当前位置:文档之家› 非满流管渠水力计算的六种方法思路

非满流管渠水力计算的六种方法思路

非满流管渠水力计算的六种方法思路
非满流管渠水力计算的六种方法思路

雨水管道的设计与计算

0.758 3027.3(10.655lg ) (19) p q t += + (2-5) 雨水流量主要参数及其确定依据 a) 径流系数Ψ 降落在地面上的雨水,一部分被植物和地面的洼地截流,一部分渗入土壤,余下的一部分沿地面流入雨水灌渠,这部分进入雨水灌渠的雨水量称作径流量。径流量与降雨量的比值称径流系数Ψ,其值常小于1。 径流系数的值与汇水面积的地面覆盖情况、地面坡度、地貌、建筑密度的分布、路面铺砌等情况相关。由于影响因素很多,精确求它的值是相当困难的,因此我们采用经验数值确定。 该区域大部分地区为沥青路面,有部分地区为公园及绿地,综合径流系数为0.6。 b) 重现期P 暴雨强度随着重现期的不同而不同。在雨水管渠设计中,若选用较高的设计重现期,计算所得设计暴雨强度大,相应的雨水设计流量大,管渠的断面相应大。这对防止地面积水是有利的,安全性高,但经济上则因管渠设计断面的增大而增加了工程造价;若选用较低的设计重现期,管渠断面的相应减小,这样虽然可以降低工程造价,但可能会经常发生排水不畅、地面积水而影响交通,甚至给城市人民的生活及工业生产造成危害。 雨水管渠设计重现期的选用,应根据回水面积的地区建设性质(广场、干道、厂区、居住区)、地形特点、汇水面积和气象特点等因素确定,一般选用0.5~3a ,对于重要干道,立交道路的重要部分,重要地区或短期积水即能引起较严重的地区,宜采用较高的设计重现期,一般选用2~5a ,并应和道路设计协调[9]。对于特别重要的地区可酌情增加,而且在同一排水系统中也可采用同一设计重现期或不同的设计重现期。 雨水管渠设计重现期规定的选用范围,是根据我国各地目前实际采用的数据,经归纳综合后确定的。在选用雨水管渠的设计重现期是,必须根据当地的气候、地形等条件确定。我国南部地区主要城市的重现期间下表:

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

雨水管道设计说明书

雨水管渠系统设计 一、设计资料与要求 试进行某研究所西南区雨水管道(包括生产废水在内)的设计和计算。并绘制该区的雨水管道平面图。已知条件: (1) 如图2-1所示该区总平面图; (2) 当地暴雨强度公式为)10/() lg 81.01(7002 45 .0m s L t P q ??+= (3) 采用设计重现期P=1a,地面集水时间min 101=t (4) 厂区道路主干道宽6m,支干道宽3.5m,均为沥青路面; (5) 各试验室生产废水量见表2-1,排水管出口位置见图2-1; (6) 生产废水允许直接排入雨水道,各车间生产废水管出口埋深均为1.50m(指室内地 面至管内底的高度); (7) 厂区各车间及试验室均无室内雨水道; (8) 厂区地质条件良好,冰冻深度较小,可不予考虑;

(9)出去的雨水口接入城市雨水道,接管点位置在厂南面,坐标为x=722.50,y=520.00, 城市雨水道为砖砌拱形方沟,沟宽1.2m,沟高(至拱内顶)1.8m,改点处的沟内底标高为37.70,地面标高为41.10m. 表2-1 各车间生产废水量表 (1)设计说明书一份; (2)管道平面布置图一张(A3); (3)管道水力计算图一张(A3); (4)管段水力计算表一份。

二、划分排水流域及管道定线 根据厂区的总平面布置图,可知该厂地形平坦,雨水和生产废水就近排入各雨水口。厂区内建筑较多,相应的交通量会比较大,故雨水管道采取暗管。雨水出口接入城市雨水道,城市雨水道为砖砌拱形方。 根据总平面图给出的标高绘制等高线,可知厂区西北高,东南低,局部有高地。再根据等高线合理布置雨水口,适当划分排水区域。根据地形、雨水口分布定管线,使绝大部分雨水以最短的距离排入街道低侧的雨水管道。拟将该厂区划分为16个流域。如图2-2所示。 图2-2 三、划分设计管段 根据管道的具体位置,在管道转弯处、管径或坡度改变出,有支管接入出或两条以上管道交汇处以及超过一定距离的直线管端上都应该设置检查井。把两个检查井之间流量没有变化且预计管径和坡度也没有变化的管段定位设计管段。并从管段从下游往下游按循序进行检查井的编号。 四、划分并计算各设计管段的汇水面积 各设计管段汇水面积的划分应结合地形坡度、汇水面积的大小以及雨水管道布置等情况而划定。地形较平坦时,可按就近排入附近雨水管道的原则划分汇水面积;地形坡度较大时,应按地面雨水径流的水流方向划分汇水面积。并将每块面积进行编号,计算其面积的数值。经简化,厂区的流水区域如图2-3所示,图中每一区域已包含街道及绿地在内,不仅仅是建筑面积。表2-1为地面标高表。表2-2为管道长度表。表2-3为汇水面积计算表。

管网水力计算说明

7.5.2配水管道水力计算 7.5.2.1 配水管网平面布置 干、支管沿现有路、沟、渠布置,并考虑永丰乡村镇规划的要求。本项目供水区范围比较小,南北长度约10km ,东西长度8km ,以水厂为圆点,最远距离约8.0km ,局部主干管破坏后维修恢复速度快,不会造成大的损失,因此,本项目主管网按树枝状布置。具体管网布置见永丰乡管网平面布置图。 受地形条件限制,本项目管网输水距离较远,用户水龙头的最大静水头控制在40m 不能全部满足要求,因此采取安装减压阀进行降压的措施,在静水压力超过40m 的各自然村、管网末梢等处设置减压阀2处。 7.5.2.2 管网水力计算成果 由于供水区范围小,采用树枝状管网,管网配水流量按最高日最高时用水量和秒流量法两种方法所得大值作为管段流量进行设计。 A )最高日最高时用水量计算 1、设计流量: Q 配=(W -W 1)×K 时/24 式中: W ——村镇的最高日用水量,m 3/d ; W 1——大用户的用水量之和,m 3/d ; K 时——时变化系数,取2.0。 2、人均用水当量: q =Q 配/P 3、管网水力计算 ①按最不利点复核进行平差计算,水头损失计算公式按海澄-威廉公式进行如下: ()()5.0075.0/44.0gDi C R C e ?=υ νυ/D R e = 计算水温采用13℃,ν=0.000001; ②计算节点出流量:Q 节 =q×节点设计人口+大用户用水量;

B )秒流量法计算公式如下: 1、最大用水时卫生器具给水当量出流概率: (%)3600 2.000***=T N mK q U R h 式中:Uo ——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%); q 0——最高日的用水定额; m ——每户用水人数,取3.5人; K h ——小时变化系数,取2.0; N g ——每户设置的卫生器具当量数; T ——用水小时数。 2、管段的卫生器具给水当量的同时出流概率: () (%)1149.0g g c N N U -+=α 式中:U ——计算管段的卫生器具给水当量同时出流概率(%); αc ——对应于不同U 0时的系数; N g ——计算管段的的卫生器具当量总数。 3、计算管段的设计秒流量: )/(2.0s L N U q g g **= 式中:q g ——计算管段的设计秒流量(L/s )。 C )管网水头损失计算 控制流速:υ 为经济流速,为0.6~1.2m/s 。 管径:πυQ D 4= 单位管长水头损失:774.4774 .1000915.0d Q i = 管道水头损失:h = 沿程损失+局部水头损失=(1+0.1)×i×L ,其中L 为管段长度,局部损失率为10%。

流量与管径、力、流速之间关系计算公式

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2)

R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s)

g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做

水力计算公式选用

水力计算公式选用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

长距离输水管道水力计算公式的选用 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s

C n----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4.公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ)公式均是针对工业管道条件计算λ值的着名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51 .27.3lg( 21 λ λ +?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

管道的水力计算

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流

流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm/s。 图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是

输水管道水力计算公式

输水管道水力计算公式 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,m λ----------沿程阻力系数 l -----------管段长度,m d-----------管道计算内径,m g-----------重力加速度,m/s 2 C-----------谢才系数 i------------水力坡降; R-----------水力半径,m Q-----------管道流量m/s 2 v------------流速 m/s C n -----------海澄―威廉系数 其中达西公式、谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐 采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广. 柯列勃洛可公式)Re 51.27.3lg(21 λ λ+?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

雨水量的计算说明书

雨水量计算说明书 一、雨水量的计算 1.1 根据该城镇的暴雨强度公式为: 497.0) 724.3()y lg 625.01(078.992++=t T q 式中 q ——设计暴雨强度公式(ha s L ?/) y T ——设计重现期(a) t ——设计降雨历时(min ) 重现期:y T =1年, 降雨历时:t=t 1+mt 2。 式中 t 1——地面集水时间(min ), 取5~15min ; t 2 —— 管渠内雨水流行时间(min ); m —— 折减系数,暗管取2,明渠取1.2。 在该城镇中采用暗管排水,取m=2, t 1=10min 。 1.2 径流系数计算 根据规划的地区类别,采用区域综合径流系数。城市市区区域综合径流系数值0.5—0.8,在此城镇计算中C1-10取0.6,C11取0.4。 单位面积径流量: 497.020)724.3210(078.992++?=t C q W =497.02) 724.3210(078.9926.0++?t 497.021)724.3210(078.992++? =t C q W =497.02)724.3210(078.9924.0++?t

设计流量Q 为:0q A Q ?= 灌渠内雨水流行时间为:t 2=L/v 式中 L ——管长(m ) V ——雨水在管内的流速(m/s ) 坡降:L S h ?= 设计管内底标高的最小值为地面标高减去管道的最小覆土厚度加上管径,埋深为设计地面标高减去设计管底标高。 管径、流速、流量等的确定采用满流水力计算表。 二、雨水管网定线 2.1排水体制的选择 规划区排水设施不完善,无完整排水系统,雨污合流排放,未经处理就近排入水体。规划区防洪标准为20年一遇,片区内规划用地竖向高程均在20年一遇的洪水位线之上。 暴雨强度公式根据附录:福建各地暴雨强度公式选用。 管材采用钢筋混凝土管。 2.2管线定线原则: 充分利用地形,就近排入水体。 雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。在每一排水流域内,结合建筑物及雨水口分布,充分利用各排水流域内的自然地形,布置

排水雨水管网设计计算说明书

仲恺农业工程学院实践教学 给水排水管网工程综合设计——排水管网计算书 (2013—2014 学年第二学期) 班级给排1x1 姓名 xxx 学号 201210524125 设计时间 2014.6.26 ~ 2014.7.3 指导老师 xxxxxxxxxxxxxxx 成绩 城市建设学院

目录 1 设计原始资料 (1) 1.1 城镇概况 (1) 1.2 气候情况 (1) 1.3 排水情况 (1) 2 排水管段设计流量计算 (1) 2.1 污水管道的布置 (1) 2.2 居民生活污水计算 (2) 2.3 街坊面积总面积计算 (2) 2.4集中用户污水计算 (4) 2.5面积比流量计算 (4) 2.6 污水干管设计流量 (4) 2.7污水管网主干管水力计算 (6) 3 管道总平面图及纵剖面计算成果图绘制 (8) 4 污水设计总结 (8) 5 雨水管段设计流量计算 (8) 5.1 主要设计参数 (8) 5.2 各设计管段的设计流量 (9) 5.3 计算步骤 (9) 5.4 雨水管网主干管水力计算 (10) 5.5 雨水设计总结 (11)

1 设计原始资料 1.1 城镇概况 A 城市位于我国华南地区,该城市是广东省辖县级市,自然资源丰富,交通便利。市区地势平坦,主要建在平原上,城市中间以铁路为界,分为两个生活区:Ⅰ区和Ⅱ区。均有给水排水设备,自来水普及率100%。 1.2 气候情况 ① 市内多年来的极端高温38.7℃,每年6~8月份的气温最高。而到了冬季(12~2月)温度较低,多年来的极端低温为0℃。 ② 年平均相对湿度为65%,春季湿度大,约为65~90%; ③ 雨季集中在4~9月份,这段时间的降雨量占全年降雨量的80%以上,4~9月份为受热带气旋影响的主要时段,降雨量大,多出现暴雨,年平均降雨量为1930mm ,多集中在6-9月,占全年降雨量的70%。 1.3 排水情况 城市用水按19万人口设计,居民最高日用水量按210 (d cap L )。生活污水排水量按给水的90%计算。街坊污水排入区域排水管网,区域排水管网再将接入城市的排水管道系统,最后到污水处理厂进行处理。 2 排水管段设计流量计算 2.1 污水管道的布置 2.1.1 地形坡度 地势由西南方向东北方逐渐降低,但总体变化趋势不大。 2.1.2 河流流向 该城市沿市区南部有一条由北至南流向的河流,综合地势原因,污水厂设在地势较低处。

水力计算公式选用

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22**=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852 .1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数

其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4.公式的适用范围:

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计 算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51 .27.3lg( 21 λ λ +?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

雨水管网设计说明

5 雨水管网设计说明 5.1 雨水量计算 (1)暴雨强度公式 我国常用的暴雨强度公式为:() ()n b t P c A q ++=lg 11671……………………(式5—1) 式中 q —— 设计暴雨强度(L/s ·ha ) P —— 设计重现期(a ) t —— 降雨历时(min ) A1、c 、b 、n —— 地方参数,根据统计方法计算确定。 根据所处地区分别选用不同的暴雨强度公式,经过查表的本设计地区福建福安的暴雨强度公式为:() ()688.0409.8lg 536.01072.2060++=t P q ………………………………(式5—2) 重现期:一般地区重现期为0.5~3年,重要地区3~5年,本设计地区取值为3年 降雨历时:21mt t t +=………………………………………………………(式5—3) .(min)602i i v L t ∑=…………………………………………………(式5—4) 式中 t —— 设计降雨历时(min ) t1 —— 地面集水时间(min ),取5~15min ,本设计地区取值为10 min t2 —— 管渠内雨水流行时间(min ) m —— 折减系数,暗管取2,明渠取1.2,本设计都为暗管,即取值为2 L —— 设计断面上游各管道的长度(m ) V —— 上游各管道中的设计流速(m/s ) (2)径流系数ψ计算 通常根据排水流域内各类地面的面积数或所占比例,采用加权平均法计算出该排水流域的平均径流系数。也可根据规划的地区类别,采用区域综合径流系数,本设计地区采用区域综合径流系数,并取值为0.5。

(3)实际地面径流量即雨水管渠设计流量Q 计算 按推理公式:qF Q ψ=………………………………………………(式5—5) 式中 Q ——计算汇水面积的设计最大径流量,亦即要排除的雨水设计流量(L/S ) q ——雨峰时段内的平均设计暴雨强度[(L/S) /2hm ] ψ——径流系数 F ——计算汇水面积(2hm ) 把(式5-2)、(式5-3)和ψ=0.5代入(式5-5)得 ∑∈+++=i k k i i F t Q 5.0)409.8210()3lg 536.01(072.2060688.02…………………………………(式5—6) 式中Q i ——管段的设计流量(L/s ) t2i ——管段i 的计算流经时间(min ) Fk ——管段i 上游各集水面积(2hm ) 5.2 雨水管网定线(分散排放和集中排放相结合) (1)充分利用地形,就近排入水体。 雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。在每一排水流域内,结合建筑物及雨水口分布,充分利用各排水流域内的自然地形,布置管道,使雨水以最短距离靠重力流就近排入水体。 (2)出水口布置: 当管道将雨水排入池塘或小河时,水位变化小,出水口构造简单,宜采用分散出水口。当河流等水体的水位变化很大,管道的出水口离常水位较远时,出水口的构造就复杂,因而造价较高,此时宜采用集中出水口式布置形式。一般按主干管、干管、支管的顺序进行布置各流域的主干管、干管和支管的具体位置见《雨水计算图》。 5.3 划分设计管段(管材采用钢筋混凝土) 设计管段:把两个检查井之间流量不变且预计管径和坡度也不变的管段定为设计管段。划分设计管段方法:只是估计可以采用同样管径和坡度的连续管段,就可以划作一个设计管段。根据管道的平面布置图,凡有集中流量流入,有旁侧管接入的检查井均可作为设计管段的起止点。 设计管段检查井从上游往下游依次编号,具体位置见《雨水计算图》。

长距离输水管道水力计算公式的选用

长距离输水管道水力计算公式的选用 王雪原黄慎勇付忠志 (中国市政工程西南设计研究院,成都610081) 摘要就长距离输水管道的材质、管道口径和衬里等管道特性因素,结合各设计规范的推荐公式进行了对比分析,并根据各水力计算公式的适用范围及限制条件,指出不同管道特性条件可能对水力计算结果造成的影响,建议在大口径长距离输水管道设计中采用对三个紊流区域均适用的柯列勃洛克公式替代海澄一威廉公式,以期得到较为安全合理的设计成果。 关键词长距离输水管道水力计算公式适用范围管道特性条件 Hydrauliccalculationoflongdistancewatersupplypipeline WangXue—yuan,HuangShen—yong,FuZhong—zhi(South-WestMunicipalEngineeringDesign&Research[nstituteofChina,Chengdu610081,China)Abstract:Theformulaeofhydrauliccalculationrecommendedbythedesigncodewerecom—paredforlongdistancewatersupplypipelineswithsubstantiveconditionofdifferentsize,pipe-makingandliningmaterials,andthesuitabilityandlimitationofeachformulaarediscussed.Thepotentialeffectofpipefeatureonhydrauliccalculationhasbeen indicatedanditwasrecommendedthattheColebrookequation,whichissuitableintri—turbulentzonescouldbebesttoreplacetheHazen—Williamsformulatogetbetterresultofrationaldesignwithhighersafety. Keywords:Longdistancewatersupplypipeline;Formulaforhydrauliccalculation;Suitablerange;Pipelinefeature 0前言 城市供水工程中,长距离管道输水是一种常见 输水形式,其输水的水头损失主要为沿程水头损失。 由于水资源的日益缺乏,越来越多的城市已经不得 不进行长距离输水,长距离输水管道在城市供水工 程的建设总投资中所占的比重也越来越大,因此对 长距离输水管道的合理设计显得更加重要,而对管 道进行准确的水力计算则是确定方案可行性和经济 性的一个十分重要的步骤。 1常用的水力计算公式 供水工程中的管道水力计算一般按照均匀流计 算,目前工程设计中普遍采用的管道水力计算公式有: 达西(Darcy)公式: 铲A吉蓦32给水排水V01.32No.102006(1) 谢才(Chezy)公式: u—C胡万(2)海澄一威廉(Hazen—Williams)公式: 铲糌 式中^f——沿程损失,m; A——沿程阻力系数; Z——管段长度,m; d——管道计算内径,m; g——重力加速度,m/s2; 卜谢才系数; i——水力坡降; R——水力半径,m; Q一管道流量,m3s; r流速,m/s; (3)  万方数据

雨水管渠的设计

(三)雨水管渠的设计 1、相关概念 1)平均径流系数ψ 径流系数是指流到管渠中的雨水量和降落到地面上的雨水量的比值。 不同地面具有不同的径流系数,见P112表2-2-4 将该地段所有地面的径流系数加权平均,即得ψ 如:汇水区面积:Ⅰ、4hm2;Ⅱ、3 hm2;Ⅲ、4 hm2;Ⅳ、5 hm2 总F=16(ha ) 其中:绿地10 hm2 ;建筑1 hm2 ;块石道路1 hm2;裸地4 hm2,求ψ 查表P112表2-2-4 1630 .0460.0190.0115.010?+?+?+?=ψ≈0.26 2)降雨强度q 是指单位时间内的降雨量。 广州523.0)lg 662.01(1195t p q +?= ①P (重现期)的确定 重现期P 是指某一强度的降雨重复出现所需年限。 P ↑,q ↓,设计要求高。 园林中P 为1~3年(重点地段:出入口,广场可选高些)天安门是按P=10年设计的。 ②降雨历时t 的确定 公式中降雨历时t 应等于集水时间(t)→是指集水区域内最远点雨水流到管道中所需时间(此时该点汇集了全部集水区域的雨水)。 集水时间t 由两部分组成:地面集水时间t1,雨水在管段中流行时间t2。 △ t1一般采用5-15分钟,园林中一般采用10分钟。 △ )(6012分钟?∑=v l t l —上游各管段长度(m) v —上游各管段设计流速(m/s ) t=t1+mt2 t2前的系数m (延缓系数) 管道m 取2,明渠m 取1.2 2、计算步骤 1)在绘有规划总图的地形图上安排管渠系统,并划分汇水区(按原地形分水线划分,并使面积相对均匀),雨水口及各种管井按规范设置(小范围内可将管井口和雨水口综合考虑)。 标出各段管线长度及各汇水区面积。 2)求平均径流系数ψ 本题为0.22 3)求降雨强度q

风路系统水力计算

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失 j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与 j P ?进行叠加时所采用的计算方法 计算方法名称 基本关系式 备注 单位管长压力损失法(比摩阻法) 管段的全压损失 ) (2 222j m e j m P l p V l V d P l P P ?+?=+= ?+?=?ρζρ λ P ?——管段全压损失,Pa ; m p ?——单位管长沿程摩擦阻力,Pa/m 用于通风、空 调的送(回)风和排风系统的压力损失计算,是最常用的方法 当量长度法 2222ρ ζρ λV V d l e e = 风管配件的当量长度 λζ e e d l = 常见用静压 复得法计算高速风管或低速风管系统的压力损失。提供各类常用风管配

水力计算公式选用(精选课件)

水力计算公式选用 长距离输水管道水力计算公 式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DA RCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄—威廉(HAZEN —W ILIA MS )公式: 87.4852.1852.167.10d C l Q h h f ***= (3) 式中hf —-------—---沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-———-管道计算内径,m g ——--重力加速度,m/s 2 C -—--谢才系数 i --—-水力坡降; R ―――水力半径,m

Q ―――管道流量m/s 2 v —-—-流速 m/s C n —---海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。...文档交流 仅供参考... 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:...文档交流 仅供参考... 表1 各规范推荐采用的水力计算公式 序 号 推荐公式 参数(参数计算公式) 适用管道 规范名称 1 达西公式 λ(舍维列夫公式) 旧钢管,旧铸铁管 《室外给 水设计规 范》GBJ14-87,已 废止. 2 谢才公式 C (漫宁公式,巴浦洛夫斯基公式) 混凝土管和钢筋混凝土管 3 达西公式 λ 塑料管 《室外给水设计规 4 谢才公式 C(漫宁公式,巴浦洛混凝土管渠及采用

第二章 排水管渠水力计算

第二章:排水管渠水力计算 污水灌渠水力设计原则:一,不溢流;二,不淤积;三,不冲刷管壁;四,要注意通风 管渠水力计算的均匀流基本公式: 流量公式为: ν?=A Q 流速公式为: 21 32n 1I R =ν 式中:Q ——设计臂段的设计流量,m3/s ; A-设计管段的过水断面面积,2m ; v ——设计管段过水断面的平均流速,m /s ; R ——水力半径(过水断面面积与湿周的比值).m ; I ——水力坡度(即水面坡度,也等于管底坡度i ); n-管壁粗糙系数,混凝土和钢筋混凝土管渠的管壁粗糙系数值一般采用0.014 水力学算图

设计充满度:在设计流量下,管渠中的水深h 和管径D (或梁高H )的比值称为设计充满度。 设计流速 概念:设计流速是管渠中流量到达设计流量时的水流速度。 《规范》规定:污水管渠的最小设计流速为0.6m/s ;明渠的最小设汁流速为0.4 m/s 。最大设计流速和管道的材料有关,一般情况下,金属管道内的最大设计流速为10 m/s ;非金属管道内的最大设计流速为5 m/s ;明渠最大设计流速可根据《规范》选取。 最小管径: 最小设计坡度和不计算管段的最小设计坡度 坡度和流速存在着一定的关系(2132n 1I R =ν),最小设计流速相应的坡度就是最小设计坡度。 因设计流量很小而采用最小管径的设计管段称为不计算管段。由于这种管段不进行水力计算,没有设计流速,因此就直接规定管道的最小设计坡度。 覆土厚度: 概念:管道的覆土厚度是指管顶的外壁到地面的距离。 《规范》规定:管顶最小覆土厚度在车行道下宜为0.7m ;人行道下0.6m 。在保证管道不会受外部荷重损坏时,最小覆土厚度可适当减小。 管段的衔接方法: (1)管顶平接:是指在水力计算中,使上游管段和下游管段的管顶内壁的高程相同 (2)水面平接:是指在水力计算中,使上游管段和下游管段的水面高程相同。 (3)管底平接:是指在水力计算中,要使上游管段和下游管段的管底内壁的高程相同。

相关主题
文本预览
相关文档 最新文档