当前位置:文档之家› 沥青混合料损伤演化的多尺度模拟

沥青混合料损伤演化的多尺度模拟

沥青混合料损伤演化的多尺度模拟
沥青混合料损伤演化的多尺度模拟

晶圆制程的多尺度和多物理场仿真解读

晶圆制程的多尺度和多物理场仿真 中仿科技公司(简称CnTech)是多物理场耦合分析软件COMSOL Multiphysics中国地区的独家代理商。本文基于东京电子股份有限公司(TEL)研发中心模拟晶圆制造工艺的成功故事,向大家介绍COMSOL Multiphysics强大的多物理场耦合计算功能。 半导体晶圆的制造牵涉到大量的工艺,涵盖从米到纳米量级的多尺度和多物理场,经过对能够综合各种模拟环境的工具的寻找,最终定位于COMSOL Multiphysics。 - by Jozef Brcka of the TEL Technology Center (Albany, NY) 简介 对半导体制造过程的最优化设计,是一项艰巨的任务,因为需考虑很多因数对整体的影响。首先,在复杂的等离子环境下处理并加工材料和薄膜;其次,在制造工艺过程中,必须处理好流场和反应气体混合物,这对于静态或高频电磁场,以及中间态介质的耦合而言,都必须得到全面的考虑。以晶圆加工为例,放置晶圆的反应器的特征尺度通常是大于一米,同时还必须考虑到发生于纳米级的分子运动。更进一步地,工艺工程师和设计者感兴趣的时间尺度可从千分之一秒至数个小时。 在过去,由于对基础物理与化学现象未得到彻底的了解,晶圆的制造和工艺设备的设计大部分需依赖经验公式。纵使在各种研究机构中开发出专门的方程来执行模拟,但通常需要使用者精通这些工具,才能顺利地操作,况且这些方程通常也是通过简化几何或经验公式推导出来的。在建模不当的情况,要处理复杂的化学环境、热或电磁场问题,并预测出对工艺过程实际出现的情况,只能不断从错误中尝试,这样不仅耗费了大量的金钱,即使得到原理性的结果也需要相当长的时间。如果能够在数值模拟软件中建立正确的模型,则仅仅需要几天时间即可测试几十个案例,以最快的速度让新工艺上线。 COMSOL Multiphysics是由瑞典的COMSOL公司开发的“全球第一款真正的多物理场耦合分析软件”,作为一个大型有限元计算仿真平台,它可以实现多尺度、多物理场的直接全耦合数值模拟。适用于模拟科学和工程领域的各种物理过程,对任意多物理场得到高度精确的数值仿真。在全球得到了日益广泛的应用,多次被NASA技术杂志评为“本年度最佳上榜产品”。在很多公司的技术革新中表现出强劲的实力。 本文以东京电子股份有限公司(TEL),在美国纽约州Albany的TEL研发中心利用COMSOL Multiphysics成功地仿真晶圆加工工艺来说明这款软件的建模理念和思路。

中小尺度气象学总结word资料16页

第一章中尺度天气系统的特征 1、中尺度气象学:水平尺度: 10-1000km 对象:中尺度环流系统 内容:中尺度环流系统的结构、形成和发展演变规律、机制及其分析预报方法 意义:①许多灾害性天气(如暴雨、大风、冰雹、龙卷等)都是由中小尺度系统造成的。 ②中尺度气象学是甚短期预报和临近预报的理论基础。 (长期>10天,中期3-10天,短期1-3天,甚短期0-12h,临近0-2h) ③中尺度环流系统是大气环流重要成员(大尺度背景场依存条 件) 2、天气系统的尺度划分: (一)经验分类法(经典方法) 小尺度系统(雷暴、龙卷)和大尺度系统(锋面、气旋)中尺度系统(飑线、中气旋等) (二)动力学定义 可利用罗斯贝数(Ro)和弗劳德(Froude)数(Fr)来描述大气的时空尺度。Ro = U/fL (惯性力/柯氏力); Fr=U2/gL(△ρ/ρ)(惯性力/浮力) (三)实用(几何)分类 3、中尺度大气运动的基本特征

(1)尺度:水平尺度在2-2000km之间,时间尺度在几十分钟至几天之间。范围很宽。性质不同。 (2)散度、涡度、垂直速度:取V~10m/s,H~10km,对α,β,γ中尺度W分别为10-1m/s, 100m/s和 101m/s,垂直速度、散度、涡度都比大尺度运动大1到几个量级。 (3)地转偏向力和浮力的作用:中尺度运动中,地转偏向力和浮力的作用都必须考虑。 大尺度运动:地转偏向力重要,浮力可略 小尺度运动:浮力重要,地转偏向力可略 中尺度运动:地转偏向力和浮力都考虑 (4)质量场和风场的适应关系:质量场(气压场)适应风场。 大尺度运动: 风场适应质量场(气压场)。 中尺度运动: 质量场(气压场)适应风场。 第二章地形性中尺度环流 1、中尺度大气环流系统分为:地形性环流系统、自由大气环流系统 2、地形波:一般把气流过山所引起的气流称为地形波。 3、地形波的基本类型: 层状气流(山脉波):山脉上空的平滑浅波 ,风小。 驻涡气流(驻涡):山脉背风面的半永久性涡旋,山顶以上风速大。 波动气流(背风波):山脉背风面的波动气流,风切变大。 转子气流(闭合涡旋):山脉背风波的一种特殊形式,风速有极大值。 4、背风波形成的大气条件:山顶附近有逆温、风的垂直切变较强。

沥青及沥青混合料试验作业指导书讲解

1.适用范围 本指导书适用沥青路面等工程的设计、施工、养护以及质量检查、验收等各个阶段。 2.引用标准 2.1 检测依据: 《公路工程沥青及沥青混合料试验规程》(JTG E20-2011) 2.2 判定依据: 《公路沥青路面施工技术规范》(JTG F40-2004) 3.送样规则 3.1 沥青试验送样 进行沥青常规检验的取样数量为:黏稠沥青或固体沥青不少于4.0kg;液体沥青不少于1L;沥青乳液不少于4L。 进行沥青性质非常规检验及沥青混合料性质试验所需的沥青数量,应根据实际需要确定。 所有需加热的沥青试样必须存放在密封带盖的金属容器中,并在盛样器上(不得在盖上)标出识别标记,如来源、品种、取样日期、地点及取样人。 3.2 沥青混合料试验送样 取样数量应符合下列要求: 试样数量应根据试验目的决定,宜不少于试验用量的2倍。按现行规范规定进行沥青混合料试验的每一组代表性取样如下表。 常用沥青混合料试验项目的样品数量

平行试验应加倍取样。在现场取样直接装入试模成型时,也可等量取样。 取样材料用于仲裁试验时,取样数量除应满足本取样方法规定外,还应多取一份备用样,保留到仲裁结束。 取样后当场试验时,可将必要的项目一并记录在试验记录报告上。此时,试验报告必须包括取样时间、地点、混合料温度、取样数量、取样人等栏目。 取样后转送试验室试验或存放后用于其它项目试验时应附有样品标签,样品标签应记载下列事项: 1、工程名称、拌和厂名称及拌和机型号。 2、沥青混合料种类及摊铺层次、沥青品种、标号、矿料种类、取样时混合料温度及取样位置或用以摊铺的路段桩号等。 3、试样数量及试样单位。 4、取样人、取样日期。 5、取样目的或用途。 4.检测目的 为了确保沥青路面的施工质量,控制沥青及沥青混凝土性能指标特制定本作业指导书。 5.沥青试验 T001 沥青试样准备方法

西电计算机视觉大作业

数字水印技术 一、引言 随着互联网广泛普及的应用,各种各样的数据资源包括文本、图片、音频、视频等放在网络服务器上供用户访问。但是这种网络资源的幵放也带了许多弊端,比如一些用户非法下载、非法拷贝、恶意篡改等,因此数字媒体内容的安全和因特网上的侵权问题成为一个急需解决的问题。数字水印作为一项很有潜力的解决手段,正是在这种情况下应运而生。 数字水印(技术是将一些代表性的标识信息,一般需要经过某种适合的变换,变换后的秘密信息(即数字水印),通过某种方式嵌入数字载体(包括文档、音频、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。在发生产权和内容纠纷时,通过相应的算法可以提取该早已潜入的数字水印,从而验证版权的归属和内容的真伪。 二.算法原理 2.1、灰度图像水印 2.1.1基本原理 处理灰度图像数字水印,采用了LSB(最低有效位)、DCT变换域、DWT变换域三种算法来处理数字水印。在此过程中,处理水印首先将其预处理转化为二值图像,简化算法。 (1)LSB算法原理:最低有效位算法(Least Sig nificant Bit , LSB)是很常见的空间域信息隐藏算法, 该算法就是通过改变图像像素最不重要位来达到嵌入隐秘信息的效果, 该方法隐藏的信息在人的肉眼不能发现的情况下, 其嵌入方法简单、隐藏信息量大、提取方法简单等而获得广泛应用。LSB 信息嵌入过程如下: S′=S+f S ,M 其中,S 和S′分别代表载体信息和嵌入秘密信息后的载密信息;M为待嵌入的秘密信息, 而隐写分析则是从S′中检测出M以至提取M 。 (2)DCT算法原理:DCT 变换在图像压缩中有很多应用,它是JPEG,MPEG 等数据

含能材料力学性能的多尺度模拟系统开发

含能材料力学性能的多尺度模拟系统开发数值模拟是含能材料力学性能研究的重要手段。常用的模拟软件中,分子动力学模拟能够模拟含能材料分子水平相关性质,但由于计算资源的限制,只限于研究尺度小于纳米的微观体系;物质点法能在接近含能材料颗粒的细观尺度上模拟其性质,但该方法还处于起步阶段,应用并不成熟;而有限元方法可以接近工程的宏观尺度上对含能材料的性质进行研究,但有着不能考虑含能材料微观结构的缺点,直接应用效果不佳。近年来,多尺度模拟方法受到广泛关注,这种方法能将各尺度下的性质联系起来,但尚未有成熟的软件,急需开发使用方便的多尺度模拟软件。针对上述问题,设计并实现了基于分步式模拟的含能材料力学性能的多尺度模拟系统,逐级递推地计算含能材料的力学行为。 在系统的微观尺度计算模块,用分子动力学方法求解含能材料的各种性质,包括组分的状态方程和粘弹性的本构关系,这些性质作为参数输入到细观尺度的模拟计算;在系统的细观尺度计算模块,采用物质点法求解含能材料的力学性质,获得其状态方程式和力学性质的本构关系;在系统的宏观尺度计算模块,基于细观尺度的计算结果应用有限元方法计算宏观含能材料力学性能变化。本系统可为研究含能材料压制过程的力学行为提供一种有效的工具。由于微观尺度和宏观尺度的模拟有比较成熟的软件可用,论文重点研究了细观尺度计算模块。利用了模型近似方法,建立了含能材料细观模型;运用Java3D虚拟场景数据动态存储技术,实现了虚拟场景数据的动态存取,解决了模型建立过程中一个场景一旦建立就不能重复使用,只能在下一次建模时按照流程重复原先的创建步骤的问题;采用基于Vis It的模拟数据并行可视化技术,解决了单机环境下由于计算机资源限制,无法对结果进行高性能可视化显示的问题。 测试结果表明,系统能在1s之内做出响应,并不间断运行5×24小时,其响应能力和稳定性等方面均达到设计目标。该系统能够为含能材料压制工艺提供了理论依据,对优化和改进含能材料质量提供一种有效工具。

天气学选择问答题

选择题 1. 在对流层中,通常位温是随高度()。 A 升高的 B 降低的 C 不变的 2. 在温度对数压力图上,锋面逆温的特点是逆温层上界面湿度()下界面湿度。 A 大于 B 小于 C 等于 3. 当等压面图上温度槽落后于高度槽时()。 A 有利于锋生 B 有利于锋消 C 有利于湿度增大 4. 一般南支槽带来充沛的水汽和潜热,遇有北支槽携带冷空气侵入南支扰动,()。 A 有利于气旋发展 B 不能诱生气旋 C 多能诱生气旋 5. 在我国,每一次寒潮过程都是一次()的重建过程。 A 东亚大槽 B 副热带高压 C 南支西风带 6. 夏季影响我国东部沿海地区的副热带高压脊是()的一部分。 A 太平洋高压 B 南亚高压 C 南海高压 7. 副热带高压是一个行星尺度的高压,它是一个()。 A 冷性的深厚系统 B 暖性的深厚系统 C 冷性的浅薄系统 D 暖性的浅薄系统 8. 江淮流域的梅雨期一般是在()。 A 6月中旬到7月中旬 B 5月下旬到7月上旬 C 6月中上旬 9. 在高原天气分析中,常用()来表示气压系统的活动。

A海平面气压场 B 3小时变压 C 24小时变压 D 天气区 10. 造成我国雨带进退过程中的三个突变期的根本原因是()。 A 西风带环流的三次突变 B 东亚大槽位置的三次突变 C 副热带高压脊线位置的三次突变 11. 产生地转偏向力的原因是()。 A 地球的自转和大气的运动 B 气压水平分布不均匀 C 气压垂直分布不均匀 12. 锋附近常存在着大规模的系统性的()。 A 水平运动 B 垂直运动 C 曲线运动 13. 中国的静止锋一般是由()演变而成的。 A 锢囚锋 B 暖锋 C 冷锋 14. 实践表明,()层上的气流对地面的锋面移动有引导作用,故称此气流为引导气流。 A 700百帕和500百帕 B 850百帕和700百帕 C 850百帕和900百帕 15. 地面气旋发展,一般表现为其中心处正涡度随时间()。 A 增大 B 减小 C 不变 16. 夏季,青藏高原相对于四周自由大气是个(),它加强了高原上空大气南侧向北的温度梯度,使南支西风急流强而稳定。 A 热源 B 冷源 17. 冬季在乌拉尔地区有阻塞高压存在时,其下游的环流形势是稳定的,整个东亚处于宽广的()内。 A 大低压槽

废旧沥青混合料的再生利用.

废旧沥青混合料的再生利用 目前,旧料再生已经成为世界性的一个热门课题,从其对沥青旧料的回收再利用,从而达到节约资源、减少环境污染公害、增强公共经济效益的目的。 届时,世界各国广泛地通过沥青路面再生利用研究和试验,在其拌制工艺以及与之配套的各种挖掘、铣刨、破碎、拌和等机具的研制方面,已经形成了一套完整、成熟的沥青路面旧料再生利用技术。 随着沥青路面旧料的成倍急剧增加,加以政府提供相应强大的旧料再生利用研究环境与平台,促使我国在再生的沥青混合料生产技术上也有了突飞猛进的发展,沥青旧料再生技术已然达到了一定成熟阶段。 通过有关资料分析及表明,多数国家采用厂拌热再生方法进行路面沥青旧料的回收利用,设备类型主要有双滚筒式沥青再生搅拌设备和与间歇式沥青混合料搅拌设备相配套的旧料再生设备。 由于我国目前应用最为广泛的是间歇式沥青混合料搅拌设备,日后在中国起主导作用的旧料再生设备应是与间歇式沥青混合料搅拌设备相配套的并设滚筒式旧料再生设备,此方法对原材料要求较低,且能够保障生产出品质较优的合格再生混合料,适合我国目前国情的发展,现就其设备工艺及应用方法浅析如下: 1、间歇式沥青混合料旧料再生搅拌设备工艺流程 间歇式沥青混合料旧料再生搅拌设备是在间歇式沥青混合料搅拌设备的基础上增配了路面沥青旧料破碎、筛分、预热、计量、再生剂添加等设备,为了避免在预热时,旧料中沥青老化变质,用于对旧料加热的预热筒、加热器与生产新集料的沥青混合料的设备有所不同,在加长其燃烧室的同时,旧料的预热滚筒也采用特殊设计,保证加入的沥青旧料经过热烟气进行加热,而隔绝明火直接加热或灼烧旧料。通过温度的严格控制,即保证沥青旧料升高的温度,又能避免加热过程中沥青老化的现象。 预热到一定温度的沥青旧料和再生剂经过准确计量后先投放入搅拌器内进行先期拌和,均匀后再放入加热的新集料进行拌和到一定时间,最后加入新沥青。这种方法可使再生剂、旧料中沥青和新沥青在混合料中均匀分布融合,使旧料中沥青充分再生,恢复原有性能,确保再生沥青混合料的品质。 2、路面沥青旧料的回收利用应注意的问题 2.1 对沥青路面材料的分析 路面沥青旧料的回收利用首先必须要对旧沥青路面进行研究分析,深入了解原路面使用沥青的性能及老化后质量变化情况。 应对采集回来的沥青路面材料分不同年代进行破碎,分开堆放,对破碎好的沥青旧料进行抽提和蒸馏试验,把沥青从沥青旧料中分离出来进行试验,并与新沥青进行性能、成分对比,以确定旧料中沥青的再生方法。通过调和使旧料中的沥青

SJTU多尺度材料模拟与计算

Dislocation and Stacking Fault Name:Wu lingling(user023) Student number:016050910054 1 Calculations of Lattice constant and volume modulus Using molecular dynamics,we can simulate crystals in edge dislocation,screw dislocations and stacking fault, also we can calculate the dislocation strain energy and dislocations. Comparing the method of molecular dynamics calculation values and theoretical, we can analysis its error.Through this experiment, deepen para fault, fault, and the understanding of molecular dynamics simulation. For edge dislocation, strain for per unit length: 20ln 4(1)e e Gb R E r πn =? For a screw dislocation, strain for per unit length: 20ln 4s e Gb R E r π = Molecular dynamics is dislocation of strain energy method: ()/MD dislocated ref E E E L =? In actual crystal structure, the closed normal stacking sequence may be damaged and staggered, which named the stacking fault.Cambium mistake almost do not produce lattice distortion, but it undermines the integrity of the crystal and the normal cyclical, anomalous diffraction effect in the electronic, allowing the energy of the crystal increased, this part of the increased energy is called the stacking fault energy. The mathod using Molecular dynamics to calculation approach stacking fault: SFE = tot ref E E S γ? 2 Results and Analysis 2.1 helical dislocation -91512.1172811518-(-91519.9264975819)7.80921643s E ev =

【CN109948214A】城市多尺度风环境数值模拟方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910179920.7 (22)申请日 2019.03.11 (71)申请人 天津城建大学 地址 300384 天津市西青区津静公路26号 申请人 天津大学 (72)发明人 曾穗平 曾坚 田健  (74)专利代理机构 中科专利商标代理有限责任 公司 11021 代理人 李坤 (51)Int.Cl. G06F 17/50(2006.01) (54)发明名称 城市多尺度风环境数值模拟方法 (57)摘要 本公开提供了一种城市多尺度风环境数值 模拟方法,包括:生成以城市为中心的圆形的城 市地形模型,并通过模型镶嵌将城市建筑群模型 嵌入城市地形模型中,建立广域城市整体模型; 采用布尔减运算提取广域城市整体模型,通过外 圆内方的形式分割广域城市模型并进行模拟;提 取镶嵌局域街区模型,并对边界进行插值,为局 域街区模型提供准确的风环境边界条件并进行 模拟。本公开采用嵌套模型方法可在大尺度的城 市整体模拟中,避免采用不合理的入流边界假 定,直接在城市宏观风场模拟后,为局域街区模 型提供合理的流速边界;同时,由于采用了城市 整体模型采用圆形的边界形式,对不同风速方向 可采用同一套网格,极大地减轻建模及网格多次 划分的工作量。权利要求书2页 说明书8页 附图9页CN 109948214 A 2019.06.28 C N 109948214 A

权 利 要 求 书1/2页CN 109948214 A 1.一种城市多尺度风环境数值模拟方法,包括: 步骤S100:生成以城市为中心的圆形的城市地形模型,并通过模型镶嵌将城市建筑群模型嵌入城市地形模型中,建立待加工的广域城市整体模型; 步骤S200:自步骤S100中通过布尔减运算提取广域城市整体模型,通过外圆内方的形式分割广域城市模型并进行模拟; 步骤S300:自步骤S200中提取镶嵌局域街区模型,并对边界进行插值,为局域街区模型提供准确的风环境边界条件并进行模拟。 2.根据权利要求1所述的城市多尺度风环境数值模拟方法,其中,所述步骤S100包括: 步骤S110:生成以目标城市为中心的圆形的城市地形模型; 步骤S120:为城市建筑群进行建模,生成城市建筑群模型; 步骤S130:将步骤S110生成的圆形的城市地形模型与步骤S120生成的城市建筑群模型进行布尔运算加运算,得到广域城市整体模型。 3.根据权利要求1所述的城市多尺度风环境数值模拟方法,其中,所述步骤S200还包括: 步骤S210:建立高度为5-6H圆台,其中,H为城市建筑最大高度; 步骤S220:进行布尔运算减运算包括:用步骤S210建立的圆台减去城市地形模型和城市建筑群模型; 步骤S230:划定矩形区域,框定城市范围; 步骤S240:将步骤S220和步骤S230得到的结果进行布尔运算,通过以外圆内方的形式分割的广域城市整体模型; 步骤S250:对步骤S240分割后的广域城市整体模型进行模拟。 4.根据权利要求1所述的城市多尺度风环境数值模拟方法,其中,所述步骤S300包括: 步骤S310:定义局域街区模型的计算边界; 步骤S320:计算城市整体模型中的插值,并将插值镶嵌到局域街区模型边界中; 步骤S330:利用已插值好的边界条件,设置模拟条件,对局域街区模型进行数值模拟。 5.根据权利要求2所述的城市多尺度风环境数值模拟方法,其中,所述步骤S200还包括: 步骤S260:对步骤S250得到的广域城市整体模型进行网格划分。 6.根据权利要求3所述的城市多尺度风环境数值模拟方法,其中,所述步骤S300还包括: 步骤S340:对步骤S330得到的局域街区模型进行网格划分。 7.根据权利要求2所述的城市多尺度风环境数值模拟方法,其中,所述步骤S110中生成以目标城市为中心的圆形的城市地形模型,还包括: 步骤S111:建立能够将目标城市包括在内的最小圆周; 步骤S112:将步骤S111得到的最小圆周的面积乘以最大阻塞率倒数,得到与步骤S111中的最小圆周同心的圆周面积,作为城市地形模型计算平面范围;其中,所述最大阻塞率小于5%。 8.根据权利要求3所述的城市多尺度风环境数值模拟方法,其中,所述步骤S250还包括: 2

公路工程沥青及沥青混合料试验规程完整

公路工程沥青及沥青混合料试验规程 2术语 2.1.1沥青的密度 沥青在规定温度下单位体积所具有的质量,以g/cm 3计。 2.1.2沥青的相对密度 在同一温度下,沥青质量与同体积的水质量之比值,无量纲。 2.1.3针人度 在规定鍵和时间内,附加一定质量的标准针垂直贯入沥的深度,以 0.1mm 计。 2.1.4针人度指数 沥青结合料的温度感应性指标,反映针入度随温度而变化的程度,由不同温度的针入度按规定方法计算得到,无量纲。 2.1.5延度 规定形态的沥青试样,在规定温度下以一定速度受拉伸至断开时的长度,以cm计。 2.1.6软化点(环球法) 沥青试样在规定尺寸的金属环内,上置规定尺寸和质量的钢球,放于水或甘油中,以规定的速度加热,至钢球下沉达规定距离时的温度,以C 计。 2.1.7沥青的溶解度 沥青试样在规定溶剂中可溶物的含量,以质量百分率表示。 2.1.8蒸发损失 沥青试样在163C温度条件下加热并保持5h后质量的损失,以百分率表示。 2.1.9闪点

沥青试样在规定的盛样器内按规定的升温速度受热时所蒸发的气体以规定的方法与试焰接触,初次发生一瞬即灭的火焰时的温度,以C计。盛样器对黏稠沥青是克利夫兰开口杯(简称COC),对液体沥青是泰格开口杯(简称TOC)。 2.1.10弗拉斯脆点 涂于金属片上的沥青薄膜在规定条件下,因冷却和弯曲而出现裂纹时的温度,以C计。 2.1.11沥青的组分分析 按规定方法将沥青试样分离成若干个组成成分的化学分析方法。 2.1.12沥青的黏度 沥青试样在规定条件下流动时形成的抵抗力或内部阻力的度量,也称黏滞度。 2.1.13沥青、混合料的密度 压实沥青混合料常温条件下单位体积的干燥质量,以g/cm 3计。 2.1.14枥青混合料的相对密度 同一温度条件下压实沥青混合料试件密度与水密度的比值,无量纲。 2.1.15浙青混合料的理大密度 假设压实沥青混合料试件全部为矿料(包括矿料自身内部的孔隙)及沥青所占有、空隙率为零的理想状态下的最大密度,以g/cm 3计。 2.1.16沥青混合料的理论最大相对密度 同一温度条件下沥青混合料理论最大密度与水密度的比值,无量纲。 2.1.17沥青混合料的表观密度 沥青混合料单位体积(含混合料实体体积与不吸收水分的内部闭口孔隙体积之和)的干质量,又称视密度,由水中重法测定(仅适用于吸水率小于0.5%的沥青混合料试件),以g/cm 3计。 2.1.18沥青混合料的表观相对密度 沥青混合料表观密度与同温度水密度的比值,无量纲: 2.1.19沥青混合料的毛体积密度 压实沥青混合料单位体积(含混合料的实体矿物成分及不吸收水分的闭口孔

沥青路面热再生技术(全面)

沥青路面热再生技术 1 公路日常养护现状 由于长期受到养护条件和技术制约,我们一直无法对不同病害、不同状况的道路做到对症下药,管养道路病害无法标本兼治.先进国家公路养护的经验告诉我们,沥青路面日常养护费用多投入一些,会大大节省大修费用,同时延长公路使用寿命.对小病害及时修复,能防止水份破坏路基,减少铣刨罩面次数.综合养护成本大幅度降低.正如人的健康,当我们注重小病治疗及经常定期检查,便能省却动手术的庞大费用. 2 新技术的诞生 经长期论证,2008年热再生科研成果通过了交通部专家组和专利局严格评审,成为我国又一领先国际的专利技术.该技术可以根据路病具体情况,提供整形再生、复拌再生、补强再生等多种解决方案. 复拌热再生设备总投资3千万元,道路维修施工成本每平米约80元,不改变原路设计标高.除环保之外,该施工的优势在于:速度快,热再生工艺能有很好的热粘接作用,消除弱接缝和弱接面,设备工作过程中不需封闭交通. 2.1 热再生技术的灵魂――石料再用,沥青再生

沥青混合料由95%石料和5%沥青组成;实现原路面材料100%原价值循环再用的关键首先是石料再用,然后是沥青 再生;骨料再用的前提是不打碎骨料,采用沥青路面耙松技 术是实现不打碎骨料的必要条件.不打碎骨料的热再生技术,真正实现了石料再用和沥青再生;间歇式热辐射加热技 术及耙松技术是实现石料再用的必要条件. 2.2 热再生技术的环保理念 我国每年约有8千公里道路需要大修,对石料的需求超过了5千万吨.开山采石导致水土流失,生态环境造成不可恢复的破坏性影响,近年来各地石料资源非常紧缺.该技术 是大大降低对环境破坏的最有效途径,是实现对原路石料100%原价值的再生利用,减少对石料巨大需求. 3 热再生技术施工流程 (1)加热:首先对路面进行充分加热,加热深度为4~6厘米,采用国家专利技术间歇式热辐射加热技术的加热设备能使路面充分软化,且保证不烧焦路面. (2)耙松:优异的加热效果使路面得以充分软化,自带的多组多排疏松耙装置将路面充分耙松. (3)喷洒再生剂:耙松后,新料添加前,均匀地喷洒再生剂,使再生剂与旧路充分混合,避免新料与再生剂接触造成新料性能改变,再生剂种类、数量均根据前期实验室实验数据确定,保证充分恢复老化沥青性能,喷洒再生剂过程中,按照设定参

《界面传递现象的多尺度模拟》课程简介_0819

热能系海外学者短期课程 《界面传递现象的多尺度模拟》 课程名称:界面传递现象的多尺度模拟 (Multiscale Modeling of Interfacial Transport Phenomena) 学时:16学时,1学分 时间:2015年9月6日至9月11日(夏季学期第四周) 9月6日(周日):18:30-20:55 讲课 9月7日(周一):18:30-20:55 讲课 9月8日(周二):18:30-20:55 讲课 9月9日(周三):9:00-11:35 讲课 9月10日(周四):9:00-11:35 讲课 9月 11日(周五): 9:00-10:30 讨论 地点:6A101 授课教师:孙颖副教授 (美国Drexel大学机械工程与力学系) 考核方式:考查 授课对象:研究生、高年级本科生 授课语言:英语 课程简介:介绍界面传递现象中多尺度模拟方法的基本原理、发展方向、优点和局限性以及应用实例。致力于扩宽学生多尺度模拟的视野和培养学生解决移动界面复杂问题的能力。内容涉及用分子动力学、格子玻尔兹曼方法、相场和水平集方法来共同解决移动界面问题和界面微观传递现象,应用范围涉及传热、传质、多相流、气液和固液相变、纳米材料、电化学、新能源等方面。课程主要面向热能系、航院、建筑学院、汽车系、核研院、工物系等的研究生、高年级本科生。 教师简介:Dr. Ying Sun is an Associate Professor in Mechanical Engineering & Mechanics at Drexel University. She obtained her B.Eng. degree from Thermal Engineering at Tsinghua University, and M.S. and Ph.D. degrees both from University of Iowa. Dr. Sun was a recipient of the NSF CAREER Award, a visiting professor at French CNRS, a visiting scholar at RWTH-Aachen, and an Air Force Summer Faculty Fellow. Her research interests include multiphase flows and heat/mass transport, multiscale modeling of transport phenomena in energy systems, wetting and interfacial phenomena, and scalable nanomanufacturing. Dr. Sun has authored and co-authored over 50 peer-reviewed papers and delivered over 60 invited seminars and conference presentations. Her lab is funded by the US National Science Foundation, Department of Energy, Advanced Research Projects Agency-Energy, Air Force Office of Research, Electric Power Research Institute, Ben Franklin Technology Partners, Petroleum Research Fund, and industry.

多尺度传递过程研究进展

存档日期:存档编号: 北京化工大学 研究生课程论文 课程名称:计算流体力学与传热 课程代号:ChE515 任课教师:张建文 完成日期:2012年12月20日 专业:化学工程 学号: 姓名: 成绩:_____________

多尺度传递过程研究进展 摘要:本文介绍了化工中多尺度的研究方法以及传递研究的新进展。着重介绍了现代化工多尺度传递过程研究的三种新方法:平均方法、直接模拟法以及耦合方法,并与传统的研究思路做比较。最后提出了多尺度传递过程研究中出现的问题并对多尺度传递过程研究提出展望。关键词:多尺度传递过程 Advances in MultiscaleTransportProcess Abstract: This article describes a multiscale chemical method and the new advance of transport process. Mainly introduce three modern chemical multiscale methods in transport process study: average method, the direct simulationmethod,and coupling method.Finally this paper puts forward a multi scale transfer process and research problems and to propose the prospect of the study on multi scale transfer process. Key words: multiscale ,transport process 一、引言 1.1化工中的多尺度问题 多尺度的术语现在被广泛地使用,例如Villemaux提出计算化学工程的多尺度应用,Lerou和 Ng 的文章《化学反应工程,研究多目标任务的多尺度方法》等 ,但不同学者所认的“尺度”的含义可能并不相同。对于从事化学和化工的人来说,传统上最重视的是结构、性能和制备的关系。因此 ,我们最关注的应是结构的尺度 ,或具有一定有序结构的单元的尺度。有序结构具有多层次,可按尺度大致区分为以下几种[1]: (1)微观结构(前纳米) :例如分子结构、晶胞结构。如维生素C的分子结构等。(2)微观结构(近纳米):例如均匀流体的近程有序、界面层的非均匀结构。分子的尺度大多小于1nm,从分子到各项同性的均匀流体似乎从前纳米直接跨越到宏观尺度。流体是近程有序的,围绕每一个分子,在约3~5个分子的距离内,有一个密度周期起伏并逐渐衰减的有序结构,这种结构决定了整个流体的性质。

中尺度气象学课后习题

1、中纬度常见得中尺度对流系统按组织形式可分为哪些类型? 答:中纬度常见得中尺度对流系统按组织形式可分为三类: 孤立对流系统:包括普通单体风暴、多单体风暴、超级单体风暴、龙卷风及小飑线 带状对流系统:飑线、锋面中尺度雨带 中尺度对流复合体(MCC) 2、什么叫孤立对流系统?有哪些基本类型? 答:所谓孤立对流系统就是指以个别单体雷暴、小得雷暴单体群以及某些简单得飑线等形式存在得范围相对较小得对流系统。 孤立对流系统有三种基本类型,即普通单体风暴、多单体风暴以及超级单体风暴。 3、什么就是普通雷暴?普通雷暴得生命史包括哪些阶段?每个阶段得主要特征 有哪些? 以一般常见得闪电、雷鸣、阵风、阵雨为基本天气特征得雷暴称为普通雷暴而伴以强风、大雹、龙卷等激烈灾害性天气现象得雷暴则称为强雷暴 普通雷暴得生命史包括:塔状积云、成熟、消散阶段 每个阶段得主要特征得差异主要表现在云内得垂直环流、温度与物态等几个方面 在塔状积云阶段,云内为一致得上升运动,云内温度高于云外,基本在0℃以上,物态主要为水滴。 到成熟阶段:上升气流变得更强盛,上升气流最强盛处得云顶出现上冲峰突,同时,降水开始发生,并由于降水质点对空气产生拖曳作用,在对流单体下部产生下沉气流。雨滴蒸发使空气冷却,下沉气流受负浮力作用而被加速。当下沉气流到达地面时,形成冷丘与水平外流,其前沿形成阵风锋。云体中上层得温度达到0℃以下,云中物态有水滴、过冷水、雪花、冰晶以及霰与雹等固态降水物。 到消散阶段:云内下沉气流逐渐占有优势,最后下沉气流完全替代了上升气流,云内温度低于环境,最后云体逐渐消散。 4、什么就是多单体风暴?其内部结构有何特点?

公路工程沥青与沥青混合料试验规范流程

公路工程沥青及沥青混合料试验规程 2 术语 2.1.1 沥青的密度 沥青在规定温度下单位体积所具有的质量,以g/cm3计。 2.1.2 沥青的相对密度 在同一温度下,沥青质量与同体积的水质量之比值,无量纲。 2.1.3 针人度 在规定鍵和时间内,附加一定质量的标准针垂直贯入沥的深度,以0.1mm计。 2.1.4 针人度指数 沥青结合料的温度感应性指标,反映针入度随温度而变化的程度,由不同温度的针入度按规定方法计算得到,无量纲。 2.1.5 延度 规定形态的沥青试样,在规定温度下以一定速度受拉伸至断开时的长度,以cm计。 2.1.6 软化点(环球法) 沥青试样在规定尺寸的金属环内,上置规定尺寸和质量的钢球,放于水或甘油中,以规定的速度加热,至钢球下沉达规定距离时的温度,以℃计。 2.1.7 沥青的溶解度 沥青试样在规定溶剂中可溶物的含量,以质量百分率表示。 2.1.8 蒸发损失 沥青试样在163℃温度条件下加热并保持5h后质量的损失,以百分率表示。 2.1.9 闪点 沥青试样在规定的盛样器内按规定的升温速度受热时所蒸发的气体以规定的方法与试焰接触,初次发生一瞬即灭的火焰时的温度,以℃计。盛样器对黏稠沥青是克利夫兰开口杯(简称COC),对液体沥青是泰格开口

杯(简称TOC)。 2.1.10 弗拉斯脆点 涂于金属片上的沥青薄膜在规定条件下,因冷却和弯曲而出现裂纹时的温度,以℃计。 2.1.11沥青的组分分析 按规定方法将沥青试样分离成若干个组成成分的化学分析方法。 2.1.12 沥青的黏度 沥青试样在规定条件下流动时形成的抵抗力或内部阻力的度量,也称黏滞度。 2.1.13 沥青、混合料的密度 压实沥青混合料常温条件下单位体积的干燥质量,以g/cm3计。 2.1.14枥青混合料的相对密度 同一温度条件下压实沥青混合料试件密度与水密度的比值,无量纲。 2.1.15浙青混合料的理大密度 假设压实沥青混合料试件全部为矿料(包括矿料自身内部的孔隙)及沥青所占有、空隙率为零的理想状态下的最大密度,以g/cm3计。 2.1.16沥青混合料的理论最大相对密度 同一温度条件下沥青混合料理论最大密度与水密度的比值,无量纲。 2.1.17沥青混合料的表观密度 沥青混合料单位体积(含混合料实体体积与不吸收水分的内部闭口孔隙体积之和)的干质量,又称视密度,由水中重法测定(仅适用于吸水率小于0.5%的沥青混合料试件),以g/cm3计。 2.1.18沥青混合料的表观相对密度 沥青混合料表观密度与同温度水密度的比值,无量纲: 2.1.19沥青混合料的毛体积密度 压实沥青混合料单位体积(含混合料的实体矿物成分及不吸收水分的闭口孔隙、能吸收水分的开口孔隙等颗粒表面轮廓线所包围的全部毛体积)的干质量,以g/cm3计。 2.1.20沥青混合料的毛体积相对密度

多尺度方法在复合材料力学研究中的进展

多尺度方法在复合材料力学分析中的研究进展 摘要简要介绍了多尺度方法的分量及其适用范围,详细论述了多尺度分析方法在纤维增强复合材料弹性、塑性等力学性能中的研究进展,最后对多尺度分析方法的前景进行了展望。 关键词多尺度分析方法,复合材料,力学性能,细观力学,均匀化理论 1 引言 多尺度科学是一门研究不同长度尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学内涵和研究价值。多尺度现象并存于生活的很多方面,它涵盖了许多领域。如介观、微观个宏观等多个物理、力学及其耦合领域[1]。空间和时间上的多尺度现象是材料科学中材料变形和失效的固有现象。 多尺度分析方法是考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合的新方法,是求解各种复杂的计算材料科学和工程问题的重要方法和技术。对于求解与尺度相关的各种不连续问题。复合材料和异构材料的性能模拟问题,以及需要考虑材料微观或纳观物理特性,品格位错等问题,多尺度方法相当有效。 复合材料是由两种或者两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个多相材料系统[2]。复合材料作为一种新型材料,由于具有较高的比强度和比刚度、低密度、强耐腐蚀性、低蠕变、高温下强度保持率高以及生物相容性好等一系列优点,越来越受到土木工程和航空航天工业等领域的重视。 复合材料是一种多相材料,其力学性能和失效机制不仅与宏观性能(如边界条件、载荷和约束等)有关,也与组分相的性能、增强相的形状、分布以及增强相与基体之间的界面特性等细观特征密切相关,为了优化复合材料和更好地开发利用复合材料,必须掌握其细观结构对材料宏观性能的影响,即应研究多尺度效应的影响。 如何建立起复合材料的有效性能和组分性能以及微观结构组织参数之间的

天气学试题库new

天气学试题库 一、选择题 1.在温度对数压力图上,锋面逆温的特点是逆温层上界面湿度()下界面湿度。 A 大于; B 小于; C 等于A 2. 当等压面图上温度槽落后于高度槽时()。 A 有利于锋生; B 有利于锋消; C 有利于湿度增大 A 3.造成我国雨带进退过程中的三个突变期的根本原因是()。 A 西风带环流的三次突变; B 东亚大槽位置的三次突变; C 副热带高压脊线位置的三次突变 C 4. 产生地转偏向力的原因是()。 A 地球的自转和大气的运动; B 气压水平分布不均匀; C 气压垂直分布不均匀A 5. 锋附近常存在着大规模的系统性的()。 A 水平运动; B 垂直运动; C 曲线运动 B 6. 静止锋一般是由()演变而成的。 A 锢囚锋; B 暖锋; C 冷锋C 7. 地面气旋发展,一般表现为其中心处正涡度随时间()。 A 增大; B 减小; C 不变A 8. 西太平洋副热带高压和青藏高压()。 A 分别是动力性高压和热力性高压; B 分别是热力性高压和动力性高压; C 均是热力性高压 A 9. 对中国夏季降水影响最明显的是()。 A 热带西南季风; B 热带东南季风; C 印度西南季风A 10. 中尺度对流复合体MCC产生的大尺度环境条件是()。 A 温带气旋; B 锋面气旋; C 弱的静止锋附近有强的低空暖湿气流入侵C 11. 气压系统中心轴线倾斜的根本原因是中心点上空存在着平均水平()。 A气压梯度;B温度梯度;C辐合区;D辐散区B 12. 急流轴的左侧、右侧的相对涡度分别为(),轴线附近的涡度梯度最大。 A 正、零; B 正、负; C 负、正; D 零、负 B

沥青混合料试验规程

目录

(弯曲梁流变仪法) 一、目的与适用范围 1.1本方法用弯曲梁流变仪测定沥青的弯曲蠕变劲度和m值。测量的弯曲蠕变劲度范围为20~1OOOMPa。 1.2本方法适用干原样沥青、压力老化后的沥青和薄膜烘箱(或旋转薄膜烘箱)后的老化沥青。 1.3根据本方法进行试验时,若试件的形变大于4mm或小于0.08mm时,试验结果无效。 二、仪具与材料 2.1弯曲梁流变仪试验系统由以下几部分组成:

2.2.2加载系统:能向试件施加35mN ±5mN 的接触荷载,试验过程中将试验荷载 2.2试验系统基本技术要求和参数 2.2.1加载框:由一套试件支架、加载轴、荷载传感器、荷载调零装置、加载装置及位移测量传感器等组成。示意图如图T0627-1所示。 保持在980mN ±50mN 以内。技术要求如下: 1)加载系统要求:试验荷载的升压时间应不少于5s 。开始试验时系统在0.5 ~5s 内将接触荷载从35mN ±5mN 增加到初始试验荷载980mN ±50mN ,此时试验荷载应稳定在平均试验荷载±50mN 之内,之后稳定在平均试验荷载±10mN 。 2)加载轴:带有半径为6.3mm ±1.3mm 球形接触点。 3)荷载传感器:用来测量初始接触荷载和试验荷载。最小量程应不小于2.00N ,分辨率不小于2.5mN 。 4)线性差动式位移传感器(LVDT ):量程不小于6mm ,分辨率不小于2.5μm 。 5)试件支架:接触半径为3.0mm 士0.3mm 由不锈钢或其他防腐蚀金属制成的支架。 2.2.3温度传感器:测量范围为0~-36℃,精确至士O.1℃。 2.2.4恒温浴:在-36~0℃范围能将浴内各点温度保持在试验温度±0.1℃。 2.1 带有试件支架的加载框。 2.1 将试件保持在试验温度下并提供浮力以抵消试件重力的恒温2.1 计算机控制和数据自动采集系统元件。 2.1 试样梁模具。 2.1检量和校正系统的梁。 图T0627-1弯曲梁流变仪示意图 1-温度传感器;2-沥青试件;3-控制与数据采集;4-位移传感器; 5-加载轴;6-空气轴承;7-荷载传感器;8-水槽;9-试件支架

相关主题
文本预览
相关文档 最新文档