ISO11452-2)和大电流注入法(ISO11452-4)。 辐射抗干扰测试方法: 校准法:使用校准夹具标定的标准电流值,系统记录下发射功率后,再将样品摆放上去开始试验,测试过程中的注入功率不变,但产生的电流可能出现变化。 闭环法:无需校准,直接测试,系统根据监测钳的数据实时改变输出功率,尽量使电流稳定在测试要求的数值。 注:这两种方法产生的结果很可能有较大差别。其效果和产品自身的阻抗特性有关。其中闭环法不常见,而基本都是用校准法进行测试。 ISO11452-2测试设备 三、ISO11452-4 Part 4:大电流注入法,Bulk currentinjection (BCI) 道路车辆-用窄带发射的电磁能量进行电子干扰。部件试验方法-第4部分,该测试目的是检验设备对【1MHz– 400MHz】频带电磁场的抗干扰性能。 ISO11452-4测试设备

电子设备常用散热方式的散热能力分析

电力电子设备常用散热方式的散热能力分析1 引言 随着电子组装技术的不断发展,电子设备的体积趋于微型化,系统趋于复杂化,高热密度成了一股不可抗拒的发展趋势。为了适应高热密度的需求,风扇、散热器等传统的散热手段不断推陈出新,新颖高效的散热方法层出不穷。在众多散热方式面前,区分各种散热方式的散热能力,从而选择既经济又可靠的散热方法成为设计人员极为关注的问题。本文针对风冷和水冷两种常用的散热方式,综合国内外文献中对这两种散热方式的研究结果,总结出这两种散热方式的散热能力,为热设计人员选择经济合理的散热方式提供参考依据。 2 各种传热方式的传热能力分析 各种传热方式传热系数的大致范围如附表所示[1]。对空气而言,自然风冷时的传热系数是很低的,最大为10w/(m2k),如果散热器表面与空气的温差为50℃,每平方厘米散热面积上空气带走的热量最多为0.05w。传热能力最强的传热方式是具有相变的换热过程,水的相变过程换热系数的量级为103~104。热管的传热能力之所以很大,就是因为其蒸发段和冷凝段的传热过程都是相变传热。 附表各种传热方式的传热系数

文献[2]给出了根据散热体积和热阻选择散热方式的参考依据,如图1所示。例如对于热阻要求为0.01℃/w的散热方式,如果体积限制在1000 in3(1in3=16.4 cm3),可以选择风冷散热方式,但必须配备高效的风冷散热器;而如果体积限制在10 in3,只能选择水冷的散热方式。 图1 散热体积与热阻的大致关系 3 风冷 风冷散热方式成本低,可靠性高,但由于散热能力小,只适用于散热功率小而散热空间大的情况下。目前风冷散热器的研究热点是将热管与散热器翅片集成在一起,利用热管的高传热能力,将热量均匀地传输到翅片表面,提高翅片表面温度的均匀性,进而提高其散热效率。 空气强制对流冷却方式是目前电力电子元件常用的散热方式,其普通结构是散热器加风扇的形式。该结构虽然实施方便,成本较低,但其散热能力有限。以int

汽车电子电磁兼容测试标准解读

汽车电子EMC测试,正在受到越来越多的关注。其中最重要的三个标准为,CISPR 25、ISO11452-2、ISO11452-4。本文给出了测试设备、所起到的作用和推荐方案,是汽车电子工程师的必备速查手册。 一、CISPR25标准 CISPR25目前用的是2007年第三版标准,与2002年的旧版,还是有很大差别。 1、CISPR25传导骚扰测试设备 CISPR25传导骚扰测试方法分为两种。一种是电压方法:电压测量只能用于单一导线的传导发射特性,故常用于测量电源线的发射,采用人工电源网络做隔离物;另外一种是电流探头方法:测量控制/信号线的发射。 CISPR25传导骚扰测试设备 2、CISPR25辐射骚扰测试方法 1)电波暗室(ALSE)方法:辐射场强测量应在ALSE 内进行,以消除来自电气设备以及广播台站产生的额外电磁骚扰的影响。 2)TEM小室方法:辐射场强度的测量应该在屏蔽室中进行,以消除来自电气设备和广播站的附加干扰。TEM 小室的工作如同屏蔽室一样。 3)带状线法方法:带状线是开方式的波导,由一个接地平板和一个主导电体(隔板)构成,有特征阻抗。一般采用的特征阻抗值是50Ω和90Ω。 目前关于零部件/模块的辐射骚扰测量的常见方法主要是:ALSE方法、TEM小室方法、带状线法。但目前由于TEM小室受电磁环境及场地限制较多,带状线法则还处于研究和实践中。所以基本上都是用ALSE方法来进行汽车电子的辐射骚扰测量。

CISPR25辐射骚扰测试设备 二、ISO11452-2标准 ISO11452介绍的是用各种不同的测试方法来对车载电子进行抗骚扰类的测试。所以我们将对最常用的两种测试方法进行介绍。分别是电波暗室法(ISO11452-2)和大电流注入法(ISO11452-4)。 辐射抗干扰测试方法: 校准法:使用校准夹具标定的标准电流值,系统记录下发射功率后,再将样品摆放上去开始试验,测试过程中的注入功率不变,但产生的电流可能出现变化。 闭环法:无需校准,直接测试,系统根据监测钳的数据实时改变输出功率,尽量使电流稳定在测试要求的数值。 注:这两种方法产生的结果很可能有较大差别。其效果和产品自身的阻抗特性有关。其中闭环法不常见,而基本都是用校准法进行测试。

电子产品散热技术最新发展(上)

堇查壁蔓ij三翌隧阉固电子产品散热技术最新发展(上) 最近几年LSI、数码相机、移 动电话、笔记本电脑等电子产品. 不断朝高密度封装与多功能化方向发展.散热问题成为非常棘手的课题。LSI等电子组件若未作妥善的散热处理.不但无法发挥LSI的性能.严重时甚至会造成机器内部的热量暴增等。然而目前不论是LSI组件厂商.或是下游的电子产品系统整合业者.对散热问题大多处于摸索不知所措的状态.有鉴于此.介绍一下国外各大公司散热对策的实际经验.深入探索散热技术今后的发展动向.是很有必要的=.散热技术的变迁 如图1所示由于“漏电”问题使得LSI的散热对策是系统整合的责任.这种传统观念正面临极大的变革。此处所谓的漏电是指晶体管(仃彻sjs【or)的source与drain之间.施加于leal(电流的电源电压大晓而言。理论上leak电力会随着温度上升不断增加.如果未有效抑制热量意味着1eal【电力会引发更多的热量.造成1eak电力持续上升恶性循环后果。 以Intel新推出的微处理器“ni唧process)而言,它的消费电力之中60%~70%是属于1eak电力+一般认为未来1~2年leak电力仍然扮演支配性角色。 图1电子组件散热对策的变化趋势 高弘毅 在此同时系统整合业者.由于 单位体积的热最不断膨胀.使 得如何将机器内部的热量排除 更是雪上加霜.因此系统整合 业者转因而要求LsI组件厂商, 提供有效的散热对策参考模式, 事实上Imel已经察觉事态的严重 性,因此推出新型微处理器的 同时.还提供下游系统整合业 者有关LsI散热设计的model case.因此未来其他电子组件厂 商未来势必跟进。 如上所述LSI等电子组件的散 热对策.成为电子业界高度嘱目 焦点.主要原因是电子产品性能 快速提升所造威。以往计算机与 数字家电业者大多忽视漏电电力 问题的存在.甚至采取增加电力 的手法补偿漏电电力造成的损失, H…1U¨o『¨Ⅸ■} ◆以往:委由系统业者自行处理 今后:组件厂商夸力支持 可再啄■面i而n22.  万方数据

电子产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性的质量 要求。 2.范围 本文件适用本公司所有产品。 3.内容 3.1 实验顺序 除客户特殊要求外,试验样品进行试验时,一般按下表的顺序进行: 3.2实验条件 3.2.1 实验条件:

3.2.2 试验机台误差: a.温度误差:高温为+/-2℃,低温为+/-3℃. b.振动振幅误差:+/-15%. c.振动频率误差:+/-1Hz. 3.2.3 落地试验标准 3.2.3.1 落地试验应以箱体四角八边六面(任一面底部相连之四角、与此四角相连之八边, 六面为前、后、左、右、上、下这六个面)按规定高度垂直落下的方式进行。 重量高度 0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 3.2.3.2 注意事项: 5.2.3.2.1 箱内样品及包材在每个步骤后进行外观与功能性检验。 5.2.3.2.2 跌落表面为木板。 3.2.4 推、拉力试验方法和标准 3.2. 4.1、目的:为了评定正常生产加工下焊锡与焊盘或焊盘与基材的粘结质量。 3.2. 4.2、DIP类产品,需把元件用剪钳剪去只留下元件脚部分(要求留下部分 可以自由通过元件孔),且须把该焊盘与所连接的导线分开,然后固定 在制具上用拉力机以垂直于试样的力拉线脚(如下图),直到锡点或焊 盘拉脱为止,然后即可在拉力计上读数。 拉力方向 焊锡 焊盘

(图1) 3.2. 4.3、SMT类产品,片式元件用推力计以如下图所示方向推元件。推至元件或焊盘脱落后在推 拉力计上读数。并把结果记录在报告上。 三极管推力方向如下图所示,推至元件或焊盘脱落后在推拉力计上读数,并记录。 3.2. 4.4、压焊类产品,夹住排线(FFC或FPC)以如下图所示方向做拉力,拉至FFC或FPC 断或焊锡与焊盘脱离(锡点脱离)或焊盘与基材脱离(起铜皮),把结果记录在报告 上。 3.2. 4.5、产品元器件抽样需含盖全面规格尺寸。产品各抗推、拉力标准为;

电力电子装置的电磁兼容性和电磁干扰

第19卷第1期总 第 71 期1997年2月沈阳工业大学学报 Jour nal of Shenyang Polytechnic Univer sity Vol.19No.1 Sum No.71 F eb.1997 电力电子装置的电磁兼容性和电磁干扰 林成武 刘焕生 (电子工程系) 摘 要 分析了电力电子装置产生电磁干扰的原因和种类以及抗电磁干扰的基本措施,并提出了分析电磁干扰和电磁兼容性之间关系的方法. 关键词: 电力电子装置;电磁干扰;电磁兼容性;基本措施 中图法分类:TN973.3 0 引 言 近年来,电力电子技术取得了飞速发展,成为电工领域最具活力的学科之一,并越来越对国民经济产生重大影响.同时电力电子装置所产生的电磁干扰对通讯系统和电子设备的正常运行也会产生不良影响.因此迫切需要抑制电力电子装置的电磁干扰和提高抗电磁干扰能力,即使电力电子装置具有电磁兼容性,能长期稳定可靠地运行. 1 电力电子装置的电磁兼容性 电磁兼容性是在不损失有用信号所包含的信息的条件下,信息和干扰共存的能力.电力电子装置在其使用环境下,在承受来自外部的电磁干扰的同时也向电网系统和周围环境释放电磁干扰.在设计制造电力电子装置时,应考虑到电力电子装置在工作时所产生的电磁干扰不对在同一环境中工作的其它电子设备的运行产生不良影响,同时来自外部环境的电磁干扰又不会影响电力电子装置的工作.能做到这一点,就称电力电子装置具有电磁兼容性. 电磁兼容性是一个与电气利用相关的环境问题.对现代技术社会的确立及确保其安全性具有重要意义.因此在电力电子装置的设计、制造过程中应引起高度的重视,并作为一个重要的课题进行研究. 电力电子装置对电磁干扰的承受水平以及装置自身所产生的电磁干扰水平均与电磁兼容性有关系.可用图1表示产生电磁干扰的水平、装置抗干扰的水平及与电磁兼容性之间的关系. 从电力电子装置设计制造的角度来看,如果允许产生较高的电磁干扰,而抗干扰水平又较低,设计制造要容易些.可是,若允许产生较高的电磁干扰,将会影响其它电子设备的正常工作.而且来自外部的电磁干扰又会影响电力电子装置自身的工作.所以,必须在两者之间取得平衡,满足电磁兼容性的要求.在正常使用环境中,应根据国家标准设定电磁兼容性的水平.电力电子装置自身所产生的电磁干扰必须低于电磁兼容性水平,而抗电磁干扰水平必须高于电磁兼容必须性水平.电力电子装置的主电路中的电流几乎都是工作在开关状态的,其控制系统多采用微电子技 本文收到日期:1996-05-31 第一作者:男.41.硕士.讲师

汽车电子EMC实验标准

汽车电子EMC实验标准-按试验分类 静电放电抗扰度试验 ISO 10605:2001机动车抗静电放电骚扰试验方法GMW3100:2001通用标准电气/电子零部件和子系统电磁兼容验证部分ES-XW7T-1A278-AC:2003元件和子系统电磁兼容性全球要求和测试过程 GMW3097:2006通用标准电气/电子零部件和子系统电磁兼容要求部分 DC-10614:2002零部件电磁兼容性要求 DC-10614:2005零部件电磁兼容性要求 JASO D001-1994(第5.8条款)汽车零部件环境试验方法通用准则 28400 NDS09:1996电子零部件的耐静电放电试验 28400 NDS10:2000电子零部件的耐静电放电(操作部外加法) B21 7110:2001(第7条款)电子和电气设备有关环境的电气性能的通用技术标准 MES PW 67600:2001电子器件 7-Z0445:1995静电放电抗扰度试验 9.90110:2003 (第2.7条款)汽车电子和电气设备 MGR ES:62.61.627:2002汽车电磁兼容 TL 824 66-2005静电放电抗扰度 VW 801 01:2006机动车电子电气设施通用试验条件标准 射频电磁场抗扰度试验 ISO 11452-5:2002 机动车零部件由窄带辐射电磁能引起的骚扰的试验方法第五部分:带状线 GMW3097:2006 通用标准电气/电子零部件和子系统电磁兼容要求部分 GMW3100:2001 通用汽车标准电子/电气零部件和子系统电磁兼容通用标准验证部分 DC-10614:2005 零部件电磁兼容性要求 B21 7090:1993(第4条款)电气和电子装置环境的一般规定 28400NDS05:2002 电子零部件的耐电波障碍性试验 B21 7110:2001(第7条款) 电子和电气设备有关环境的电气性能的通用技术标准 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法 MES PW 67600:2001 电子器件 MGR ES:62.61.627:2002 汽车电磁兼容 7-Z0448:2001 电子系统带状线电磁兼容试验 VW 801 01:2006 机动车电子电气设施通用试验条件标准 TL 821 66-2004 汽车电子零部件电磁兼容辐射干扰 E/ECE/324 R10:2000+A1:1999 +A2:2004 机动车电磁兼容认证规定 射频场骚扰感应的传导抗扰度试验 ISO 11452-4:2005 机动车零部件由窄带辐射电磁能引起的骚扰的试验方法第四部分:大电流注入(BCI) GMW3097:2006 通用标准电气/电子零部件和子系统电磁兼容要求部分

9电子产品散热技术最新发展

散热设计(九)电子产品散热技术最新发展晨怡热管https://www.doczj.com/doc/3611258918.html,/news/42/2006-10-2 1:29:47 日期:2005-11-6 23:45:04 来源:电子设计资源网查看:[大中小] 作者:刘君恺热度: 最近几年包含LSI、数字相机、行动电话、笔记型计算机等电子产品,不断朝高密度封装与多功能化方向发展,使得散热问题成为非常棘手的课题,其中又以LSI等电子组件若未作妥善的散热对策,不但无法发挥LSI的性能,严重时甚至会造成机器内部的热量暴增等后果。然而目前不论是LSI组件厂商,或是下游的电子产品系统整合业者,对散热问题大多处于摸索不知所措的状态,有鉴于此本文将介绍国外各大公司,针对电子产品实施的散热对策实际经验,同时还要深入探索散热技术今后的发展动向。 散热技术的变迁 如图1所示由于「漏电」问题使得LSI的散热对策是系统整合的责任,这种传统观念正面临极大的变革。此处所谓的漏电是指晶体管(transistor)的source与drain之间,施加于leak 电流的电源电压大晓而言。理论上leak电力会随着温度上升不断增加,如果未有效抑制热量意味着leak电力会引发更多的热量,造成leak电力持续上升恶性循环后果。 以Intel新推出的微处理器(micro process)而言,它的消费电力之中60%~70%是属于leak电力,一般认为未来1~2年leak电力仍然扮演支配性角色。在此同时系统整合业者,由于单位体积的热量不断膨胀,使得如何将机器内部的热量排除更是雪上加霜,因此系统整合业者转因而要求LSI组件厂商,提供有效的散热对策参考模式,事实上Intel已经察觉事态的严重性,因此推出新型微处理器的同时,还提供下游系统整合业者有关LSI散热设计的model case,因此未来其它电子组件厂商未来势必跟进。

电磁兼容技术及应用

电磁兼容技术及应用 摘要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。对实例分析,结合电磁兼容理论,说明实际测试中的处理 摘要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。对实例分析,结合电磁兼容理论,说明实际测试中的处理方法,从干扰源、耦合路径、敏感源方面逐步分析验证,提高产品可靠性。 关键词:电磁兼容接地屏蔽滤波 目前,电磁兼容技术已经发展成为专门的针对电子产品抗电磁干扰和电磁辐射的技术,成为考察电子产品的安全可靠性的一个重要指标,覆盖所有电子产品。 各个电子设备在同一空间工作时,会在其周围产生一定强度的电磁场,这些电磁场通过一定的途径(辐射、传导)耦合给其他的电子设备,影响其他设备的正常工作,可能使通讯出错或者系统死机等,设备间相互干扰相互影响,这种影响不仅仅存在设备间,同时也存在元件与元件之间,系统与系统之间。甚至存在与集成芯片内部。 电磁兼容技术主要包括接地、滤波、屏蔽技术等,在特定场合需要注意的是不一样的,A、在结构方面,需要注意屏蔽和接地,B、在线缆方面注意接地和滤波,C、在PCB设计方面,需要注意信号布局布线、滤波等。 一、电磁兼容技术 首先从构成电磁干扰的三要素入手,即干扰源、敏感源、耦合路径,★干扰源是产生电磁干扰的设备,通过电缆、空间辐射等耦合路径影响干扰敏感源设备。高频电压/电流是产生干扰的根源,电磁能量在设备之间传播有两种方式:传导发射和辐射发射,传导

散热器高效散热技术及应用研究阚宏伟

散热器高效散热技术及应用研究 摘要:随着电子技术的发展,使得电子器件的热流密度不断增加,这样势必对电子器有更高的散热要求,因此有效地解决散热问题已成为电子设备必须解决的关键技术。针对现代电子设备所面临的散热问题,就散热基本原理以及各种主流散热技术,包括自然对流散、强制风冷散热、液体冷却、热管、微槽道冷却、集成热路、热电致冷等常用的电子设备散热技术及某些前沿的研究现状、发展趋势及存在问题分别予以阐述。 关键词:热传递自然对流强制风冷热管散热热电制冷 引言:据统计,55%的电子设备失效是由温度过高引起的。可见,电子设备的主要故障形式为过热损坏,因此对电子设备进行有效的散热是提高产品可靠性的关键。电子设备的主要散热技术电子设备的高效散热问题与传热学(包括热传导、对流和热辐射)和流体力学(包括质量、动量和能量守恒三大定律)等原理的应用密切相关。 一:热传递主要有三种方式: 传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。

相关主题
文本预览
相关文档 最新文档