当前位置:文档之家› 发热量计算

发热量计算

发热量计算
发热量计算

(2)煤的各种发热量名称的含义

a.煤的弹筒发热量(Qb)

煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25C)。

由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热化学反应。如:煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮逸出,而在弹筒中燃烧时却生成N2O5或NO2等氮氧化合物。这些氮氧化合物溶于弹筒税种生成硝酸,这一化学反应是放热反应。另外,煤中可燃硫在空气中燃烧时生成SO2气体逸出,而在弹筒中燃烧时却氧化成SO3,SO3溶于弹筒水中生成硫酸。SO2、SO3,以及H2SO4溶于水生成硫酸水化物都是放热反应。所以,煤的弹筒发热量要高于煤在空气中、工业锅炉中燃烧是实际产生的热量。为此,实际中要把弹筒发热量折算成符合煤在空气中燃烧的发热量。

b.煤的高位发热量(Qgr)

煤的高位发热量,即煤在空气中大气压条件下燃烧后所产生的热量。实际上是由实验室中测得的煤的弹筒发热量减去硫酸和硝酸生成热后得到的热量。

应该指出的是,煤的弹筒发热量是在恒容(弹筒内煤样燃烧室容积不变)条件下测得的,所以又叫恒容弹筒发热量。由恒容弹筒发热量折算出来的高位发热量又称为恒容高位发热量。而煤在空气中大气

压下燃烧的条件湿恒压的(大气压不变),其高位发热量湿恒压高位发热量。恒容高位发热量和恒压高位发热量两者之间是有差别的。一般恒容高位发热量比恒压高位发热量低8.4~20.9J/g,实际中当要求精度不高时,一般不予校正。

c.煤的低位发热量(Qnet)

煤的低位发热量,是指煤在空气中大气压条件下燃烧后产生的热量,扣除煤中水分(煤中有机质中的氢燃烧后生成的氧化水,以及煤中的游离水和化合水)的汽化热(蒸发热),剩下的实际可以使用的热量。

同样,实际上由恒容高位发热量算出的低位发热量,也叫恒容低位发热量,它与在空气中大气压条件下燃烧时的恒压低位热量之间也有较小的差别。

d.煤的恒湿无灰基高位发热量(Qmaf)

恒湿,是指温度30C,相对湿度96%时,测得的煤样的水分(或叫最高内在水分)。煤的恒湿无灰基高位发热量,实际中是不存在的,是指煤在恒湿条件下测得的恒容高位发热量,除去灰分影响后算出来的发热量。

恒湿无灰基高位发热量是低煤化度煤分类的一个指标。

(3)煤的弹筒发热量的测试要点见GB213-87。

(4)煤的高位发热量计算

煤的高位发热量计算公式为:

Qgr,ad=Qb,ad-95Sb,ad-aQb,ad

式中:

Qgr,ad——分析煤样的高位发热量,J/g;

Qb,ad——分析煤样的弹筒发热量,J/g;

Sb,ad——由弹筒洗液测得的煤的硫含量,%;

95——煤中每1%(0.01g)硫的校正值,J/g;

a——硝酸校正系数。Qb,ad≤16700J/g,a=0.001

16700J/g

Qb,ad>25100J/g ,a=0.0016

当Qb,ad〉16700J/g,

或者12500J/g

可用St,ad代替Sb,ad。

(5)煤的低位发热量的计算

Qnet,ad=Qgr,ad-0.206Had-0.023Mad

式中:

Qnet,ad——分析煤样的低位发热量,J/g;

Qgr,ad——分析煤样的高位发热量,J/g;

Had——分析煤样氢含量,%;

Mad——分析煤样水分,%。

(6)煤的各种基准发热量及其换算

a.煤的各种基准得发热量

如上所述,煤的发热量有弹筒发热量、高位发热量和低位发

热量,每一种发热量又有4种基准,所以煤的不同基准的各种发热量有3×4=12种表示方法,即:

弹筒发热量4种表示方式:

Qb,ad——分析基弹筒发热量;

Qb,d——干燥基弹筒发热量;

Qb,ar——收到基弹筒发热量;

Qb,daf——干燥无灰基弹筒发热量。

高位发热量4种表示形式:

Qgr,ad——分析基高位发热量;

Qgr,d——干燥基高位发热量;

Qgr,ar——收到基高位发热量;

Qgr,daf——干燥无灰基高位发热量。

低位发热量4种表示形式:

Qnet,ad——分析基低位发热量;

Qnet,ar——收到基低位发热量;

Qnet,daf——干燥无灰基低位发热量。

b.煤的各种基准的发热量间的换算

煤的各种基准的发热量间的换算公式和煤质分析中各基准的换算公式相似。如:

Qgr,ad=Qgr,ad×(100-Mar)/(100-Mad)

Qgr,d=Qgr,ad×100/(100-Mad)

Qgr,daf=Qgr,ad×100/(100-Mad-Aad-CO2,d)

式中:

CO2,d——分析煤样中碳酸盐矿物质中CO2的含量(%),当CO2含≤2%时,此项可略去不计

Qgr,maf=Qgr,ad×(100-M)/(100-Mad-Aad-Aad×M/100)

式中:

Qgr,maf——恒温无灰基高位发热量;

M——恒湿条件下测得的水分含量,%。

以收到状态单位质量的煤燃烧后产生的热量。

收到基As received basis 已收到状态的煤为基准

应用基ar

空气干燥基Air dried basis 与空气湿度达到平衡状态的煤为基准ad

分析基

干燥基Dry basis 以假想无水状态的煤为基准 d 干基

1、恒容低位发热量

煤或水煤浆(称取水煤浆干燥试样时)的收到基恒容低位发热量按下式计算Qnet,v,ar=(Qgr,v,ad-206Had)×-23Mt式中:

Qnet,v,ar——煤或水煤浆的收到基恒容低位发热量,单位为焦耳每克(J/g);Qgr,v,ad——煤(或水煤浆干燥试样)的空气干燥基恒容高位发热量,单位为焦耳每克(J/g);

Mt——煤的收基全水分或水煤浆的水分(Mcwm)(按GB/T211测定)的质量分数,%;

Mad—煤(或水煤浆干燥试样)的空气干燥基水分(按GB/T212测定)的质量分数,%;

Had——煤(或水煤浆干燥试样)的空气干燥基氢的质量分数(按GB/T476测定),%;

206——对应于空气干燥煤样(或水煤浆干燥试样)中每1%氢的气化热校正值(恒容),单位为焦耳每克(J/g);

23——对应于收到基煤或水煤浆中每1%水分的气化热校正值(恒容),单位为焦耳每克(J/g)。如果称取的是水煤浆试样,其恒容低位发热量按下式计算:Qnet,v,cwm=Qgr,v,cwm-206Hcwm-23Mcwm

式中:

Qnet,V,cwm—水煤浆的恒容低位发热量,单位为焦耳第克(J/g );

Qgr,v,cwm——水煤浆的恒容高位发热量,单位为焦耳第克(J/g); Hcwm——水煤浆氢的质量分数,%;

Mcwm——水煤浆水分的质量分数,%

其余符号意义同前。

2、高位发热量基的换算

煤的各种不同基的高位发热量按下式换算:

Qgr,ar=Qgr,ad×

Qgr,d=Qgr,ad×

Qgr,daf=Qgr,ad×

式中:

Qgr——高位发热量,单位为焦耳每克(J/g);

Aad——空气干燥基煤样灰分的质量分数,%

Ar,ad,d,daf——分别代表收到基、空气干燥基、干燥基和干燥无灰基。

其余符号意义同前。

3、低位发热量基的换算

煤的各种不同水分基的恒容低位发热量按下式换算:

Qnet,v,M=(Qgr,v,ad-206Had)×-23M

式中:

Qnet,v,M—水分为M的煤的恒容低位发热量,单位为焦耳每克(J/g);M——煤样的水分,以质量分数表示,%;

干燥基时M=0;空气干燥基时M=Mad;收到基时,M=Mt

其余符号意义同前。

煤的水分:煤中的水分有外在水分、内在水分、化合水。外在水分是由开采、运输和储存过程中机械作用附着在煤粒表面或大毛细孔中的水,在空气中这类水分会不断蒸发。内在水分是吸附或凝聚在煤粒内部细毛细孔中的水,它的含量与煤化程度有关,在室温条件下不易除去。化合水又叫结晶水,它是与煤中无机化合物结合的水,如硫酸钙(CaSO4〃2H20)、高岭土(Al2O3〃2SiO2〃2H20)等。它们通常要在200

℃以上才能分解析出。

全水分(Mt),是煤中所有内在水分和外在水分的总和,也常用Mar表示。通常规定在8%以下。(收到基水分)空气干燥基水分(Mad),是指煤在空气干燥状态下所含的水分。也可以认为是内在水分。(分析基水分)

收到基(MAR):以实际收到的煤为基准(含水分、灰分),

又称应用基。

分析基(MAD):以空气干燥状态的煤为基准,表示煤中

各成分的百分数的方法

高低压配电柜发热量计算方法

高低压开关柜、变压器的发热量计算方法 变压器损耗可以在生产厂家技术资料上查到(铜耗加铁耗);高压开关柜损耗按每台200W估算;高压电容器柜损耗按3W/kvar 估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算。一条n芯电缆损耗功率为:Pr=(nI2r)/s,其中I 为一条电缆的计算负荷电流(A),r为电缆运行时平均温度为摄氏50度时电缆芯电阻率(Ωmm2/m,铜芯为0.0193,铝芯为0.0316),S为电缆芯截面(mm2);计算多根电缆损耗功率和时,电流I要考虑同期系数。 上面公式中的"2"均为上标,平方。 一、如果变压器无资料可查,可按变压器容量的1~1.5%左右估算; 二、高、低压屏的单台损耗取值200~300W,指标稍高(尤其是高压柜); 三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热。 主要电气设备发热量 电气设备发热量 继电器小型继电器0.2~1W 中型继电器1~3W励磁线圈工作时8~16W 功率继电器8~16W 灯全电压式带变压器灯的W数

带电阻器灯的W数+约10W 控制盘电磁控制盘依据继电器的台数,约300W 程序盘 主回路盘低压控制中心100~500W 高压控制中心100~500W 高压配电盘100~500W 变压器变压器输出kW(1/效率-1) (KW) 电力变换装置半导体盘输出kW(1/效率-1) (KW) 照明灯白炽灯灯W数 放电灯 1.1X灯W数 假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=0.8,根据上述计算损耗的公式,该变压器的损耗为680*(1/0.8-1)=170KW!!! 变压器的热损失计算公式: △Pb=Pbk+0.8Pbd △Pb-变压器的热损失(kW) Pbk-变压器的空载损耗(kW) Pbd-变压器的短路损耗(kW)

煤炭发热量计算公式

煤样中水分的测定 全水(Mt) 挥发分是反应煤化程度的一个指标,而焦渣可以判断煤炭粘接性的好坏,所以煤炭的挥发分和焦渣特征可以估计煤炭的工业分析和加工利用途径! 以收到状态单位质量的煤燃烧后产生的热量。 收到基As received basis 已收到状态的煤为基准ar 空气干燥基Air dried basis 与空气湿度达到平衡状态的煤为基准ad 分析基 干燥基Dry basis 以假想无水状态的煤为基准 d 干基 1、恒容低位发热量 煤或水煤浆(称取水煤浆干燥试样时)的收到基恒容低位发热量按下式计算Qnet,v,ar=(Qgr,v,ad-206Had)×-23Mt式中: Qnet,v,ar——煤或水煤浆的收到基恒容低位发热量,单位为焦耳每克(J/g);Qgr,v,ad——煤(或水煤浆干燥试样)的空气干燥基恒容高位发热量,单位为焦耳每克(J/g); Mt——煤的收基全水分或水煤浆的水分(Mcwm)(按GB/T211测定)的质量分数,%; Mad—煤(或水煤浆干燥试样)的空气干燥基水分(按GB/T212测定)的质量分数,%;

Had——煤(或水煤浆干燥试样)的空气干燥基氢的质量分数(按GB/T476测定),%; 206——对应于空气干燥煤样(或水煤浆干燥试样)中每1%氢的气化热校正值(恒容),单位为焦耳每克(J/g); 23——对应于收到基煤或水煤浆中每1%水分的气化热校正值(恒容),单位为焦耳每克(J/g)。如果称取的是水煤浆试样,其恒容低位发热量按下式计算:Qnet,v,cwm=Qgr,v,cwm-206Hcwm-23Mcwm 式中: Qnet,V,cwm—水煤浆的恒容低位发热量,单位为焦耳第克(J/g ); Qgr,v,cwm——水煤浆的恒容高位发热量,单位为焦耳第克(J/g); Hcwm——水煤浆氢的质量分数,%; Mcwm——水煤浆水分的质量分数,% 其余符号意义同前。 2、低位发热量基的换算 煤的各种不同水分基的恒容低位发热量按下式换算: Qnet,v,M=(Qgr,v,ad-206Had)×-23M 式中: Qnet,v,M—水分为M的煤的恒容低位发热量,单位为焦耳每克(J/g);M——煤样的水分,以质量分数表示,%; 干燥基时M=0;空气干燥基时M=Mad;收到基时,M=Mt 其余符号意义同前。

电气设备发热量确定

几种电气设备的发热量计算 1. 发电机组发热量 发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,另一是发电机组的冷却循环风的漏风所带来的热量。 大、中型发电机组的冷却方式通常采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走。根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃。 发电机机壳的散热量可以按下式计算: w 其中:——发电机机壳的传热系数 w/㎡·℃ ——发电机机壳的面积㎡ ——发电机冷却循环风的平均温度℃ ——室内空气温度℃ 发电机的漏风散热量可以按下式计算: w 其中:——漏风系数,钢盖板取0.3% ——发电机的冷却循环风量m3/h ——空气比热w/kg·℃ ——空气容重取1.2kg/m3 ——发电机漏风温度℃ ——室内空气温度℃ 根据发电机组内部的冷却风温和发电机的表面积,我们不难计算机组壳体的传热量。但漏风热量的计算上却有较大的差异,随着机械制造技术的不断提高,特别是空气冷却器的效率的提高,发电机组的冷却循环风量各个厂商有较大区别。例如按机电设计手册计算,30万KW机组的冷却循环风量约为200m3/h,但多数国际厂商提供的冷却风量约为120m3/h,这就给计算结果产生较大的出入。一般情况下,冷却风温越低,发电机的线圈温度也越低,发电机的效率就越高,但是冷却风温受冷却器的布置尺寸影响,冷却器大,机组的制造难度相对增大,经济性下降,冷却风温不可能无限降低,机组制造厂设计时考虑一个经济区域,达到机组的最大性价比。因此,在实际的设计计算中,应由发电机厂商提供冷却循环风量参数对漏风热量加以核算。 2. 变压器发热量

热负荷及散热量计算

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 式中 'q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t '—供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。 表1-1朝向修正率 《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外) 的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的2%,但总附加率不超过总附加率的15%。 所以,建筑物的总耗热量等于围护结构基本耗热量和朝向修正,风力附加和高度附加耗热

机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41 BTU/小时 = 1 瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。 综述 一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。 工艺设备的散热量计算公式 工艺设备的散热量计算公式为:

恒温恒湿冷量计算

为了确定空调机的容量,以满足机房温度、湿度、洁净度和送风速度的要求(简称四度要求)。必须首先计算机房的热负荷。 机房的热负荷主要来自两个方面: 其一是机房内部产生的热量,它包括: 室内计算机及外部设备的发热量,机房辅助设施和机房设备的发热量(电热、蒸气水温及其它发热体)。这些发热量显热大、潜热小; 照明发热(显热); 工作人员的发热(显热小、潜热大); 由于水分蒸发、凝结产生的热量(潜热)。 其二是机房外部产生的热量,它包括: 传导热。通过建筑物本体侵入的热量,如从墙壁、屋顶、隔断和地面传入机房的热量(显热); 放射热(也称辐射热)。由于太阳照射从玻璃窗直接进入房间的热量(显热);对流产生的热量。从门窗等缝隙侵入的高温室外空气(也包含水蒸气)所产生的热量(显热、潜热); 为了使室内工作人员减少疲劳和有利于人体健康而引入的新鲜空气所产生的热量(包括显热和潜热)。 总之,人体放出的热量、缝隙风侵入的热量和换气带进的热量,不仅使室温升高,也会增加室内的含湿量,因此需要除湿。这部分热负荷称为潜热负荷,而机房内所有设备散发的热量只是室内的温度升高,这种热负荷称为显热负荷。与一般宾馆、办公室、会议室等潜热占有相当大比例所不同的是,计算机、程控机机房内的热负荷是以显热负荷为主。因此对于热负荷状况不同的场合应选用不同类型的空调机。通常用显热比(SFH)作为空调机的重要指标。 概略计算(也称为估算)

在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。 计算机房(包括程控交换机房): 楼层较高时,250~300kcal/m2h 楼层较低时,150~250kcal/m2h(根据设备的密度作适当的增减)办公室(值班室):90kcal/m2h 简易热负荷计算 计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。计算机制造商,一般能提供设备发热量的具体数值。否则根据计算机的耗电量计算其发热量。 a.外部设备发热量计算 Q=860N¢(kcal/h) 式中: N:用电量(kW);¢: 同时使用系数( 0.2~ 0.5);860:功的热当量,即l kW电能全部转化为热能所产生的热量。 b.主机发热量计算Q=860×P×h 1×h 2 ×h 3 式中,P: 总功率(kW); h 1:同时使用系数;

发热量计算公式

发热量计算公式 以煤工业分析结果,创立计算煤炭低位发热量新公式的原理与方法,不再详述。仅就实际应用的计算公式介绍如下: 1.计算烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克 或用卡制表示的计算式: Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC卡/克Qnet.ad——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=34813.7-24.7Vad-382.2Aad-563.0Mad焦/克 或者以卡制表示的计算式: Qnet.ad=8325.46-5.92Vad-91.41Aad-134.63Mad卡/克

如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的 平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Qnet.ad=32346.8-161.5Vad-345.8Aad-360.3Mad+1042.3Had 焦/克 或者用卡制表示的计算式: Qnet.ad=7735.52-38.63Vad-82.70Aad-86.16Mad+249.27Had 卡/克 3.计算褐煤低位发热量新公式 以焦耳表示的计算式: Qnet.ad=31732.9-70.5Vad-321.6Aad-388.4Mad焦/克 或者用卡制表示的计算式: Qnet.ad=7588.69-16.85Vad-76.91Aad-92.88Mad卡/克 4.在水泥生产使用中,计算标准煤耗时,按上述公式计算的分析基低 位发热量(Qnet.ad)用下式换算成应用煤低位发热量(Qnet.ar)后,再 计算标准煤耗。 应用煤低位发热量计算公式 100-Mad100-Mar Qnet.ar=Qnet.ad×──────-23(Mar-Mad×─────) 焦/克 100-Mad100-Mad 煤经挥发分测定后遗留在坩埚内固体残渣的特征。 焦渣特征(CRC)煤炭热分解以后剩余物质的形状。根据不同形状分为8

煤炭发热量计算公式

煤炭发热量计算公式 弹筒发热量高位发热量低位发热量 Qb,ad——分析基弹筒发热量Qgr,ad——分析基高位发热 量 Qnet,ad——分析基低位发热量 Qb,d——干燥基弹筒发热量Qgr,d——干燥基高位发热 量 Qnet,d——干燥基低位发热量 Qb,ar——收到基弹筒发热量Qgr,ar——收到基高位发热 量 Qnet,ar——收到基低位发热量 Qb,daf——干燥无灰基弹筒发热量Qgr,daf——干燥无灰基高 位发热量 Qnet,daf——干燥无灰基低位 发热量 注:分析基又称空气干燥基 实际贸易中一般使用到的发热量:Qgr,ad——分析基高位发热量 Qnet,ad——分析基低位发热量 Qnet,ar——收到基低位发热量 热值转换公式: 1、分析基弹筒发热量与分析基(空气干燥基)高位热值换算: Qgr,ad=Qb,ad-95Sb,ad-aQb,ad Qgr,ad——分析煤样的高位发热量,J/g; Qb,ad——分析煤样的弹筒发热量,J/g; Sb,ad——由弹筒洗液测得的煤的硫含量,%; 95——煤中每1%(0.01g)硫的校正值,J/g; a——硝酸校正系数。 Qb,ad≤16700J/g,a=0.001; 16700J/g25100J/g ,a=0.0016; 当Qb,ad〉16700J/g,或者12500J/g

煤炭发热量计算公式

煤炭发热量计算公式 热值转换公式: 1、分析基弹筒发热量与分析基(空气干燥基)高位热值换算: Qgr,ad=Qb,ad-95Sb,ad-aQb,ad Qgr,ad——分析煤样的高位发热量,J/g; Qb,ad——分析煤样的弹筒发热量,J/g; Sb,ad——由弹筒洗液测得的煤的硫含量,%; 95——煤中每1%()硫的校正值,J/g; a——硝酸校正系数。 Qb,ad≤16700J/g,a=; 16700J/g25100J/g ,a=; 当Qb,ad〉16700J/g,或者12500J/g

2、各种高位发热量基的换算公式: Qgr,ar= Qgr,adx(100- Mt)/(100- Mad),J/g; Qgr,d = Qgr,adx100/(100- Mad),J/g; Qgr,daf= Qgr,adx100/(100- Mad-Aad),J/g; Qgr,ar——收到基高位发热量,J/g; Qgr,d——干燥基高位发热量,J/g; Qgr,daf——干燥无灰基高位发热量,J/g; Mt——全水,% Mad——分析基水分(内水),% Aad——分析基灰分,% 3、低位发热量基的换算公式: Qnet,v,m=( Qgr,v,ad-206Had)x(100-M)/(100-Mad)-23M Qnet,v,m——水分为 M的煤的恒容低位发热量,单位为焦耳每克( J / 9 ) M——煤样的水分,单位为百分数( %) 干燥基时M=0 ,分析基(空气干燥基)时M= Mad,收到基时M= Mt。 4、分析基低位发热量(Qnet,ad) 烟煤 以焦耳表示的计算方式: Qnet,ad=焦/克 用卡制表示的计算式: =卡/克 ——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 无烟煤

热焚烧式焚烧炉工艺计算

热焚烧式焚烧炉工艺计算 现将热焚烧式尾气焚烧炉工艺计算有关问题介绍于下供参考。 王遇冬2013.03.26 一、直接焚烧法 由于H2S的毒性比SO2大得多,工艺污染物排放标准规定H2S的排放量比SO2严格得多,即SO2的排放量约为H2S的15倍。 焚烧法是将硫磺回收装置尾气中的H2S以及其他形式的硫化物(SO2除外)全部燃烧生成SO2。燃烧过程可以是纯粹的热反应,也可以是催化反应。焚烧法可以降低尾气的毒性,而总硫量并没有变化。 1.热焚烧法 通常,热焚烧法(热氧化)是在由过剩氧的存在下在480~810℃进行的。大多数热焚烧炉采用自然通风,利用烟道挡板控制空气流率使其在负压下运行,也可以采用强制通风使其在其正压下运行。过剩氧量应根据焚烧炉和燃烧器的结构和性能确定。采用气体燃料燃烧时一般在1.05~1.15甚至更高。 虽然尾气中含有各种可燃物,例如H2S、COS、CO、H2及元素硫甚至烃类化合物,但由于它们的总含量一般不超过尾气量的3%,因而这些可燃物是在分出低的浓度下燃烧的。因此,整个尾气流必须在足以将元素硫和硫化物氧化为SO2的高温下焚烧,即焚烧温度(炉膛烟气温度)应确保尾气中的元素硫和硫化物完全氧化生成SO2。 图1和图2为热焚烧炉的示意图。 图1 不回收热量的焚烧炉图2 回收热量的焚烧炉 回收焚烧炉炉膛出口烟气中热量也是一种提高其经济性能的方法。利用烟气的余热产生饱和蒸汽的压力一般在0.35~3.10MPa,而且还可利用此余热将饱和蒸汽过热。但是,在评价这种方法时还必须考虑烟气排放温度较低时对其在大气中漂流的影响,因而就涉及到对所需烟筒高度的影响。带有余热回收的焚烧炉一般采用强制通风在正压下运行。 确定了尾气加热所需温度后,即可确定热焚烧炉所需的燃料气量、空气量和

发热量的计算方法

一:通过工业分析数据估算发热量的方法 1. 古塔尔公式 ,82gr ad ad ad Q FC V α=+ 式中发热量的单位为cal/g ,α为系数,由daf V 值查出 相应关系见下表: 2. 斯密特公式 ,81003(40 ) g r a d d a f Q V =-- 3. 格美林公式 ,80.8(100)g r a d a d a d Q M A =-- α 为系数,其与ad M 的对应值见下表 4. 切诺波利公式 ,87.4(100) g r a d a d a d Q M A =-- 5. 云涅斯特公式 ,80.8(100) g r a d a d a d Q M A =-- 6. 煤科总院公式 无烟煤公式

* ,100(6)()3(40)gr ad ad ad ad ad Q K K M A V M =-++-- K 与daf H 的对 应关系 式中K 值见下表 若无法获得daf H ,则利用daf V (校)代替 K 与daf V 的对应关系如下 烟煤公式 * ,100(6)()3(40) gr ad ad ad ad ad Q K K M A V M =-++--* (40) ad M -项只在 daf V ≤35%,且ad M >3%时减去,K 值与daf V 及焦渣对应关系如下表

● 褐煤公式 ,100(6)()gr ad ad ad ad Q K K M A V =-++- 其中K 见下表 7. 北京物资学院: ● 无烟煤公式 ,32346.8161.5345.5360.31042.3gr ad ad ad ad ad Q V A M H =---+ ad H 可用矿区以往测定的daf H 的平均值; 如果无法获得daf H 可用下面的公式: ,34813.724.7382.2563.0gr ad ad ad ad Q V A M =--- ● 褐煤公式 ,31732.970.5321.6388.4gr ad ad ad ad Q V A M =--- 二:利用元素分析计算发热量的方法 , 4.19(873002626)ar gr ar ar ar ar Q C H S O =++- 锅炉原理:范从振等 ,3391031109()25.1ar net ar ar ar ar ar Q C H O S M =+--- 门捷列夫经验公式 三:利用量热计测定煤的发热量 煤的各种发热量名称的含义 a. 煤的弹筒发热量(b Q ) 煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25℃)。 由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热化学反应。如:煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮逸出,而在弹筒中燃烧时却生成N 2O 5或NO 2等氮氧化合物。这些氮氧化合物溶于弹筒税种生成硝酸,这一化学反应是放热反应。另外,煤中可燃硫在空气中燃烧时生成SO 2气体逸出,而在

电气设备发热量的估算及计算方法

电气设备发热量的估算及计算 方法 高压柜、低压柜、变压器的发热量计算方法 变压器损耗可以在生产厂家技术资料上查到(铜耗加铁耗);高压开关柜损耗按每台200W估算;高压电 容器柜损耗按3W/kvar估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算。 一条n芯电缆损耗功率为:Pr=(nl2r)/s,其中I为一条电缆的计算负荷电流(A),r为电缆运行时平均温度为摄氏50度时电缆芯电阻率(Q mm2/m,铜芯为0.0193,铝芯为0.0316 ) , S为电缆芯截面(mm2 );计算多根电缆损耗功率和时,电流I要考虑同期系数。 上面公式中的"2"均为上标,平方。 一、如果变压器无资料可查,可按变压器容量的1?1.5%左右估算; 二、高、低压屏的单台损耗取值200?300W,指标稍高(尤其是高压柜); 三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热。 主要电气设备发热量 电气设备发热量 继电器小型继电器0.2?1W 中型继电器1?3W励磁线圈工作时8?16W 功率继电器8~16W 灯全电压式带变压器灯的W数 带电阻器灯的W数+约10W 控制盘电磁控制盘依据继电器的台数,约300W

程序盘 主回路盘低压控制中心100~500W 高压控制中心100~500W 高压配电盘100~500W 变压器变压器输出kW(1 /效率-1)(KW) 电力变换装置半导体盘输出kW(1 /效率-1)(KW) 照明灯白炽灯灯W数 放电灯1.1X灯W数 假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=0.8,根据上述计算损耗的公式,该变压器的损耗为680* (1/0.8-1)=170KW!!! 变压器的热损失计算公式: APb=Pbk+0.8Pbd APb-变压器的热损失(kW) Pbk-变压器的空载损耗(kW) Pbd-变压器的短路损耗(kW)

电力负荷计算

电力负荷计算 (2011-10-27 11:11:24) 转载▼ 分类:电力知识 标签: 杂谈 电力负荷计算 7.2.1基本概念 (1)额定功率( P n):电气设备的额定功率是其铭牌标称功率,是设备在额定条件(额 定电压和适当的绝缘材料等)下的允许输出功率,设备在此功率下长期运行时温升不会超出规定的允许值。 (2)设备容量(P e):设备容量也称设备功率、安装容量或安装功率,它与用电设备的额定功率是两个不同的概念,两者在数值上可能相等,有可能不等。设备安装功率是指设备在统一的标准工作制下的功率,当铭牌上标注的暂载率与标准暂载率不相等时,需要把铭牌标称的额定功率换算成标准暂载率条件下的功率。 (3)电气设备的工作制与暂载率: 电气设备的工作制分为连续、短时和断续三种。 ①连续工作制:又称连续运行工作制或长期工作制。是指电气设备在规定的环境温度下 运行,能够达到稳定的温升,但设备的任何部分的温度和温升均不超过允许值 ②短时工作制:即短时运行工作制,是指电气设备的运行时间短而停歇时间长,且在工 作时间内的发热量不足以达到稳定的温升,而在停歇时间内能够冷却到环境温度。 ③断续工作制:即反复短时工作制,是指电气设备以断续方式反复周期性的进行工作, 工作时间(t g)与停歇时间(t r)交替重复进行。短时断续周期性工作的电气设备的特性用暂载率表征。 ④暂载率:暂载率用以表征断续工作制电气设备的工作特性,暂载率定义为 ε= = 国家标准规定一个工作周期(t g+t r)为10min。起重专用电动机的标准暂载率有15%、25%、40%、60%四种;电焊设备的标准暂载率有50%、65%、75%、100%四种。 7.2.2负荷计算的内容和意义 负荷计算是供配电系统设计的基础,一般需要计算设备容量、有功功率、无功功率、视在功率、计算电流,一级负荷、二级负荷、季节性负荷、消防负荷、尖峰负荷电流等。 (1)计算负荷:也称计算容量或最大需要负荷,它是个假定的等效的持续性负荷,其热效应与同一时间内实际的不一定恒稳的负荷所产生的最大热效应相等。在配电设计中,通常采用能让中小截面导体达到稳定温升的时间段(30min)的最大平均负荷作为按发热条件选择配电变压器、导体及相关电器的依据,并用来计算电压损失和功率消耗。在工程上为方便计,也可作为电能消耗量及无功功率补偿的计算依据。计算用的单位的各类总负荷也是确定供电电压等级也确定合理的配电系统的基础和依据。 (2)一级、二级负荷及消防负荷:用以确定变压器的台数和容量、备用电源或应急电源的形式、容量及配电系统的形式等。 (3)季节性负荷:从经济运行条件出发,用以考虑变压器的台数和容量。 (4)尖峰电流:也叫冲击电流,是指单台或多台冲击性负荷设备在运行过程中,持续时间在ls左右的最大负荷电流。一般用设备启动电流的周期分量作为计算电压损失、电压波动、电压下降,以及选择校验保护器件等的依据。在校验瞬动元件时,还应考虑起动电流的非周期分量。大型冲击性电气设备的有功、无功尖峰电流是研究供配电系统稳定性的基础。

煤的发热量及换算

煤的发热量及换算 煤的发热量,又称为煤的热值,即单位质量的煤完全燃烧所发出的热量。煤的发热量是煤按热值计价的基础指标。煤作为动力燃料,主要是利用煤的发热量,发热量愈高,其经济价值愈大。同时发热量也是计算热平衡、热效率和煤耗的依据, 以及锅炉设计的参数。 1.4 ,相 1J=1N×0J 1MJ=1000KJ 焦耳时国际标准化组织(ISO)所采用的热量单位,也是我国1984年颁布的,1986年7月1日实施的法定计量热量的单位。煤的热量表示单位: J/g、KJ/g、MJ/Kg

卡(cal)是我国建国后长期采用的一种热量单位。1cal是指1g纯水从19.5C 加热到20.5C时所吸收的热量。 欧美一些国家多采用15Ccal,即1g纯水从14.5C加热到15.5C时所吸收的热量。 1cal(20Ccal)=4.1816J 1cal(15Ccal)=4.1855J 还 加 由于cal/g的热值表示因15Ccal或20Ccal等的不同而不同,所以国际贸易和科学交往中,尤其是采用进口苯甲酸(标明其cal/g)作为热量计的热容量标定时,一定要了解是什么温度(C)或条件下的热值(cal/g),否则将会对燃烧的 热值产生系统偏高或偏低。 为了使热量单位在国内外统一,必须以J取代cal作为煤的发热量表示单位。

(2)煤的各种发热量名称的含义 a.煤的弹筒发热量(Qb) 煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25C)。由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进 SO3, 量又称为恒容高位发热量。而煤在空气中大气压下燃烧的条件湿恒压的(大气压不变),其高位发热量湿恒压高位发热量。恒容高位发热量和恒压高位发热量两者之间是有差别的。一般恒容高位发热量比恒压高位发热量低8.4~ 20.9J/g,实际中当要求精度不高时,一般不予校正。 c.煤的低位发热量(Qnet)

机房散热量计算精品

【关键字】设计、情况、方法、空间、模式、运行、系统、统一、需要、标准、结构、水平、反映、保护、取决于、适应 所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU (British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41BTU/小时=1瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备

的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定 由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98%。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时)=负载功率(瓦特)x无用功比例(由表1查出)x3.41(BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并

热量计算公式

热量计算公式 一、将1吨冷水从15℃加热到55℃所需要的热量计算公式:Q=1000公斤×(55℃-15℃)×1千卡/公斤℃=40000千卡二.各供热水器能耗费用明细(每吨热水能耗费用) 1、电热水器 A.电热水器的电热转换率为95%,每度电产生的最大热量是 Q=860千卡/度×95%=817千卡/度 吨热水的耗电量为 40000千卡÷817千卡/度 =度 C.民用电价为元/度,则 每吨热水费用:元/度×度=元 2、液化石油气 A.液化石油气的热转换率为80%,每公斤最大热量是 Q=12000千卡/公斤×80%=9600千卡/公斤 吨热水的耗液化气量为 40000千卡÷8400千卡/公斤=公斤 C.瓶装液化石油气的价格为元/公斤,则 每吨热水费用:公斤×元/公斤=元 公斤液化石油气相当于立方汽化石油气 管道液化石油气的价格为元/立方,则 每吨热水费用:公斤×立方/公斤×元/立方=元

3、天然气 A.天然气的热转换率为70%,每立方天然气的最大热量是 Q=8500千卡/立方×70%=5950千卡/立方 吨热水的耗液化气量为 40000千卡÷5950千卡/立方=立方 C.民用天然气的价格为元/立方,则 每吨热水费用:立方×元/立方=元 4 、柴油 A.柴油的热转换率为70%,每公斤柴油产生的最大热量是10200千卡/公斤Q=10200千卡/公斤×70%=7140千卡/公斤 吨热水所耗的柴油量为 40000千卡÷7140千卡/公斤=公斤 #柴油为元/公斤,则 每吨热水费用:公斤×元/公斤=元 5、太阳能热水器 A.按长江流域全年平均120天无日照(阴天、下雨),需电加热补充,则 每吨热水费用:( 度×120天)÷365天=度×元/度=元 6、空气能热水器 A.空气热能热水器全年平均热效率是电热水器的3倍,每度电产生的热量为860千卡/度×95%×3=2451千卡/度 吨热水的耗电量为 40000千卡÷2451千卡/度=度

精确总热负荷发热量的计算

精确总热负荷的计算 按照空调设计中负荷计算的要求,精确空调负荷的确定方法如下: 1:机房主要热量的来源 2设备负荷(计算机及机柜热负荷); 2机房照明负荷; 2建筑维护结构负荷; 2补充的新风负荷; 2人员的散热负荷等。 2其他 热负荷分析: (1)计算机设备热负荷: Q1=860xPxη1η2η 3 Kcal/h Q:计算机设备热负荷 P:机房内各种设备总功耗 η1:同时使用系数 η2:利用系数 η3:负荷工作均匀系数 通常,η1η2η3取0.6—0.8之间, 本设计考虑容量变化要求较小,取值为0.7。 (2)照明设备热负荷: Q2=CxP Kcal/h P:照明设备标定输出功率 C:每输出1W放热量Kcal/hw(白炽灯0.86口光灯1)根据国家标准《计算站场地技术要求》要求,机房照度应 大于2001x,其功耗大约为20W/M2以后的计算中,照明 功耗将以20 W/M2为依据计算。 (3)人体热负荷 Q3=PxN Kcal/h N:机房常有人员数量 P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为102Kcal。 (4)围护结构传导热 Q4=KxFx(t1-t2) Kcal/h K:转护结构导热系统普通混凝土为1.4—1.5

F:转护结构面积 t1:机房内内温度℃ t2:机房外的计算温度℃ 在以后的计算中,t1-t2定为10℃计算。 屋顶与地板根据修正系数0.4计算。 (5)新风热负荷计算较为复杂,在此方案中,我们以空调本身的设备余量来平衡,不另外计算。 (6)其他热负荷 除上述热负荷外,在工作中使用的示波器、电烙铁、吸尘 器等也将成为热负荷,由于这些设备功耗小,只粗略根据 其输入功率与热功当量之积计算。Q5=860xP 机房精密空调工程总热负荷的计算 本机房主要的热负荷来源于设备的发热量及维护结构的热负荷。因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积按经验进行测算。 专业机房精密空调的设备选型 1、机房空调制冷负荷的计算方法 精确计算法" 综合考虑计算以下因素产生的负荷,使用这种计算方式对空调负荷选择而言相对比较准确:根据机房所在地区的气候条件,考虑一年中的最大负荷工况。 围护结构的外围负荷(包含墙体传热以及太阳直射所造成的空调负荷) 机房内设备发热量 机房内新风负荷 机房气流组织以及消除局部温差所需要的循环风量。 机房的扩容以及备用需求。 根据机房面积估算法" υ 按照机房内面积空间进行相应估算,在一般小型集中机房中,我们一般按照300W/m2~550W/m2来估算机房内的空调负荷,而每平方米的空调负荷量要根据机房内设备的发热及密集程度确定,一般常规小型机房选取400 W/m2就可以。 设备特别密集的机房需要单独估算机房负荷及气流方式,选取600 W/m2~1000 W/m2。υ " 根据机房设备供电量估算法 υ 按照机房内总配电功率乘以相应系数进行估算,系数大小根据机房设备的种类以及使用频率确定,一般选取0.5~0.9。 2、机房空调的风量计算方法

发热量的计算方法

发热量的计算方法 一:通过工业分析数据估算发热量的方法 1. 古塔尔公式 Q gr , ad =82FC ad +αV ad 式中发热量的单位为cal/g,α为系数,由V daf 值查出 相应关系见下表: 2. 斯密特公式 Q g r , a d =810-03(-4V 0 d a f ) 3. 格美林公式 Q g r , a d =80. 8(10-0M a d -A ) 为系数,其与M ad 的对应值见下表 a d α 4. 切诺波利公式 Q g r , a d =87. 4(10-0M a d -A a d

5. 云涅斯特公式 Q g r , a d =80. 8(10-0M a d -A a d ) 6. 煤科总院公式 无烟煤公式 Q gr , ad =100K -(K +6)(M ad +A ad ) -3V ad (-40M ad ) * K 与H daf 的对 应关系 式中K 值见下表 若无法获得H daf ,则利用V daf (校)代替 K 与V daf 的对应关系如下 烟煤公式 Q gr , ad =100K -(K +6)(M ad +A ad ) -3V ad (-40M ad ) * (-40M ad )

项只在 V daf ≤35%,且M ad >3%时减去,K 值与V daf 及焦渣对应关系如下表 ● 褐煤公式 Q gr , ad =100K -(K +6)(M ad +A ad ) -V ad 其中K 见下表 7. 北京物资学院: ● 无烟煤公式 Q gr , ad =32346.8-161.5V ad -345.5A ad -360.3M ad +1042.3H ad H ad 可用矿区以往测定的H daf 的平均值; 如果无法获得H daf 可用下面的公式: Q gr , ad =34813.7-24.7V ad -382.2A ad -563.0M ad ● 褐煤公式 Q gr , ad =31732.9-70.5V ad -321.6A ad -388.4M ad 二:利用元素分析计算发热量的方法 Q ar , gr =4.19(87C ar +300H ar +26S ar -26O ar ) 锅炉原理:范从振等 Q ar , net =339C ar +1031H ar -109(O ar -S ar ) -25.1M ar 门捷列夫经验公式 三:利用量热计测定煤的发热量 煤的各种发热量名称的含义 a. 煤的弹筒发热量(Q b ) 煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25℃)。 由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热 化学反应。如:煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮 逸出,而在弹筒中燃烧时却生成N 2O 5或NO 2等氮氧化合物。这些氮氧化合物溶于弹筒 税种生成硝酸,这一化学反应是放热反应。另外,煤中可燃硫在空气中燃烧时生成SO 2 气体逸出,而在

相关主题
文本预览
相关文档 最新文档