当前位置:文档之家› 超分子自组装材料的多尺度模拟研究方法

超分子自组装材料的多尺度模拟研究方法

超分子自组装材料的多尺度模拟研究方法
超分子自组装材料的多尺度模拟研究方法

超分子自组装材料的多尺度模拟研究方法

1.1引言

超分子化学是研究基于分子间非共价键相互作用而形成的具有一定结构和功能分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等学科的交叉融合中,超分子化学已发展成超分子科学,是21世纪新概念和高技术的重要源头之一。相较于传统化学上所研究的共价键,超分子化学的研究对象是一些较弱且具有可恢复性的分子间相互作用,如氢键、金属配位、xπ堆积、疏水效应等,这些分子间弱相互作用是促进分子识别的关键,对超分子体系的分子识别和组装有着重要意义12。

超分子材料的性能取决于基本构筑单元的分子结构,在更大程度上依赖于这些构筑单元经过自组装得到的介观尺度聚集体的结构与相态,而自组装过程又是影响超分子聚集体结构及其功能的关键因素。超分子自组装过程的影响因素极其复杂,与传统凝聚态物质相比,超分子体系具有更高的流动性及环境依赖性,而正是体系热涨落及外部环境的约束性共同导致超分子体系的新行为,主宰体系演化的机制己从凝聚态物理传统的相互作用能量机制转变为动力学和熵效应的共同作用。外部影响因素或者体系自身的耗散作用能够驱动超分子体系自组装形成各种丰富的结构,从而具有不同的功能及应用范围。

超分子体系自身结构的特点使得体系演化速度慢、松弛时间谱分布宽4.例如,单链聚合物的空间尺度从化学键键长(100m)延伸到链旋转半径(103m),而相应的时间尺度从化学键的振动(10-15可延伸到整条聚合物链的松弛和扩散(105s)。如果考虑聚合物链之间的缠结效应,聚合物链的松弛时间会更长阿。超分子自组装过程也涵盖非常大的空间和时间尺度:超分子材料的形成需要从基本构筑单元的分子尺寸(10°m)过渡到典型有序功能结构的尺寸(10m),此外有序功能结构转变动力学往往发生在微秒或更长的时间尺度上10l对于超分子材料体系而言,由于实验手段的一些限制,许多情况下很难获得这些复杂分子结构在多个尺度上的结构及动力学性质。虽然计算机硬件和算法在近些年得到快速发展,计算机模拟已经成为在各个层面研究超分子自组装材料体系不可或缺的组成部分,但到目前为止还没有一种模拟方法能够同时描述超分子组装体系微观结构、介观组装形貌及宏观材料功能等多个尺度上的性质。因此建立有效的多尺度模拟方法,增强不同尺度模拟方法之间的衔接和信息传递是一项十分紧迫的任务,这也是发展多尺度模拟方法的核心目标。由于缺少单一的模拟方法应用于超分子材料体系的多尺度分析,因此发展多尺度模拟方法的主要任务是把不同尺度上的模拟方法进行完善,同时发展对这些单一尺度模拟方法进行有效连接的手段传统意义上的计算机模拟方法是

随着计算机的发明一起发展起来的。根据研究体系运动的确定性与否分为分子动力学方法21和蒙特卡罗方法1两大类。分子动力学方法是建立在经典力学基础之上,通过求解粒子的运动方程来模拟体系随

时间的演化过程。蒙特卡罗方法则是最常用的对研究体系相空间进行抽样从而计算系综平均的方法。两类方法的共同点是它们都是基于经典统计力学的抽样方法,能够对较大体系的基本物理性质进行分析、研究。其他基于粒子的模拟方法,如粗粒化分子动力学、布朗动力学1、耗散粒子动力学151和格子玻尔兹曼方法1,以及基于场论的模拟方法,如描述聚合物体系的自洽场理论1和动态密度泛函理论1都是在20世纪末发展起来的。这些模拟方法已经比较成熟,是研究不同尺度下超分子材料体系结构、组装形貌及功能的非常有利的工具。

图1-1为不同模拟方法所对应的时间和空间尺度。

通常而言,为了发展多尺度模拟方法,我们需要在每个尺度上选择合适的模拟方法并将这些方法有效地联接起来,从而可以连贯地在多个尺度上描述超分子。体系的结构与自组装行为。针对超分子体系进行多尺度模拟可以有多种操作方式:

①最简单的方式是各种模拟方法在特定尺度下单独对超分子体系进

行模拟,通过将模拟体系的信息(如液体结构)从当前尺度传递到下

一尺度来实现不同尺度间的连接:②同一个模拟体系存在不同尺度的模拟方法,分子信息在不同模拟方法间通过模拟体系各部分之间的界面进行简单传递:③模拟体系进行自适应多尺度模拟,原子或分子可以在计算过程中自适应地根据它们所在的位置在不同分辨率的模拟方法间自由转换。不论采取哪种操作方式,模拟体系的信息交换需要在各个模型间保持高度一致性。图1-2为构建超分子多尺度模拟体系的三种操作方案。

需要说明的是,多尺度模拟不是解决超分子材料体系特定问题的唯一方法。

随着新型计算机硬件和算法的发展,并行化的粗粒化分子动力学方法可以处理由数百万个粗粒化粒子组成的模拟体系,并且模拟时间可以达到毫秒级别山。基于图形处理器(GPU)的分子动力学模拟可进一步提高模拟效率口2.因此,在不久的将来也可使用并行化和基于图形处理器的分子动力学方法在更大尺度范围内对超分子体系进行模拟

研究,而无须采用多尺度模拟方法。但在现阶段,多尺度模拟是人们可以同时在多重空间和时间尺度上描述超分子材料体系性质和现象

的最重要的工具之一。

1.2模拟方法简介

1.2.1基于粒子描述的模拟方法

在特定的基于粒子描述的模拟方法中,我们主要关注由原子、分子或粗粒化粒子组成的体系。这些粒子的运动具有确定性,粒子的运动构成模拟体系在相空间中的轨迹。通过这些运动轨迹,在基于遍历性假设的前提下,我们可以统计并计算模拟体系的物理性质。粒子的运动也可以用随机过程来描述,如在耗散粒子动力学模拟中,粒子的随机力和耗散力有效地构建了满足模拟体系动量守恒的热这些方法中,我们依旧需要关注体系特定性质随时间演化的过程,并计算这些性质的统计平均值。在用蒙特卡罗方法对超分子材料体系进行模拟的过程中,通过设计合适的蒙特卡罗抽样规则可以对满足特定哈密顿量的模拟

体系构型空间进行抽样,从而可以通过集合平均值获得体系的物理特性。本节介绍一些前广泛用于描述超分子及复杂流体体系相行为的基于粒子描述的模拟方法基本框架。这些方法的详细推导过程及描述可参考文献【12-14】

1.分子动力学方法分子动力学对粒子(原子、分子或者粗粒化粒子)在相互作用势作用下的运动状态进行模拟。通过数值方法求解粒子的

运动方程得到粒子体系在相空间中随时间演化的行为。图1-3(a)为分子动力学的基本流程图。模拟体系的宏观热力学性可以由体系相关物理量求时间平均得到。系综是用统计力学描述体系的统计规律时引入的基本概念。微正则系综是分子动力学方法中最基本的系综,只能用于研究孤立体系的性质。模拟体系在其他系综的热力学性质都可以直接或间接地人微正则系综中演化出来。分子动力学模拟的准确性和效率取决于粒子间相互作述超分子及生物大分子体系的结构和自组

装性质研究已经广泛应用于描用势的准确性及分子动力学模拟程序

的优化程度。分子动力

2.蒙特卡罗方法蒙特卡罗方法是以概率和统计方法为基础的一种随

机模拟方法。传统的蒙特卡罗方法仅对模拟体系相空间的构型部分进行采样。蒙特卡罗方法的关键步骤是尝试运动。例如,由于粒子的尝试位移而引起体系能量的变化是判断是否接受该粒子运动到下一个

位置的标准。相应地,通过对模拟体系所有粒子的尝试运动进行抽样产生一系列状态,从而得到模拟体系性质的系综平均结果。图1-3(b)为蒙特卡罗方法的基本流程图。

3.5.格子玻尔兹受方法子玻尔兹曼方法是一种基于玻尔兹曼运动方

程来描述流体体系的离散计算具有介于微观分子动力学方法和宏观

连续模型之间的介观模型特点。该方法把流体体系在时间和空间上完全离散化。流体粒子具有离散的质量、体积,并且用粒子在格点上的速度分布来表示粒子的性质。所有粒子同步地随着离散的时间步长,根据给定碰撞规则在网格点上相互碰撞,并沿网格线在节点之间运动。

碰撞规则遵循质量、动量和能量守恒定律。流体运动的宏观特征取决于微观流体粒子在格点上相互碰撞并在整体上表现出来的统计规律,因此符合Navier- Stokes方程。格子玻尔兹曼方法广泛应用于复杂几何边界流体流动、多孔介质流、多相流及反应流等复杂流体体系。

超分子科学研究进展

摘要超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等其它学科的交叉融合中,超分子化学已发展成了超分子科学,被认为是21世纪新概念和高技术的重要源头之一。本文介绍了近几年超分子科学研究中的热点和基本问题,愿为我国超分子科学的研究提供参考。 自然界亿万年的进化创造了生命体,而执行生命功能是生命体中的无数个超分子体系。对超分子的认识一直到20世纪中叶,特别是C. J. Pedersen、J. M. Lehn和D. G. Cram等人合成了大环分子(冠醚、穴状配体等),这些大环化合物能基于非共价键作用选择性地结合某些离子和有机小分子,这一主客体的创新成果获得1987年诺贝尔化学奖。1978年法国科学家J. M. Lehn等超越主客体化学的研究范畴,首次提出了“超分子化学”这一概念,他指出:“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学”[1]。超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学,它主要研究分子之间的非共价键的弱相互作用,如氢键、配位键、亲水/疏水相互作用及它们之间的协同作用而生成的分子聚集体的组装、结构与功能。两个世纪以来,化学界创造了2 000万种分子,原则上都可在不同层次组装成海量的、取决于组装体结构具有特殊功能的超分子体系,由此可见,超分子化学开拓了创造新物质与新材料的崭新的无限的发展空间。事实上,自然存在着亿万个超分子体系居于生命体的核心位置,例如,在细胞内的生物化学过程都由特定超分子体系来执行,像DNA与RNA的合成、蛋白质的表达与分解、脂肪酸合成与分解、能量转换与力学运动体系等。因此超分子科学是研究生物功能、理解生命现象、探索生命起源的一个极其重要的研究领域。经过20多年的快速发展,在与材料科学、生命科学、信息科学、纳米科学与技术等其它学科的交叉融合中,超分子化学已发展成了超分子科学,被认为是21世纪新概念和高技术的重要源头之一[2,3]。 国际上超分子科学的研究开展得如火如荼,发达国家和地区,如欧盟、美国和日本等都投入了大量的人力和物力进行超分子科学方面的研究与开发。在国家自然科学基金委、科技部、教育部、中国科学院等相关部门的大力支持下,我国的科学工作者较早地开展了超分子科学研究,并做出了一大批有特色的工作。我们结合今年9月在长春举办的超分子国际香山科学会议及部分国内外同行的研究结果来介绍超分子科学研究的热点和基本问题,供国内同行参考。 1 层状超分子组装体 生物膜是细胞的关键组分,又是高效、神奇的超分子体系。它的模拟物就是层状组装体(包括单层膜、多层膜、复合膜等)。层状结构容易表征,是研究分子间作用力及组装方法最好的模型,又是走向实用化的器件原型,所以层状组装超薄膜的构筑与功能化一直是超分子科学研究的热点[2]。 1991年,G.Decher及其合作者报道了基于阴阳离子静电作用的聚电解质多层膜的制备,称为静电组装技术,拉开了层状组装薄膜研究的序幕[4]。静电组装技术被认为是一种构筑结构和功能可控的有机、无机和有机/无机复合薄膜的有效方法之一。在层状组装多层膜的构筑中,引入含有刚性介晶基团的双头离子能提高多层薄膜的稳定性和改善层间界面的有序度。基于静电组装技术,实现了包容卟啉、酞菁等有机分子,特殊的齐聚物、有机和无机微粒、生物大分子如蛋白质、酶、病毒以及树状分子等在内的物质的多功能较稳定复合薄膜的构筑。一种由金属烷氧基化合物来制备金属氧化物薄膜的组装技术,称为表面溶胶 凝胶技

SJTU多尺度材料模拟与计算

Dislocation and Stacking Fault Name:Wu lingling(user023) Student number:016050910054 1 Calculations of Lattice constant and volume modulus Using molecular dynamics,we can simulate crystals in edge dislocation,screw dislocations and stacking fault, also we can calculate the dislocation strain energy and dislocations. Comparing the method of molecular dynamics calculation values and theoretical, we can analysis its error.Through this experiment, deepen para fault, fault, and the understanding of molecular dynamics simulation. For edge dislocation, strain for per unit length: 20ln 4(1)e e Gb R E r πn =? For a screw dislocation, strain for per unit length: 20ln 4s e Gb R E r π = Molecular dynamics is dislocation of strain energy method: ()/MD dislocated ref E E E L =? In actual crystal structure, the closed normal stacking sequence may be damaged and staggered, which named the stacking fault.Cambium mistake almost do not produce lattice distortion, but it undermines the integrity of the crystal and the normal cyclical, anomalous diffraction effect in the electronic, allowing the energy of the crystal increased, this part of the increased energy is called the stacking fault energy. The mathod using Molecular dynamics to calculation approach stacking fault: SFE = tot ref E E S γ? 2 Results and Analysis 2.1 helical dislocation -91512.1172811518-(-91519.9264975819)7.80921643s E ev =

浅谈超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐

多尺度方法在复合材料力学研究中的进展

多尺度方法在复合材料力学分析中的研究进展 摘要简要介绍了多尺度方法的分量及其适用范围,详细论述了多尺度分析方法在纤维增强复合材料弹性、塑性等力学性能中的研究进展,最后对多尺度分析方法的前景进行了展望。 关键词多尺度分析方法,复合材料,力学性能,细观力学,均匀化理论 1 引言 多尺度科学是一门研究不同长度尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学内涵和研究价值。多尺度现象并存于生活的很多方面,它涵盖了许多领域。如介观、微观个宏观等多个物理、力学及其耦合领域[1]。空间和时间上的多尺度现象是材料科学中材料变形和失效的固有现象。 多尺度分析方法是考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合的新方法,是求解各种复杂的计算材料科学和工程问题的重要方法和技术。对于求解与尺度相关的各种不连续问题。复合材料和异构材料的性能模拟问题,以及需要考虑材料微观或纳观物理特性,品格位错等问题,多尺度方法相当有效。 复合材料是由两种或者两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个多相材料系统[2]。复合材料作为一种新型材料,由于具有较高的比强度和比刚度、低密度、强耐腐蚀性、低蠕变、高温下强度保持率高以及生物相容性好等一系列优点,越来越受到土木工程和航空航天工业等领域的重视。 复合材料是一种多相材料,其力学性能和失效机制不仅与宏观性能(如边界条件、载荷和约束等)有关,也与组分相的性能、增强相的形状、分布以及增强相与基体之间的界面特性等细观特征密切相关,为了优化复合材料和更好地开发利用复合材料,必须掌握其细观结构对材料宏观性能的影响,即应研究多尺度效应的影响。 如何建立起复合材料的有效性能和组分性能以及微观结构组织参数之间的

含能材料力学性能的多尺度模拟系统开发

含能材料力学性能的多尺度模拟系统开发数值模拟是含能材料力学性能研究的重要手段。常用的模拟软件中,分子动力学模拟能够模拟含能材料分子水平相关性质,但由于计算资源的限制,只限于研究尺度小于纳米的微观体系;物质点法能在接近含能材料颗粒的细观尺度上模拟其性质,但该方法还处于起步阶段,应用并不成熟;而有限元方法可以接近工程的宏观尺度上对含能材料的性质进行研究,但有着不能考虑含能材料微观结构的缺点,直接应用效果不佳。近年来,多尺度模拟方法受到广泛关注,这种方法能将各尺度下的性质联系起来,但尚未有成熟的软件,急需开发使用方便的多尺度模拟软件。针对上述问题,设计并实现了基于分步式模拟的含能材料力学性能的多尺度模拟系统,逐级递推地计算含能材料的力学行为。 在系统的微观尺度计算模块,用分子动力学方法求解含能材料的各种性质,包括组分的状态方程和粘弹性的本构关系,这些性质作为参数输入到细观尺度的模拟计算;在系统的细观尺度计算模块,采用物质点法求解含能材料的力学性质,获得其状态方程式和力学性质的本构关系;在系统的宏观尺度计算模块,基于细观尺度的计算结果应用有限元方法计算宏观含能材料力学性能变化。本系统可为研究含能材料压制过程的力学行为提供一种有效的工具。由于微观尺度和宏观尺度的模拟有比较成熟的软件可用,论文重点研究了细观尺度计算模块。利用了模型近似方法,建立了含能材料细观模型;运用Java3D虚拟场景数据动态存储技术,实现了虚拟场景数据的动态存取,解决了模型建立过程中一个场景一旦建立就不能重复使用,只能在下一次建模时按照流程重复原先的创建步骤的问题;采用基于Vis It的模拟数据并行可视化技术,解决了单机环境下由于计算机资源限制,无法对结果进行高性能可视化显示的问题。 测试结果表明,系统能在1s之内做出响应,并不间断运行5×24小时,其响应能力和稳定性等方面均达到设计目标。该系统能够为含能材料压制工艺提供了理论依据,对优化和改进含能材料质量提供一种有效工具。

《界面传递现象的多尺度模拟》课程简介_0819

热能系海外学者短期课程 《界面传递现象的多尺度模拟》 课程名称:界面传递现象的多尺度模拟 (Multiscale Modeling of Interfacial Transport Phenomena) 学时:16学时,1学分 时间:2015年9月6日至9月11日(夏季学期第四周) 9月6日(周日):18:30-20:55 讲课 9月7日(周一):18:30-20:55 讲课 9月8日(周二):18:30-20:55 讲课 9月9日(周三):9:00-11:35 讲课 9月10日(周四):9:00-11:35 讲课 9月 11日(周五): 9:00-10:30 讨论 地点:6A101 授课教师:孙颖副教授 (美国Drexel大学机械工程与力学系) 考核方式:考查 授课对象:研究生、高年级本科生 授课语言:英语 课程简介:介绍界面传递现象中多尺度模拟方法的基本原理、发展方向、优点和局限性以及应用实例。致力于扩宽学生多尺度模拟的视野和培养学生解决移动界面复杂问题的能力。内容涉及用分子动力学、格子玻尔兹曼方法、相场和水平集方法来共同解决移动界面问题和界面微观传递现象,应用范围涉及传热、传质、多相流、气液和固液相变、纳米材料、电化学、新能源等方面。课程主要面向热能系、航院、建筑学院、汽车系、核研院、工物系等的研究生、高年级本科生。 教师简介:Dr. Ying Sun is an Associate Professor in Mechanical Engineering & Mechanics at Drexel University. She obtained her B.Eng. degree from Thermal Engineering at Tsinghua University, and M.S. and Ph.D. degrees both from University of Iowa. Dr. Sun was a recipient of the NSF CAREER Award, a visiting professor at French CNRS, a visiting scholar at RWTH-Aachen, and an Air Force Summer Faculty Fellow. Her research interests include multiphase flows and heat/mass transport, multiscale modeling of transport phenomena in energy systems, wetting and interfacial phenomena, and scalable nanomanufacturing. Dr. Sun has authored and co-authored over 50 peer-reviewed papers and delivered over 60 invited seminars and conference presentations. Her lab is funded by the US National Science Foundation, Department of Energy, Advanced Research Projects Agency-Energy, Air Force Office of Research, Electric Power Research Institute, Ben Franklin Technology Partners, Petroleum Research Fund, and industry.

分子自组装的研究进展

分子自组装技术的研究进展 摘要:分子自组装在生物工程、分子器件、以及纳米科技领域已经有很广泛的应用。在未来的几十年里,分子自组装装作为一种技术手段将会在新技术领域产生重大的影响。本文介绍了分子自组装技术的基本原理、影响因素、目前的研究进展以及应用,最后展望了自组装技术的前景。 关键词:分子自组装;应用 Advances in Molecule Self-assembly Technology Abstract: Molecule self-assembly technology has been widely applied in biotechnology, molecular device, and nanotechnology. As a fabrication tool, molecular self-assembly technology will become tremendously important in the coming decades. In this article, mechanism, influence factors, some research advances and application of molecule self-assembly technology are reviewed. At the end, we prospect the future of this technology. Keywords: Molecule self-assembly; application 自组装[1](self-assembly,简称SA)是组分自主构筑成团或结构物的过程,自组装过程能使无序状态转变成有序状态。自组装技术主要分为定向自组装(Directed self-assembly)和分子自组装(Molecular self-assembly)。 分子自组装是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。通过分子自组装我们可以得到具有新奇的光、电、催化等功能和特性的自组装材料,特别是现在正在得到广泛关注的自组装材料在非线性光学器件、化学生物传感器[2]、信息存储材料以及生物大分子合成方面都有广泛的应用前景,受到研究者广泛的重视和研究。本文下面对分子自组装技术及研究进展进行综述。 1 分子自组装技术 分子自组装是指在热力学平衡条件下,分子与分子或分子中某一片段与另一片段之间利用分子识别,相互通过分子间大量弱的非共价键作用力,自发连接成具有特定排列顺序、结构稳定的分子聚集体的过程。这里的“弱非共价键作用力”

随机非均匀材料性能分析的多尺度算法研究

目录 目录 摘要......................................................................................................................................... I Abstract................................................................................................................................... III 目录....................................................................................................................................... V 1 绪论. (1) 1.1 研究背景及意义 (1) 1.2 研究现状 (3) 1.2.1 多尺度方法概述 (3) 1.2.2 串行式多尺度方法简介 (4) 1.2.3 均匀化方法简述 (6) 1.2.4 聚合物复合材料的多尺度模拟 (10) 1.3 论文结构 (11) 2 串行式多尺度方法的比较分析 (13) 2.1 四种典型的多尺度方法 (13) 2.1.1 渐近均匀化方法 (13) 2.1.2 非均匀多尺度方法 (15) 2.1.3 变分多尺度方法 (17) 2.1.4 多尺度有限元方法 (19) 2.2 多尺度方法比较分析 (20) 2.2.1 两类多尺度方法 (20) 2.2.2 两种多尺度解还原方案的等价性 (21) 2.2.3 四种多尺度方法的计算复杂度 (26) 2.3 数值算例 (27) 2.4 本章小结 (31) 3 等效系数高效计算的Richardson外推法 (33) 3.1 随机均匀化模型 (33) 3.2 等效系数收敛阶与外推法 (36) 3.2.1 平均遍历定理 (36) 3.2.2 一阶收敛阶及外推法 (41) 3.3 数值算例 (45) 3.3.1 随机均匀化流程 (45) 3.3.2 随机非均匀材料几何构型生成 (48) 3.3.3 算法实施及结果分析 (51)

大分子自组装研究的进展

大分子自组装研究的进展 大分子自组装属于超分子化学与高分子化学的交叉研究领域,是研究高分子之间、高分子与小分子之间、高分子与纳米粒子之间或高分子与基底之间的相互作用,及其通过非共价键合而实现不同尺度上的规则结构的科学。自20世纪90年代起,大分子自组装就引起了国际学术界广泛的研究兴趣。除了嵌段共聚物外,人们陆续发现均聚物、齐聚物、离聚物、无规共聚物及接枝共聚物等都可作为“组装单元”,在一定条件下,通过各种弱相互作用(疏水、氢键、静电作用力等),自发形成形态多样的超分子有序结构。自组装体形成之后,通过化学修饰的方法,可使其形态“永久”保持。目前,大分子自组装已被视为构筑具有规则结构功能性纳米材料的主要途径之一生’〕作为一种“软物质”,高分子纳米材料具有广泛的潜在应用价值,比如可用作涂料、药物输送载体、纳米反应器、污水处理剂或作为合成规整结构纳米材料的模板等〔z.;l。获得大分子自组装体的常规途径是嵌段共聚物在选择性溶剂中胶束化,该过程的驱动力来自于某一链段的疏水性。近几年来,涌现出多种多样构建大分子自组装体的新途径,大大扩展了高分子胶束化的研究领域。 1超分子体系 20世纪30年代,德国Wolf等创造了“超分子’一词,用来描述分子缔合而形成的有序体系.1978年,法国fxhn等超越主客体化学的研究范畴,首次提出了“超分子化学’这一概念,他指出:“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学’,这无疑是一次重大的思想飞跃.此后经过近20多年的快速发展,超分子化学己远远超越了原来有机化学主客体体系的范畴,形成了自己的独特概念和体系:如分子识别、分子自组装、超分子器件、超分子材料等.在与生物、物理等其它学科的交义融合中,超分子化学己经发展成了超分子科学,被认为是21世纪新概念和高新技术的一个重要源头}s,e.以分子识别为基础、分子自组装为手段、组装体功能为口标的超分子科学体系研究的领域主要包括:超分子体系的反应J性、层状超分子自组装、界而超分子自组装、聚合物自组装、纳米超分子材料等.未来超分子体系的特征将体现为:信息性和程序性的统一,流动性和可逆性的统一,组合性和结构多样性的统一. 2分子自组装 分子自组装是自然界的一个普遍现象.许多生物大分子如DNA、病毒分子和酶等都是通过自组装过程,形成高度组织、信息化和功能化的复杂结构.在化学领域,分子自组装也是普遍存在的,如.b,体生长、液.b,形成、人工脂质双层的自发生成、金属配位化合物的合成、分子在表而上的有序排列等.分子自组装是指分子与分子之间靠非共价键作用力(包括库仑力、范德华力、疏水作用力、兀一兀堆叠作用力、氢键)形成具有一定结构和功能的聚集体的过程.该过程是自发的,不需要借助于外力}},HI.分子自组装的物理本质是永久多极矩、瞬时多极矩、诱导多极矩三者之间的相互作用.有两大类分子自组装:静态自组装和动态自组装,它们的区别主要在于是否涉及能量耗散.口前,大多数自组装的研究都集中在静态自组装.动态自组装涉及能量耗散,尚处于研究的初级阶段1I.分子自组装与定位组装不同,在定位组装过程中,人工对各个分子的安置具有相对较大的控制能力,在分子自组装中,分子的安置和排列可能跟定位组装一样重要,但是,一旦组装开始以后,其过程很大程度上由自然控制.

复合材料强度参数预测的多尺度分析方法

复合材料强度参数预测的多尺度分析方法 余新刚 摘要 复合材料宏观力学性能的理论预测是对复合材料及其结构一体化优化设计的基础,复合材料力学性能预测包括刚度参数和强度参数的预测。到目前为止,对于复合材料刚度参数的预测已经有很多成熟的理论和方法,然而对于强度参数的预测仍然是一个难题。在众多成熟的刚度预报方法中,基于均匀化理论的多尺度方法是一种适应于周期性构造复合材料的,通用、高效、精确的方法。本文主要研究复合材料强度参数预报的多尺度分析方法。 首先,本文针对具有周期性构造的复合材料,将其强度参数分解为局部拉伸、弯曲和扭转三种单因素的强度行为,采用直杆拉伸、弯曲和扭转三种承载模型,给出了周期性复合材料的线弹性强度预测方法,主要结果是:推导了用于强度参数预测的多尺度公式,给出了周期性复合材料直杆在拉伸、弯曲和扭转状态下的应变场表达式。通过大量的数值算例,以及与试验数据的对比,验证了算法的可行性和有效性。此外,作为一个典型的应用实例,对四步法编织复合材料的强度进行了分析。首先将计算结果与试验数据进行了对比,以验证多尺度分析方法在四步法编织复合材料强度预测方面的有效性。随后对四步法编织复合材料的强度进行了深入研究,给出了细观特征参数:纤维体积含量和编织角,对强度的影响,其结果对编织复合材料的设计和优化具有一定的参考价值。 论文的第二部分研究了随机构造复合材料强度参数预测的多尺度计算方法,在介绍了一种含大量随机颗粒分布复合材料数值模拟算法的基础上,发展并实现了针对这种三维区域的四面体网格剖分算法,为进一步的强度分析提供了高质量的数值模型。进而,本文针对随机颗粒分布复合材料的特点,将其表征为具有周期性随机分布颗粒的复合材料,推导了基于统计概念的多尺度分析的强度预测公式,给出了直杆均匀拉伸、悬臂梁纯弯曲和圆形常截面柱体扭转的应变场表达式,以及统计意义下的随机分布复合材料的线弹性强度预测算法,并进行了大量的数值试验。通过与物理试验数据的对比,验证了算法的有效性。 关键词:周期复合材料,随机复合材料,四步法,多尺度分析,强度预测

15 多尺度材料建模

22.54 中子与物质的相互作用及应用(2004年春季) 第十五讲(2004年4月15日) 多尺度材料建模 参考文献 S. Yip, "Synergistic Science", Nature Materials 2, 3 (2003). This commentary is attached as Chap15(S).pdf. 材料发现与创新 我们社会中各种科技企业对新材料的需求日益增长,这就要求成功的材料设计是基于整体分析的,在合成与处理方法中,对材料基本性能和特性的了解是与创新结合在一起的,并进一步与性能分析、使用寿命预计、环境评估和经济学研究联系起来。实际中材料的发现与创新是一个多学科高度综合的过程,依赖于多种科学和工程团体的贡献,因此也就需要在不同学科之间的有效交流,跨越传统的界限来进行合作。 在材料研究所涉及到的所有领域中,计算都显著地推进了研究工作的进展,通过第一原理全能量计算对半导体材料电子学性能的定量理解就是一例;另外,通过对聚合体流变行为的建模,实现了对热塑过程设计的改进。随着科学计算和可视化在功能上的日益强大与使用便捷,建模变得越来越普遍,不仅是仿真、分析和预测,还包括数据库生成和虚拟测试。 材料研究是一个异常活跃和多学科交织的领域[1]。大学、工业界和政府研究实验室中的科学家和工程师们在其中扮演了重要的角色。爆炸性增长的材料研究协会会议与期刊如MRS Bulletin和Nature Materials见证了这一点。也有一些杂志是针对材料建模与模拟的,如the Journal of Computer-Aided Design[2]和Modeling and Simulation in Materials Science and Engineering[3],还有其它一些越来越多的会议论文集。 还有另外一个因素增加了材料建模的重要性,即政府部门注意到了模拟和建模是可靠的,能够作为实验验证的补充(并将最终取代之)。一些国防部、能源部资助的项目是针对高性能计算的开发与实现的,而这些高性能计算的目的是以更高的效率和更低的成本(有时候人员安全也是要考虑的)来实现目标任务。例如High Performance Computing Modernization Program[5]和the Accelerated Strategic Computing Initiative,后者是与the Science-Based Stockpile Stewardship紧密相关的,而这本身又是一个规模空前、责任重大的国家项目[6]。 由于材料建模的能力在深度和广度都在增加,因此材料的分子工程也变得更加切实。这是每个材料科学家和工程师长久以来的梦想,创造出来的新材料不仅性能优越、使用寿命延长、对环境影响小,而且不必考虑成本问题。尽管计算机辅助的材料设计落在计算机辅助的分子(药品)设计之后,它还是取得了重要的进展,尤其是在微电子、光学和磁应用方面的功能材料领域[7]。与之形成对比的是,对于结构材料来说,机械、热学和化学(合金,腐蚀等)等现象对可靠和具有预测性的建模提出了严峻的挑战。因此,对于理解和控制这些现象最有希望的方法是有效地将几种建模技术结合起来,每种技术只适合一种特定的长度和时间尺度。这个概念被称作多尺度材料建模。 在材料建模中的长度/时间尺度 在许多科学问题中,一个简单的物理现象可以通过几种层次或长度(时间)尺度来进行检验。例如,海浪冲上沙滩的复杂运动可以通过看电影的方式来观察,也可以观察构成波浪

大分子自组装的研究进展交流

基于环糊精和客体分子包结络合作用的拓 扑凝胶研究进展 (注:本文第1,2部分为通过学习该领域的相关知识以及所了解的基本概念和主要研究内容的介绍,第3部分为自己对Ito教授小组的研究内容的理解、最新研究内容的简介和自己部分观点的阐述。) 摘要:本文通过对大分子自组装基本概念的学习和了解,主要介绍了环糊精与聚合物的包结络合作用的原理。同时结合当前的一些研究热点,重点叙述了采用环糊精与有机无机聚合物,利用包结络合原理制备出具有“八字形”交联拓扑结构的聚轮烷凝胶的研究进展。 关键词:大分子自主装;环糊精;聚轮烷;拓扑交联 Abstract: In this paper, we learn the basic concepts of macromolecular self-assembly and mainly describe the inclusion complex principle of cyclodextrin with other polymers. Combined with some of the current research, we focus on reviewing the topologi cal gel with “figure-of-eight” cross-linking which was prepared by use of cyclodextrin and organic and inorganic polymers through the principle of inclusion complex. Keyword: macromolecular self-assembly; cyclodextrin; polyrotaxane; topological cross-linking 1前言 分子自组装是最普遍的物理化学现象,是构建生命体系的基本途径,如蛋白质的折叠、DNA的双螺旋结构,到病毒的形成、细胞的生成,甚至器官组织的形成,无一不是自组装在发挥着巨大的作用[1]。从化学意义上来讲,自组装是处于平衡状态下的各单元间通过非共价键(包括库仑力、范德华力、疏水相互作用、π-π堆叠作用力、氢键)的作用自发形成稳定的、结构明确有序的聚集体的过程[2]。

超分子自组装材料的多尺度模拟研究方法

超分子自组装材料的多尺度模拟研究方法 1.1引言 超分子化学是研究基于分子间非共价键相互作用而形成的具有一定结构和功能分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等学科的交叉融合中,超分子化学已发展成超分子科学,是21世纪新概念和高技术的重要源头之一。相较于传统化学上所研究的共价键,超分子化学的研究对象是一些较弱且具有可恢复性的分子间相互作用,如氢键、金属配位、xπ堆积、疏水效应等,这些分子间弱相互作用是促进分子识别的关键,对超分子体系的分子识别和组装有着重要意义12。 超分子材料的性能取决于基本构筑单元的分子结构,在更大程度上依赖于这些构筑单元经过自组装得到的介观尺度聚集体的结构与相态,而自组装过程又是影响超分子聚集体结构及其功能的关键因素。超分子自组装过程的影响因素极其复杂,与传统凝聚态物质相比,超分子体系具有更高的流动性及环境依赖性,而正是体系热涨落及外部环境的约束性共同导致超分子体系的新行为,主宰体系演化的机制己从凝聚态物理传统的相互作用能量机制转变为动力学和熵效应的共同作用。外部影响因素或者体系自身的耗散作用能够驱动超分子体系自组装形成各种丰富的结构,从而具有不同的功能及应用范围。

超分子体系自身结构的特点使得体系演化速度慢、松弛时间谱分布宽4.例如,单链聚合物的空间尺度从化学键键长(100m)延伸到链旋转半径(103m),而相应的时间尺度从化学键的振动(10-15可延伸到整条聚合物链的松弛和扩散(105s)。如果考虑聚合物链之间的缠结效应,聚合物链的松弛时间会更长阿。超分子自组装过程也涵盖非常大的空间和时间尺度:超分子材料的形成需要从基本构筑单元的分子尺寸(10°m)过渡到典型有序功能结构的尺寸(10m),此外有序功能结构转变动力学往往发生在微秒或更长的时间尺度上10l对于超分子材料体系而言,由于实验手段的一些限制,许多情况下很难获得这些复杂分子结构在多个尺度上的结构及动力学性质。虽然计算机硬件和算法在近些年得到快速发展,计算机模拟已经成为在各个层面研究超分子自组装材料体系不可或缺的组成部分,但到目前为止还没有一种模拟方法能够同时描述超分子组装体系微观结构、介观组装形貌及宏观材料功能等多个尺度上的性质。因此建立有效的多尺度模拟方法,增强不同尺度模拟方法之间的衔接和信息传递是一项十分紧迫的任务,这也是发展多尺度模拟方法的核心目标。由于缺少单一的模拟方法应用于超分子材料体系的多尺度分析,因此发展多尺度模拟方法的主要任务是把不同尺度上的模拟方法进行完善,同时发展对这些单一尺度模拟方法进行有效连接的手段传统意义上的计算机模拟方法是 随着计算机的发明一起发展起来的。根据研究体系运动的确定性与否分为分子动力学方法21和蒙特卡罗方法1两大类。分子动力学方法是建立在经典力学基础之上,通过求解粒子的运动方程来模拟体系随

超分子自组装及其应用的研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73421 课程名称:超分子化学 论文题目:超分子自组装及其应用的研究进展 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:李文卓 二○一四年六月

超分子自组装及其应用的研究进展 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:分子自组装是近年来倍受重视的国际前沿课题,它将会极大促进信息、能源、生命、环境和材料科学等学科领域的发展,介绍了基于氢键、π键、配位键、双亲分子4种自组装体系,重点综述了这4种自组装体系在高分子合成领域中的最新进展,最后对超分子自组装的发展趋势做了展望。 关键字:超分子;自组装;应用;进展 Advances in supramolecular self-assembly and its applications WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract:Supramolecular self-assembly is a highly valued field in recent years, it will greatly promote the development of information, energy, life, environmental and materials science disciplines. This article describes four kinds of self-assembled system based on hydrogen bond, π bond, coordination bond and amphiphilic molecules. Mainly review its applications and research progress in the fields of supramolecular polymer synthesis. Finally make the prospects for its development. Key words: Supramolecular; self-assembly; application; Progress 1 超分子化学的概念 超分子化学简言之是研究各个分子间通过非共价键作用形成具有特定功能体系的科学。从而使化学从分子层次扩展到超分子层次。这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。也称为超分子化学(supermolecular chemistry)。超分子化学主要研究超分子体系中基元结构的设计和合成体系中弱相互作用。体系的分子识别和组装体系组装体的结构和功能以及超分子材料和器件等等。它是化学和多门学科的交叉领域。它不仅与物理学、材料科学、信息科学、环境科学等相互渗透形成了超分子科学,而更具有重要理论意义和潜在前景的是在生命科学中的研究和应用。例如生物体内小分子和大分子之间高度特异的识别在生命过程中的调控等。

多尺度模拟方法概述 计算传热学作业

《计算传热学》学期作业 多尺度模拟方法概述 摘要:本文简单介绍多尺度模拟的思想,应用及存在的问题。 关键词:数值模拟;多尺度模拟 世界的本质是多尺度的,在不同的尺度下物质表现出不同的特征。如流体在分子尺度下表现为离散的不确定的粒子,而在宏观尺度下表现为连续的确定性的介质。在不同的时间和空间尺度下由于其尺度特性的不同,往往所采用的方法也不同,如图1[1]所示。 图1各种空间时间尺度下适用的模拟方法 文献[2]利用Kn数来鉴定何种特征尺度下流体流动适合用何种方法。Kn数的物理意义是分子平均自由程与特征长度的比值。 Kn<10-3,流动符合连续介质假设,可用N-S方程; 10-310,分子流动,可用分子动力学模拟方法。 模拟方法大致可分为宏观方法,介观方法,微观方法。宏观方法即流动符合

连续介质假设,传热的空间尺度和时间尺度符合傅立叶导热定律;微观方法是从分子运动碰撞理论来建立方程;介观方法是介于微观方法和宏观方法之间。这三种方法各有优缺点。宏观方法不能揭示微观的物理现象,但是方法成熟,应用方便。微观或介观方法更适合描述极端尺度的物理现象,但是计算量巨大,方法不成熟,工程应用极少。如果在采用宏观方法的过程中,可将微观尺度的信息带入,建立一种微观——宏观耦合的多尺度模拟方法可以结合两者的优点,又可以削弱两者的缺点。 多尺度问题表现[3]为: 已知一个模型的宏观描述, 但这种宏观描述在某些局部区域失效, 必须要用低尺度微观非线性描述代替。模型的微观特性既受制于宏观上的作用因素, 又可能显著影响宏观性能。但微观结构, 性能与状态何时、以怎样的途径去影响宏观性能并不清楚。 假定一个给定系统的微观行为可以使用微观模型变量u表示, 系统的宏观行为用宏观模型变量U表示, 那么宏观模型变量U与微观模型变量u可以通过压缩乘子Q或者重构算子R联系起来: U=Qu RU=u 多尺度模拟的难度在于两种尺度的耦合,即如何建模。建模的策略有两种[4-6]:一种策略是先在较低的尺度上建模, 然后将结果放入高尺度模型中, 这是一个从小尺度到大尺度的递阶过程。但低尺度建模的理论是一个重要问题。采用这种策略的方法一般称作信息传递的多尺度方法或递阶的多尺度方法另一种策略是在不同尺度上同时建模, 将区域分成不同尺度定律控制的区域, 这些区域可以重叠也可以不重叠,在交界处实现连接。在这种策略中, 区域之间的连接也是一个重要问题采用这种策略的方法一般称作并发(一致) 的多尺度方法。 国内外许多学着都致力于开发多尺度模拟方法,主要是介观宏观耦合和微观宏观耦合。多尺度模拟可用于分析材料、化学、能源工程等领域的问题,特别是微小装置的结构、流动和传热问题。随着微纳米科学技术的发展诞生出一个新的技术领域,微/纳机电系统(Micro/Nano ElectroMechanical System,M/NEMS)。微机电系统在工业、通信、环境、生物、医疗和航空航天等领域有着十分广阔的应用前景。 对于M/NEMS 尺度来说,分子动力学模拟虽可提供原子尺度信息,但只能考虑几百万个原子,处理的规模太小;而连续介质力学模拟不能提供接触区域(通常只有几层原子)微观结构的变化;因而不利于人们全面地揭示微/纳尺度下各种现象的相关性。多尺度模拟在一个系统的不同区域内采用不同的模型。例如,在发生较大变形的区域采用量子力学或分子动力学模型,在Kn数较大的区域采用分子动力学模拟或格子Boltzmann方法,以获得该区域的原子尺度信息;在变

相关主题
文本预览
相关文档 最新文档