当前位置:文档之家› 数字信号处理总复习要点

数字信号处理总复习要点

数字信号处理总复习要点
数字信号处理总复习要点

考试题型

第一题填空题(28/30分)第二题判断题(选择题)(10/15分)第三题简答题、证明题(10分)

第四题计算题(40-50分)

总复习要点

绪论

1、 数字信号处理的基本概念

2、 数字信号处理实现的方法:硬件实现、软件实现、软硬件结合实现

3、 数字信号处理系统的方框图,前后两个低通的作用

4、 数字信号处理的优缺点

第一章 离散时间信号与系统

1、 正弦序列的周期性

2、 折叠频率

3、 抗混叠滤波器

4、 原连续信号的谱,对应的采样信号的谱

第二章 离散时间傅立叶变换(DTFT )

1、 z 变换的定义,

2、 DTFT 、IDTFT 的定义(作业)

3、 序列的频谱(幅度谱、相位谱)

4、 序列谱的特点:时域离散、频谱连续,以2π为周期。

5、 DTFT 的性质,见P78表2-3

时移性质、频移性质、指数加权、线性加权、卷积定理 对称性1、对称性2 (共轭对称、共轭反对称)

()[()]()j j n

n X e DTFT x n x n e

ω

ω∞

-=-∞

==

1

()[()]()2j j j n

x n IDTFT X e X e e d πω

ωωπ

ω

π

-==

?

6、 序列的傅立叶变换和模拟信号傅立叶变换之间的关系

(指Xa(j Ω)、Xa(j Ω)、和X(e j ω)三者之间的关系)

模拟频率fs 对应数字频率2π,折叠频率fs/2对应数字频率π。 7、 周期序列的离散傅立叶级数(DFS )

8、 周期序列的傅立叶变换

9、离散时间系统的差分方程、H(z),H(e jw

),h(n)。

第三章 离散傅立叶变换(DFT )

1、 周期序列离散傅立叶级数(DFS)的性质

2、 离散傅立叶变换的定义(N ≥M )

1?()()

a a s k X

j X j jk T

=-∞

Ω=Ω-Ω∑

?()()|j T

X e

Xa

j ω

ω

Ω=

=Ω12()()

j a k X e

X j

j

k T

T

T

ω

ω

π∞

=-∞

=

-∑

21

1()[()]()N j

kn

N

k x n ID FS X k X

k e N

π-===∑

21

[()]()N j kn

N

n D FS x n x

n e π--===∑ ()X

k 22()()

k X k k N

N

ππδω∞

=-∞

=-∑

[()]DTFT x

n 1

1()[()]()N kn

N

k x n ID FT X k X k W N

--===

1

()[()]()N kn

N

n X k DFT x n x n W -===

3、 DFT 的特点:时域离散、频域离散。开辟了频域离散化的道路。

4、 DFT 和z 变换、DTFT 的关系

5、 DFT 的物理意义

6、 DFT 和DFS 的关系,DFT 的隐含周期性

7、 DFT 的性质

时移性质、频移性质、循环卷积定理、 共轭对称性质 8、 线性卷积、循环卷积

9、 频域抽样定理(N ≥M ,否则,频域抽样,时域混叠)

10、用DFT 计算线性卷积(条件、具体步骤)

1

()[()]()N n

n X z Z x n x n z

--===

∑21

1

()[()]()()N N j

kn

kn N

N

n n X k D FT x n x n W

x n e

π---====

=

∑∑1

()[()]()N jw

jw n

n X e

F x n x n e

--===

2/()()k j k N

N z W e

X k X z π-===2/()()

jw

w k N

X k X e

π==1

()()()

N j j k k X e X k e ω

ω

-==Φ∑1

1

11()()

1N

N k

k N z

X z X k N

W z

----=-=

-∑

11、用DFT作谱分析

12、谱分辨率的概念,分辨率越高,F越小。

13、DFT谱分析时的误差来源:混叠现象、栅栏效应、截断效应

截断效应:频谱泄漏、谱间干扰

14、高密度谱、高分辨率谱

第四章快速傅立叶变换

1、DFT的运算量

2、时域抽取基2-FFT算法原理

3、频域抽取基2-FFT算法原理

4、FFT的运算量 N点:复数加法次数、复数乘法次数

5、逆的FFT的算法

6、FFT的软件实现

第五章数字滤波器的基本网络结构

1、数字滤波器的概述、分类:IIR、FIR

2、数字信号处理的三种基本运算单元,运算流图符号

3、IIR:直接Ⅱ型、级联型、并联型画法及各自优缺点

4、FIR: 直接型、级联型、频率采样型画法及各自优缺点

第六章IIR数字滤波器的设计方法

1、数字滤波器的技术指标

2、模拟低通滤波器的设计(归一化的系统函数Ha(p))

3、模拟滤波器的系统函数Ha(s)=Ha(p) 当p=s/Ωc

4、模拟高通、带通、带阻滤波器的设计(频率转换)

5、 冲激响应不变法(优缺点、适用范围)

6、 双线性变换法(优缺点、适用范围)

7、 数字低通滤波器的设计

8、 数字高通、带通、带阻滤波器的设计

第七章 FIR 数字滤波器的设计方法

1、 FIR 数字滤波器线性相位的条件(第一类、第二类线性相位)

2、 窗函数法设计FIR 数字滤波器

思路、加窗的影响(吉布斯现象)、改进的措施、设计的步骤 3、 频域采样法设计FIR 数字滤波器

思路、误差的分析、改进的措施 4、 两种方法各自的优缺点 5、 IIR 和FIR 的比较

变换原理

S和Z的变换关系 Ω和ω的关系 数字化方法 具体设计步骤

z sT

e

=T ω=Ω

1

()N

k a k k

A H s s s ==

-∑

1

1

()1k N

k

s T

k TA H z e

z

-==

-∑

变换原理

S和Z的变换关系 Ω和ω的关系 数字化方法 具体设计步骤

11

2

21

Z 2

1S Z S T Z

S

T

--+-=

=+-21

tan()2

T ωΩ=

1

1

211()()

a Z

S T Z H z H s ---=

+=

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

《数字信号处理》课程研究性学习报告解读

《数字信号处理》课程研究性学习报告 指导教师薛健 时间2014.6

【目的】 (1) 掌握IIR 和FIR 数字滤波器的设计和应用; (2) 掌握多速率信号处理中的基本概念和方法 ; (3) 学会用Matlab 计算小波分解和重建。 (4)了解小波压缩和去噪的基本原理和方法。 【研讨题目】 一、 (1)播放音频信号 yourn.wav ,确定信号的抽样频率,计算信号的频谱,确定噪声信号的频率范围; (2)设计IIR 数字滤波器,滤除音频信号中的噪声。通过实验研究s P ,ΩΩ,s P ,A A 的选择对滤波效果及滤波器阶数的影响,给出滤波器指标选择的基本原则,确定你认为最合适的滤波器指标。 (3)设计FIR 数字滤波器,滤除音频信号中的噪声。与(2)中的IIR 数字滤波器,从滤波效果、幅度响应、相位响应、滤波器阶数等方面进行比较。 【设计步骤】 【仿真结果】

【结果分析】 由频谱知噪声频率大于3800Hz。FIR和IIR都可以实现滤波,但从听觉上讲,人对于听觉不如对图像(视觉)明感,没必要要求线性相位,因此,综合来看选IIR滤波器好一点,因为在同等要求下,IIR滤波器阶数可以做的很低而FIR滤波器阶数太高,自身线性相位的良好特性在此处用处不大。【自主学习内容】 MATLAB滤波器设计 【阅读文献】 老师课件,教材 【发现问题】(专题研讨或相关知识点学习中发现的问题): 过渡带的宽度会影响滤波器阶数N 【问题探究】 通过实验,但过渡带越宽时,N越小,滤波器阶数越低,过渡带越窄反之。这与理论相符合。 【仿真程序】 信号初步处理部分: [x1,Fs,bits] = wavread('yourn.wav'); sound(x1,Fs); y1=fft(x1,1024); f=Fs*(0:511)/1024; figure(1) plot(x1) title('原始语音信号时域图谱'); xlabel('time n'); ylabel('magnitude n'); figure(2) freqz(x1) title('频率响应图') figure(3) subplot(2,1,1); plot(abs(y1(1:512))) title('原始语音信号FFT频谱') subplot(2,1,2); plot(f,abs(y1(1:512))); title(‘原始语音信号频谱') xlabel('Hz'); ylabel('magnitude'); IIR: fp=2500;fs=3500; wp = 2*pi*fp/FS; ws = 2*pi*fs/FS; Rp=1; Rs=15;

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理课程实验报告4

数字信号处理课程实验报告 实验名称FIR数字滤 班级姓名 波器设计 教师姓名实验地点实验日期 一、实验内容 1、设计一个最小阶次的低通FIR数字滤波器,性能指标为:通带0Hz~1500Hz,阻带截 止频率2000Hz,通带波动不大于1%,阻带波动不大于1%,采样频率为8000Hz; 2、用一个仿真信号来验证滤波器的正确性(注意:要满足幅度要求和线性相位特性)。 二、实验目的 1、利用学习到的数字信号处理知识解决实际问题; 2、了解线性相位滤波器的特殊结构; 3、熟悉FIR数字滤波器的设计方法。 三、涉及实验的相关情况介绍(包含使用软件或实验设备等情况) 计算机一台(安装MATLAB6.5版本或以上版本) 四、实验记录(以下1~5项必须完成,第6项为选择性试做) 1.原理基础 令希望设计的滤波器的传输函数是H(ejw,hd(n)是与其对应的单位脉冲响应。一般情况下,由Hd(ejw)求出hd(n),然后由Z变换求出滤波器的系统函数。但是通常Hd(ejw)在边界频率处有不连续点,这使得hd(n)是无限长的非因果序列,所以实际是不能实现的。为了构造一个长度为N的线性相位滤波器,可以将hd(n)截取一段来近似,并且根据线性相位的特点,需要保证截取后的序列关于(N-1)/2对称。设截取的一段为h(n),则 Wr(n)称为矩形窗函数。 当hd(n的对称中心点取值为(N-1)/2时,就可以保证所设计的滤波器具有线性相位。 2 实验流程

1.信号的谱分析 2.信号的采样 3.信号的恢复 3源程序代码 clc; clear all; close all; fs=700;%采样频率 f=[30 40];%截止频率 a=[1 0]; dev=[0.01 0.1]; % dev纹波 [n,fo,ao,w]=remezord(f,a,dev,fs);%n滤波器阶数fo过渡带起止频率ao频带内幅度————firpmord b=remez(n,fo,ao,w);%firpm b=b.*blackman(length(b))'; b=b; a=1; figure(1) % [H,W]=freqz(b,1,1024,Fs); % plot(W,20*log10(abs(H))); freqz(b,1,1024,fs);grid title('滤波器') grid %%%%%%%%%%%%%%%% fc=28; fcl1=50; fcl2=100; fcl3=150; N=1024; n=1:N; % x=2*cos(2*pi*fc/fs*n)+j*2*sin(2*pi*fc/fs*n)+cos(2*pi*fcl/fs*n)+j*sin(2*pi*fcl/fs*n)+1*r and(1,N); xc=2*cos(2*pi*fc/fs*n); x=2*cos(2*pi*fc/fs*n)+2*cos(2*pi*fcl1/fs*n)+2*cos(2*pi*fcl2/fs*n)+0.1*rand(1,N); % x=2*cos(2*pi*fc/fs*n); xfft=abs(fft(x,N));

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 (10级) 编号:40023600 英文名称:Digital Signal Processing 适用专业:通信工程;电子信息工程 责任教学单位:电子工程系通信工程教研室 总学时:56 学分:3.5 考核形式:考试 课程类别:专业基础课 修读方式:必修 教学目的:数字信号处理是通信工程、电子信息工程专业的一门专业基础课,通过本课程的学习使学生建立数字信号处理的基本概念、掌握数字信号处理的基本理论、基本分析方法和数字滤波器的基本设计方法,具有初步的算法分析和运用MATLAB编程的能力,了解数字信号处理的新方法和新技术。为学习后续专业课程和从事数字信号处理方面的研究工作打下基础。 主要教学内容及要求: 1.绪论 了解数字信号处理的特点,应用领域,发展概况和发展局势。 2.时域离散信号和时域离散系统 了解连续信号、时域离散信号和数字信号的定义和相互关系;掌握序列的表示、典型序列、序列的基本运算;掌握时域离散系统及其性质,掌握时域离散系统的时域分析,掌握采样定理、连续信号与离散信号的频谱关系。 3.时域离散信号和系统的频域分析 掌握序列的傅里叶变换(FT)及其性质;掌握序列的Z变换(ZT) 、Z变换的主要性质;掌握离散系统的频域分析;了解梳状滤波器,最小相位系统。 4.离散傅里叶变换(DFT) 掌握离散傅里叶变换(DFT)的定义,掌握DFT、ZT、FT、DFS之间的关系;掌握DFT的性质;掌握频域采样;掌握DFT的应用、用DFT计算线性卷积、用DFT分析信号频谱。 5.快速傅里叶变换(FFT) 熟悉DFT的计算问题及改进途经;掌握DIT-FFT算法及其编程思想;掌握IDFT的高效算法。 6.数字滤波网络 了解滤波器结构的基本概念与分类;掌握IIR-DF网络结构(直接型,级联型,并联型);掌握FIR-DF网络结构(直接型,线性相位型,级联型,频率采样型,快速卷积型)。 7.无限冲激响应(IIR)数字滤波器设计 熟悉滤波的概念、滤波器的分类及模拟和数字滤波器的技术指标;熟悉模拟滤波器的设计;掌握用冲激响应不变法设计IIR数字滤波器;掌握用双线性变换法设计IIR数字滤波器。 8.有限冲激响应(FIR)数字滤波器设计 熟悉线性相位FIR数字滤波器的特点;掌握FIR数字滤波器的窗函数设计法;掌握FIR数字滤波器的频率抽样设计法;了解FIR数字滤波器的切比雪夫最佳一致逼近设计法。 本课程与其他课程的联系与分工:先修课程:信号与系统,复变函数与积分变换,数字电路;后续课程有:DSP原理及应用,语音信号处理,数字图像处理等。

数字信号处理(吴镇扬)第一章习题解答

第1章 离散时间信号与系统 1. 解:由题意可知 165 w π= 则周期为:22585168 5 N k k w πππ = ?= ?= ?= 其中k 为整数,且满足使N 为最小整数。 2. (1)解:由题意可知 37 w π= 则周期为:2214314337 N k k w πππ= ?=?= ?= (2)解:由题意可知 1211,4 7 w w ππ= = 则 12281814 N k k w πππ= ?= ?=?= 2221411417 N k k w πππ = ?= ?=?= 则所求周期N 为:1N 和2N 的最小公倍数,即为:56 3. 解:(1) n 幅值 (2)

01 24 3 n 幅度 4. 解:由题意得: 123123 8,2,6,102, 2, 2s s s s ππππΩ=Ω=Ω=Ω=Ω>ΩΩ<ΩΩ<Ω 1/4s T = 根据采样定理,只有信号对1()a x t 采样没有频率混叠。 11()() () cos 2(/4) cos 24 cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =-=-==∑ ∑ t 幅度

22()() () cos 6(/4) cos 64 3cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =-=--=-=-∑ ∑ t 幅度 33()() () cos10(/4) cos104 5cos 2 a a n n x n x t t nT t t n n n δπδππ∞ =-∞ ∞ =-∞ =- =-==∑ ∑ t 幅度

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ) 5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n π π π π - ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= }2 3 ,4,7,4,23{0,h(n)*答案:x(n)= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转) 解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+= }{1,4,6,5,2答案:x(n)= 4. 如果输入信号为 ,求下述系统的输出信号。

数字信号处理实验1

clc; clear; M=26;N=32;n=0:M; xa=0:M/2; xb=ceil(M/2)-1:-1:0; xn=[xa,xb]; Xk=fft(xn,512); Xk1=abs(Xk); X32k=fft(xn,32); X32k1=abs(X32k); x32n=ifft(X32k); X16k=X32k(1:2:N); X16k1=abs(X16k); x16n=ifft(X16k,N/2); figure(1); subplot(3,2,1); stem(Xk1); subplot(3,2,2); stem(X32k1); subplot(3,2,3); stem(x32n); subplot(3,2,4); stem(X16k1); subplot(3,2,5); stem(x16n); Lx=41;N=5;M=10; hn=ones(1,N);hn1=[hn zeros(1,Lx-N)]; n=0:Lx-1; xn=cos(pi*n/10)+cos(2*pi*n/5); yn=fftfilt(hn,xn,M); figure(1); subplot(3,1,1); stem(hn1); subplot(3,1,2); stem(xn); subplot(3,1,3); stem(yn);

clc; clear; n=0:31; A=3; y=A*exp((0.8+j*314)*n); subplot(2,1,1); stem(y); Az=[0.7 0.3]; Bz=[1 -0.8 -0.5]; subplot(2,1,2); zplane(Bz,Az);

数字信号处理GUI

西安工业大学北方信息工程学院毕业设计(论文)开题报告 题目:数字信号处理实验教学平台设计 系别光电信息系 专业光电信息工程 班级 B100106 姓名彭牡丹 学号 B10010638 导师稀华 2013年11月20日

1 毕业设计(论文)综述 1.1 题目背景和意义 自 20 世纪 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理技术应运而生并迅速发展,目前已经形成为一门独立且成熟重要的新兴学科。如今已广泛地应用于通信、语音、图像、遥感、雷达、航空航天、自动控制和生物医学[1]等多个领域。特别在教学方面,此课程已普遍成为大学本科电子通信专业必修的主干课和重要的专业基础课,已成为信息化建设不可缺少的环节。 “数字信号处理”课程主要包括离散时间信号及系统、离散傅立叶变换DFT、快速傅立叶变换FFT、数字滤波器设计及实现和数字信号系统的应用等内容,如何帮助学生理解与掌握课程中的基本概念、分析方法以及综合应用能力,是教学所要解决的关键问题,但是该课程理论性强,公式繁琐,需要实验辅助学生理解。因此研究数字信号处理虚拟实验技术能够有效地弥补数字信号处理理论教学的不足,所以本课题需要借助一些软件平台来完成数字信号处理课程中重要的实验内容的仿真分析。 1.2 国内外相关研究状况 对于教学平台设计,现在教学方面有很多研究方法,不同的的科研目标用的是不同的软件平台,国内外也提出了多种研究方法。 例如,在做交互式教学实验平台设计时,周强、张兰、张春明[2]等人运用的是Tornado 软件。此设计以 Tornado 专业课程为例,提出教学网络化的预期目标,结合课程内容的实践性特点,依据分层教学的指导理念,以先进的网站开发技术(Dreamweaver、B/S、ASP 等)为支撑手段,对面向 Tornado 的交互式教学实验平台进行设计与实现。通过小范围测试,基本实现了教师发布教学信息、上机实验、问题互助解答、学生在线自测、师生交互平台等教学功能,并在此基础上凸显出对学生进行分级以提供个性化教学的特色。在研究网络的教学实验平台设计,赵迎新、徐平平、夏桂斌[3]等人用的是无线传感器网络的研究方法。此设计研究并开发了一种应用MSP430微控制器芯片和CC2420无线收发模块架构的无线传感器网络的教学实验平台,设计并实现了系统的总体架构、硬件电路、软件接口与数据汇聚模式,根据实践教学要求,设计了基于该平台系统的基本实验要求与操作步骤,给出了对不同层次实践教学的目标要求,最后给出教学实践效果的评价。还有谢延红[4]提出的开放式 Linux 实验教学平台设计与实现。此研究针对 Linux 实验教学中存在的实验环境不够灵活、实验学习时间受限和无法实时沟通的问题,此研究提出了“个网络平台,条技术路线,

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

相关主题
文本预览
相关文档 最新文档