当前位置:文档之家› 石墨烯概念股一览

石墨烯概念股一览

石墨烯概念股一览
石墨烯概念股一览

石墨烯概念股票汇总一览

石墨烯概念股炒作契机与石墨烯概念股汇总

石墨其实并不陌生,铅笔笔芯就是由石墨和黏土混合而成的。石墨和煤的最大区别是挥发性高低不同,湖南郴州石墨矿一度被当做煤出售,而且目前的石墨矿大多被私人占有,大多以小作坊为主,生产的大多为石墨球、石墨棒的粗产品。正因为此,工信部实施准入管理,才使得行业处于新的竞争格局下。那么,石墨烯又是什么?其实也不神秘,当用铅笔在纸上轻轻划过时,划痕中就可能会有石墨烯。用专业点的话说,厚度只有一个碳原子的单层石墨,就是石墨烯。

石墨烯出现在实验室中大概在2004年,当时,英国的两位科学家从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二,不断地重复,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。

石墨烯是已知材料中最薄的一种,却是世界上已知的最硬的材料,美国机械工程专家杰弗雷?基萨教授形象地解释了石墨烯的强度:如果将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,然后试图用小木棍戳穿它,那么需要一头大象站在木棍上,才能戳穿它。

千万别以为制造石墨烯非常容易,前述英国科学家前后持续了一年多的时间,制造出的石墨烯也只有几平方微米,要用高倍显微镜才能观测。而且难度可以从其价格上得以验证,直到2008年4月,每平方厘米石墨烯价格依然高达令人瞠目的1亿美元。

如何制造大尺寸单晶石墨烯,这是石墨烯行业面临的最大困难,也是行业发展的前提,虽然目前制备高质量石墨烯的方法主要有胶带剥离法、碳化硅或金属表面外延生长法和化学气相沉积法(CVD),但远达不到工业应用层面。前两种方法效率低,不适于大量制备,而迄今由CVD法制备的石墨烯一般是由纳米级到微米级尺寸的石墨烯晶畴拼接而成的多晶材料。

石墨烯不仅是当前已知所有材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。可应用于制造光子传感器、基因电子测序、隧穿势垒材料等,还可以代替硅生产超级计算机等等,石墨烯的应用空间广阔。但缺点就是成本昂贵,从2004年问世至今,一直未能实现产业化。石墨烯未来在触摸屏、电子器件、储能电池、显示器、传感器、半导体、航天、军工、复合材料、生物医药等领域都有用武之地。

炒作契机:石墨烯价格变化、石墨烯生产技术提升、个股石墨烯消息、石墨烯应用扩大

联动概念:新材料概念股、碳纳米管概念、动力电池概念股

活跃龙头:金路集团、中国宝安、力合股份、华丽家族

石墨烯概念股相关上市公司汇总:

深市:金路集团(000510)中国宝安(000009)烯碳新材(000511)力合股份(000532)锦富新材(300128)

沪市:华丽家族(600503)悦达投资(600805)上海新梅(600732)

金路集团(000510)石

墨烯/制备技术

公司与中国科学院金属

研究所签订了《技术开

发合同》,双方同意在石

墨烯研发及产业化方面

展开平等互利的合作。

石墨烯制备技术已作价

出资入股,后续合作主

要基于石墨烯材料及其

应用技术与产业化技术

的研究,后续合作项目

所需石墨烯可从新公司

购入,不需重新投资制备石墨烯。除石墨烯制备技术外,公司与金属所合作的石墨烯项目目前尚处于实验室研发阶段。德阳烯碳高科公司注册资本10000万元,其中金路集团与中科院金属研究所以共同拥有的“石墨烯大量制备技术”各出资2000万元,各占注册资本的20%,其余各方以现金出资。新公司拟实施年产300吨石墨烯项目,项目分三期实施,每期建设年产100吨石墨烯产业化项目。2013年至2015年,实施第一期工程,建设年产100吨的生产装置及配套设施;三至五年时间,实施第二、三期工程,形成年产石墨烯300吨的生产能力。

中国宝安(000009)石墨烯/制备技术

公司通过宝安控股间接持有深圳贝特瑞新能源材料公司51.91%股权,子公司贝特瑞公司在原有石墨技术的基础上,开始了石墨烯的研发和产业化攻关,获得了多项石墨烯制备专利。锂离子电池用石墨烯导电剂处于测试认证阶段,石墨烯导电剂用于改善极片导电性获得初步评价认可;石墨烯纳米导电液、高分子-石墨烯复合材料、超级电容器用石墨烯材料等开发正在快速推进之中。

中泰化学(002092)石墨烯/制备技术

子公司厦门凯纳研发工作进展情况。厦门凯纳已向国家知识产权局递交的《尺寸可控的石墨烯微片的制备方法》、《具有高分散性的石墨烯/炭黑热塑性树脂母料及其制备方法》2项发明专利申请已受理。(2013年8月,股东大会同意公司以1412.78万元收购厦门凯纳35%股权。厦门凯纳是国内首批从事石墨烯、石墨烯微片生产研发的新兴专业化高科技企业。

烯碳新材(000511)

公司本次募投项目烯碳新材料研究院的主要研究方向是烯碳新材料研究:活碳、汽车动力电池所需锂离子电池负极材料、碳导热材料、高性能碳纤维、石墨烯、纳米碳材料。公司与清华大学核能与新能源研究院签署了关于新能源用烯碳新材料研发的合作协议。合作内容主要包括介孔活性碳的改性以及其应用定性研究;石墨烯纸的制备工艺和应用研究;高纯石墨的低成本制备工艺及其在电池、电解工业电极的应用研究。

力合股份(000532)

间接参股(1.679%)的常州二维碳素主要从事石墨烯透明导电薄膜材料的研发与生产。该公司经营范围包括应用于触摸屏、太阳能电池、柔性电子、OLED等领域透明电极的石墨烯薄膜材料的研发、技术服务、技术咨询;电子产品销售。间接参股的第六元素公司石墨烯生产处于中试阶段,尚没有形成规模化生产能力。

锦富新材(300128)石墨烯制备技术

2013年8月,公司以800万元分两期增资苏州格瑞丰,增资后占25%。苏州格瑞丰主要从事石墨烯制备及应用研究,拥有8项专利;目前尚未实现石墨烯规模化制备及应用。其创业团队有多年石墨烯等碳材料的研发经验,产品品质与性能处于国内外较高水平,市场拓展方面已经有了较好的布局,预期具有较好的投资收益。其石墨烯下游应用项目实施,公司拥有优先投资权。

华丽家族(600503)宁波墨西

公司控股股东南江集团及皙哲投资有限公司、中国科学院宁波材料技术与工程研究所、刘兆平及其研发团队于2012年4月共同组建了宁波墨西科技有限公司,该公司目前正在慈溪市慈东滨海区投资建设世界上第一条量产石墨烯生产线,预计将于2013年建成投产。

上海新梅(600732)宁波墨西

石墨烯概念:2013年3月,公司大股东兴盛实业拟将其所持有的占本公司总股本8.06%的股份转让给南江集团,南江集团已涉足石墨烯产业的投资和开发,主要处于初步投产和研发阶段,未来预期收益存在不确定性。

悦达投资(600805)

为加快实施公司新材料产业发展战略,公司拟以自有资金2000万元全资设立江苏悦达新材料公司。新材料公司经营范围为:炭类基础材料、新型材料、先进材料、复合材料、纳米材料等研发、生产、销售。新材料公司成立后,公司拟将持有的悦达墨特瑞公司70%股权转至新材料公司名下。公司将以新材料公司为平台,拓展在炭类材料、石墨烯等新材料领域的开发、合作与经营。公司出资1400万元设立江苏悦达墨特瑞新材料科技有限公司,该注册资本2000万元,公司持有70%的股权,自然人徐德善持有30%股权。该公司经营范围为石墨烯、石墨烯纳米片、石墨烯复合材料。公司目前正在筹划石墨烯产品研发,产品将主要应用于纺织服装、汽车电池和手机等。2013年上半年开始石墨烯生产工艺调试,试产石墨烯纳米片,并新建了研发实验室。

西藏城投(600773)

合作开发石墨烯-碳纳米管制备技术:2013年7月,公司及下属公司国能锂业与清华大学(化工系)签订600万元石墨烯-碳纳米管杂化物宏量制备技术开发合同。双方将合作进行新型超级电容器用的石墨烯-碳纳米管杂化物的宏量制备技术开发,包括所需要的催化剂、反应器、以及配套生产技术的开发。最终成果为电容用石墨烯-碳纳米管杂化物所涉及的催化剂、反应器、产品纯化技术和工艺,以纸质文件的形式提交。

中超电缆(002471)石墨烯电缆

石墨烯概念,日前与江南石墨烯研究院、西安交通大学、第六元素等公司签订共同开展石墨烯材料在电线电缆领域应用研究的合作意向书,公司在石墨烯电缆的研发与产业化方面开始布局。

乐通股份(002319)石墨烯油墨

公司与宁波墨西签署了《石墨烯油墨项目合作协议》,组建合资公司从事石墨烯油墨的研发和生产,计划总投资1亿元人民币,公司以现金出资人民币2400万元(占80%股权)。宁波墨西承诺将以最优惠的价格向合资公司稳定提供石墨烯原料,双方将利用自身的营销网络帮助合资公司推广石墨烯油墨产品。

南都电源(300068)石墨烯电池材料

2013年3月,公司“一种含有铅石墨烯复合材料的铅炭电池负极板”和“一种铅石墨烯复合材料”两项发明专利已获得国家知识产权局正式受理,1-2个月内将进入实质性审查阶段。

伟星股份(002372)集团层面有传闻涉足浙江大学高超教授石墨烯团队,浙江大学高超教授石墨烯团队主要研究石墨烯的宏量制备及宏观组装材料。核心技术及拟开发产品为单层石墨烯的宏量可控制备;

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯概念股票一览

石墨烯相关概念个股 中国宝安000009:其子公司贝特瑞为我国最大新能源锂电池炭负极生产商,石墨相关的 技术方面具天然优势。宝安具备充裕的石墨资源优势,其拥有的鸡西石墨矿探明超大储量,为后续石墨负极材料、石墨烯的研制打开了空间。长达6年的股权激励计划,行权价14.6元,使管理层与投资者利益保持高度一致。同时,公司土地储备具较强盈利能力,目前达650万方,平均地价不足千元。 中钢吉炭000928:公司是中国最大的综合性炭素制品生产企业,目前总产能15万吨/ 年,产品达到十一大类五十六个品种,主要有石墨电极、石墨阳极、炭块、特种炭制品、炭纤维制品等,广泛应用于冶金、化工、机械、电子、航天、军工、医疗及新材料等领域。产品远销欧美、东南亚、非洲等40个国家和地区。 走势上,中钢吉炭8连阳后,面临前期平台阻力位,后市或有调整可能。

方大炭素600516:公司2010年生产炭素制品16.8万Ⅱ屯,生产铁精粉67.16万n屯。 完成盈利营业总收入32亿元,同比增加4g%;归属于母公司的净利润4.06亿元,同比上升1012%;实现每股收益0.32元。利润增长来自:炭素制品行业供求好于2009年,公司炭素制品结构升级带来的利润提升;收购成都炭素的等静压石墨产品盈利能力强;莱河矿业产能和价格上涨带来的盈利提升。 4天的震荡调整,整体仍在周一的大阳线之内,整体走势仍在高位,清晰掉浮动筹码后有望继续上行 天富热电600509:公司的碳化硅产品在国际市场拥有一定的认知度,产品已经获得部分用户检测后的质量认可,实现了一定数量的晶片销售。 股价创近两年来新高,复牌后的调整机会可以逢低关注。

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯在超级电容器中的应用

石墨烯在超级电容器中的应用 前言本文对超级电容器分别从定义,工作原理,特点和分类做了简单介绍,然后以南开大学陈永胜教授的一篇综述介绍了石墨烯在超级电容器中的应用,并做了具体的例证分析。 关键词:超级电容器石墨烯修饰石墨烯 在储能领域的发展史上,大致可以分为第一代机械师储能,比如飞轮、发条,第二代化学式储能,如铅酸电池、镍氢镍镉电池以及锂离子电池等,第三代物理式储能如超级电容器。超级电容器其实在我们生活中无处不在,如交通领域,在火车、巴士、汽车、卡车,能源领域,如新能源、风能和太阳能、电网削峰填谷、能量回收,工业领域,如起重机、阀门、挖掘机以及一些重型设备等,在电子领域,如硬盘、存储器和后备电源。超级电容器已经是我们生活中必不可少的一部分,它在我们的社会中扮演着一个必不可少的角色,所以我们有必要深入地去了解一下什么是超级电容器。 超级电容器(supercapacitors),又称为电化学电容器(ECs)。是一种介于电池和传统电容器之间的新型储能元件。它是一种功率型的储能器件,通过电极材料与电解液界面形成双电层,或电极表面快速的氧化还原反应来储存电能。主要包括:电极材料、集流体、电解液 和隔膜,原理图如下:

超级电容器有如下特点:(1)超高比容量(0.1-6000F)。比传统电容器同体积电容量大2000-6000倍。(2)充电速度快,只要充电几十秒到几分钟就可达到其额定容量的95%以上;而现在使用较多的铅酸电池、锂离子电池等充电通常需要几个小时。(3)超长寿命,充放电大于40万次。(4)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;(5)温度范围宽:–40~ +70℃,一般电池是–20 ~ +60℃。(6)免维护,环境友善。 它和我们常见的化学式储能的电池相比,以及和传统电容器在功率密度和能量密度上的比较如下图所示: 超级电容器按机理可以分为两类:一类是双电层电容,依靠物理

中国石墨烯行业发展报告

2016年中国石墨烯行业发展报告 前言 2016年以来,石墨烯概念股如东旭光电、华丽家族、方大炭素、中泰化学等备受资本追捧。国内外各大锂电企业有关石墨烯项目布局,有的选择石墨烯导电剂技术研发,有的走向石墨烯复合正负极材料之路。这其中,不乏号称已经生产出“石墨烯电池”的锂电企业。石墨烯火热的背后,具体应用领域潜力如何?都有哪些助推的洪荒之力? 一、国家政策鼓励支持石墨烯产业发展 近年来,国家出台多项政策,鼓励支持石墨烯产业发展。国家各部委不断出台指导意见和规划文件,明确了对石墨烯材料的支持与发展要求。 二、石墨烯的技术研究进入快速发展轨道 从石墨烯相关专利申请趋势看,其相关专利的申请在上个世纪末就已出现,但随后发展较为缓慢。直到2008年后,专利申请数量才开始出现实质性的大幅增长。特别是在安德烈·K·海姆教授和科斯佳·诺沃谢洛夫研究员因对石墨烯的研究共同获得2010年诺贝尔物理学奖以后,全球石墨烯专利申请数量开始急剧增长,其中,2014年全球石墨烯相关专利的申请数量就高达5047件,表明石墨烯的相关技术研究进入快速发展轨道。 根据石墨烯相关专利历年的申请情况,结合每年专利发明人数量,2008年以前为石墨烯研发技术的萌芽阶段,2008年至2015年为技术的成长阶段,而2015年之后石墨烯研发生产及应用技术开始趋向于成熟,即成熟阶段初期,这个阶段石墨烯开始逐步小规模生产,但是,其生产及应用技术仍有待于进一步突破。 三、石墨烯应用需求多样化,引领多领域划时代的变革 石墨烯是由碳原子组成的六角型呈蜂巢晶格材料,单层石墨烯薄膜只有一个碳原子厚度,是目前已知的最薄的一种新材料,具有极高的比表面积、超强的导电性和强度以及透明度等优点。石墨烯同时具备透光性好、导热系数高、电子迁移率高、电阻率低、机械强度高等众多普通材料所不具备的性能,未来有望在电子、储能、催化剂、传感器、光电透明薄膜、超强复合材料以及生物医疗等众多领域应用,可以说是未来最有前景的先进材料之一,引领多领域划时代的变革。 《中国制造2025》提出:明确要求高度关注颠覆性新材料对传统材料的影响,做好超导材料、纳米材料、石墨烯、生物基材料等战略前沿材料提前布局和研制,加快基础材料升级换代。《<中国制造2025>重点领域技术路线图(2015年版)》中称,石墨烯产业“2020年形成百亿产业规模,2025年整体产业规模突破千亿”的发展目标。 1、导电油墨:石墨烯导电油墨具备成本优势

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

2016股票细分行业概念股

2016年细分行业概念龙头股 一、新兴信息产业龙头 1、车联网龙头——软控股份002073 启明信息002232.荣之联002642 2、通信网络龙头——恒宝股份002104 3、通信设备制造龙头——新海宜002089.东方通信600776 4、物联网互联龙头——三五互联300051.大唐电信600198.二六三002467 5、三网融合龙头——数源科技000909.广电网络600831.中电广通600764 奥维通信002231歌华有线600037 6、高性能集成电路龙头——上海贝岭600171 7、高端软件龙头——科大讯飞002230 8、云计算龙头——拓尔思300229.浪潮信息000977.中国软件600536.华东电脑600850 .,长城电脑000066 9、物联网超高频射频识别龙头——远望谷002161 10、物联网二维码龙头——新大陆000997 11、物联网自动识别芯片龙头——厦门信达000701 12、物联网智能卡龙头——东信和平002017.恒信移动300081 拓维信息002261 中青宝300052 13、新型平板显示龙头——京东方A(000725). 000727 .002106 二、节能环保 1、智能建筑龙头——泰豪科技600590.天壕节能300332 2、高效LED 龙头——三安光电600703.深天马000050.莱宝高科002106 3、高效节能灯龙头——浙江阳光600261.江苏阳光600220 万讯自控600112.天壕节能300332 4、高效节水龙头——新疆天业600075 5、先进污水处理龙头——创业环保600874.首创股份600008.中原环保000544 .国中水务600187.巴安水务300262.永清环保300187.开能环保300272

专项对点练28 非连续性文本的概括题

专项对点练(28)非连续性文本的概括题 一、(2019·安徽宣城模拟)阅读下面的文字,完成1~3题。 材料一2017中国国际石墨烯创新大会在南京举行,同期还举办了2017中国国际石墨烯材料应用博览会。包括石墨烯制备、应用、设备、原材料等各个领域106家单位、企业等组织参展。全方位展示了目前国内石墨烯相关产品、设备、技术等。 在大会开幕式上,诺奖得主英国曼彻斯特大学教授安德烈·海姆说:“中国在石墨烯应用这一领域引领世界。”海姆表示:“一两年前,中国企业还大多停留在制备石墨烯碳粉这一上游产业上,而今年我发现已有上百个企业参与到了石墨烯产品的开发和市场化上。” 海姆说,中国石墨烯产业化进程已经超出了他的想象。不过,当前石墨烯产品存在一些同质化发展的倾向,如何进一步激发石墨烯的潜力、树立石墨烯的中国品牌,是整个行业需要进一步探索的问题。对此,海姆认为,新材料的应用需要很长一段时间的磨合,应给予石墨烯充分的耐心。 (摘编自《从技术角度告诉你石墨烯应用现状及存在问题》, 2017年9月27日石墨烯资讯) 材料二一个值得注意的现象是,虽然石墨烯应用“多点开花”,但高端应用依然缺位。哈尔滨工程大学教授曹殿学举例说,虽然早有企业生产出石墨烯手机屏,但是依然难于量产;而利用石墨烯应用于高端电路等领域的企业在中国也还没有出现。“低端应用可以发挥石墨烯‘工业味精’的作用,这将对传统产业升级产生积极影响;我们更希望通过10年左右时间,实现石墨烯在高端应用领域有所突破。” 既然石墨烯下游应用和产业化在加速推进,为什么高端应用却持续缺位呢?“这并非是石墨烯本身的性能不行,而是技术还没有达到这一阶段。”曹殿学分析,“目前从事石墨烯下游应用的多数为中小民营企业,对于它们来说,生存还是第一问题。受制于高端应用的长期高投入及高风险,中小型民营企业在高端领域少有布局,实力雄厚的大型国企对石墨烯这一新材料也缺乏积极性。” (摘自《告诉你真实的石墨烯产业现状》, 2017年9月27日搜狐网)

石墨烯

1.石墨烯(Graphene)的结构石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。双层石墨烯 (Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。少层石墨烯 (Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA 堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为0.7~1.0nm。这种三维

石墨烯

H a r b i n I n s t i t u t e o f T e c h n o l o g y 纳米技术课堂报告 课程名称:纳米技术 院系:航天学院微电子科学与技术系班级:21系 设计者:王立刚 学号:14S121034 指导教师:王蔚 哈尔滨工业大学

纳米结构下的石墨烯材料 第一章,纳米小尺寸效应 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。以上这些性能决定了纳米材料在表面效应、小尺寸、量子尺寸效应、量子隧道效应、电子信息领域、航天航空、环保能源等各方面均有应用,尤其是在小尺寸方面的应用。 小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应。 第二章,石墨烯的特性 一直以来,科学家们都认为单层的石墨烯是不可能稳定存在的。他们一直都错误地认为,若要用力将石墨烯从石墨上剥离下来的话,那么石墨烯的结构就会被这个力所破坏,而且固体的熔点也会随着粒子厚度的减小而非常快的减小,当粒子的厚度减小到几个原子层厚度的时候,固体就会熔化。另外,在二维晶体中由于内能的存在,原子的振动幅度会变得非常大,因此原子的错位将变得相当的严重,这将导致原子与未与它成键的原子间的距离的大小和与它成键的原子间的距离的大小几乎相同,因此它不能保持单层的结构。 然而2004年,英国曼彻斯特大学的两位科学家安德烈·海姆和康斯坦丁·诺沃消洛夫在实验室中竟然成功地制备了稳定的石墨烯。这无疑是让世界震惊的,然而他们得到稳定石墨烯的方法却简单到不可思议。他们先通过已经知道的方法得到石墨片,这个石墨片相对而言是非常薄的,再将这个石墨片剥离得到更加薄的石墨薄片,然后用一种特殊的胶带将这个石墨薄片的两面都粘上,再将胶带撕开,这样石墨薄片就会被一分为二,变得更加薄。石墨薄片在这样的不断被剥离

石墨烯基复合材料的制备及吸波性能研究进展

石墨烯基复合材料的制备及吸波性能研究 进展 摘要随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得电磁波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、频带宽、强吸收的吸波材料。 石墨烯作为世界上最薄硬度最强的纳米材料,优点很多,例如石墨烯制成的片状材料中,厚度最薄,比表面积较大,具有超过金刚石的强度等,这些优点满足吸波材料的需求。石墨烯基复合材料在满足吸波材料基本要求的基础上又提升了材料吸收波的能力。 本文简单地介绍了吸波材料及石墨烯,综述概况了石墨烯基复合材料的研究现状,包括石墨烯复合材料制备方法、微观形貌以及复合材料的吸波性能,提出了石墨烯基复合吸波材料未来的发展方向。 关键词石墨烯基;吸波材料;纳米材料

Progress in Preparation and absorbing properties of graphene-based composites Abstract With the gigahertz (GHz) frequency range of the electromagnetic waves are widely used in wireless communications, such as electromagnetic interference, information leaks and other problems to be solved. In addition, military stealth technology in the field of electromagnetic and microwave guided missiles require such electromagnetic wave absorbing material is subjected to a sustained and widespread concern. Therefore, an urgent need to develop a thin, wide frequency band, a strong absorption of absorbing materials. Graphene as the strongest of the world's thinnest hardness nanomaterials, has many advantages, such as a sheet material made of graphene, the thinnest, large specific surface area, with more than a diamond of strength, these benefits meet absorbers It needs. Graphene-based composites on the basis of absorbing materials to meet the basic requirements but also enhance the ability of the material to absorb waves. This article briefly describes the absorbing material and graphene, graphene reviewed before the status quo based composite materials research, including graphene composite material preparation, morphology and absorbing properties of composites made of graphene-based composite

石墨烯是一种由碳原子构成的单层片状结构的新材料

新材料 石 墨 烯 石墨烯及其应用 石墨烯是一种由碳原子构成的单层片状结构的新材料,以sp2杂化轨道组成,六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的

二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm²/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管;

石墨烯项目申报材料

石墨烯项目 申报材料 规划设计/投资分析/产业运营

石墨烯项目申报材料说明 2016年8月,国务院出台的《十三五国家科技创新规划》明确重点发展以石墨烯等为代表的先进碳材料。2017年1月,工信部、发改委、科技部、财政部联合发布了《新材料产业发展指南》,对石墨烯、超导材料等提出了任务要求,提出大力发展石墨烯产业。2017年4月,科技部发布《十三五材料领域科技创新》,明确指出了石墨烯碳材料技术发展领域:单层薄层石墨烯粉体、高品质大面积石墨烯薄膜工业制备技术,柔性电子器件大面积制备技术,石墨烯粉体高效分散、复核与应用技术,高催化活性炭及材料应用技术。 该石墨烯项目计划总投资5133.17万元,其中:固定资产投资4044.47万元,占项目总投资的78.79%;流动资金1088.70万元,占项目总投资的21.21%。 达产年营业收入7693.00万元,总成本费用5895.79万元,税金及附加87.16万元,利润总额1797.21万元,利税总额2132.26万元,税后净利润1347.91万元,达产年纳税总额784.35万元;达产年投资利润率35.01%,投资利税率41.54%,投资回报率26.26%,全部投资回收期5.31年,提供就业职位106个。

坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 ...... 报告主要内容:项目基本情况、项目建设及必要性、市场分析预测、 建设规划方案、选址分析、土建工程、工艺说明、环境保护说明、项目职 业安全、风险评价分析、项目节能情况分析、实施安排、项目投资规划、 项目经济评价分析、总结说明等。

史上最全中国制造2025概念股大全

史上最全中国制造2025概念股大全 查看本文热度 来源:同花顺综合2015-05-20 09:42:53 | 我要分享 腾讯微博 QQ空间 人人网 新浪微博 157 0 选股神器涨停哪里跑点击详情>> 《中国制造2025》来了! 经李克强总理签批,国务院日前印发《中国制造2025》,部署全面推进实施制造强国战略。这是我国实施制造强国战略第一个十年的行动纲领。 《中国制造2025》提出,坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,坚持“市场主导、政府引导,立足当前、着眼长远,整体推进、重点突破,自主发展、开放合作”的基本原则,通过“三步走”实现制造强国的战略目标:第一步,到2025年迈入制造强国行列;第二步,到2035年我国制造业整体达到世界制造强国阵营中等水平;第三步,到新中国成立一百年时,我制造业大国地位更加巩固,综合实力进入世界制造强国前列。 围绕实现制造强国的战略目标,明确了9项战略任务和重点:一是提高国家制造业创新能力;二是推进信息化与工业化深度融合;三是强化工业基础能力;四是加强质量品牌建设;五是全面推行绿色制造;六是大力推动重点领域突破发展,聚焦新一代信息技术产业、高档数控机床和机器人(300024)、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农机装备、新材料、生物医药及高性能医疗器械等十大重点领域;七是深入推进制造业结构调整;八是积极发展服务型制造和生产性服务业;九是提高制造业国际化发展水平。 《中国制造2025》明确,通过政府引导、整合资源,实施国家制造业创新中心建设、智能制造、工业强基、绿色制造、高端装备创新等五项重大工程,实现长期制约制造业发展的关键共性技术突破,提升我国制造业的整体竞争力。为确保完成目标任务,提出深化体制机制改革、营造公平竞争市场环境、完善金融扶持政策、加大财税政策支持力度、健全多层次人才培养体系、完善中小微企业政策、进一步扩大制造业对外开放、健全组织实施机制等8个方面的战略支撑和保障。 中国制造2025概念股大全名单一览 一、工业互联网机器人(即工业4.0) 同花顺点评:中国制造2025规划,最主要内容就是工业4.0和机器人。 工业互联网和机器人无疑是“中国制造2025”的核心内容。随着和“互联网+”的融合,传统制造业的升级,也将围绕工业互联网和机器替代的路线来展开。 工信部部长苗圩日前就表示,工业企业应用互联网技术提高整体竞争力,就有很大的发展潜力,也是“互联网+”最早实现的行业之一。 而智能机器人和高档数控机床的使用,则将成为先进高端制造装备的“大脑”。国际机器人协会的数据显示,去年全球工业机器人销量增长27%,达到22.5万台左右,其中中国市场的工业机器人销量增长54%。 国泰君安表示,工业互联网代表着新的生产力方向,将为传统行业带来巨大效率改进,未来20年中国工业互联网有望可带来3万亿美元GDP增量,相关产业市场空间巨大。

石墨烯概念股一览

石墨烯概念股票汇总一览 石墨烯概念股炒作契机与石墨烯概念股汇总 石墨其实并不陌生,铅笔笔芯就是由石墨和黏土混合而成的。石墨和煤的最大区别是挥发性高低不同,湖南郴州石墨矿一度被当做煤出售,而且目前的石墨矿大多被私人占有,大多以小作坊为主,生产的大多为石墨球、石墨棒的粗产品。正因为此,工信部实施准入管理,才使得行业处于新的竞争格局下。那么,石墨烯又是什么?其实也不神秘,当用铅笔在纸上轻轻划过时,划痕中就可能会有石墨烯。用专业点的话说,厚度只有一个碳原子的单层石墨,就是石墨烯。 石墨烯出现在实验室中大概在2004年,当时,英国的两位科学家从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二,不断地重复,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。 石墨烯是已知材料中最薄的一种,却是世界上已知的最硬的材料,美国机械工程专家杰弗雷?基萨教授形象地解释了石墨烯的强度:如果将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,然后试图用小木棍戳穿它,那么需要一头大象站在木棍上,才能戳穿它。 千万别以为制造石墨烯非常容易,前述英国科学家前后持续了一年多的时间,制造出的石墨烯也只有几平方微米,要用高倍显微镜才能观测。而且难度可以从其价格上得以验证,直到2008年4月,每平方厘米石墨烯价格依然高达令人瞠目的1亿美元。 如何制造大尺寸单晶石墨烯,这是石墨烯行业面临的最大困难,也是行业发展的前提,虽然目前制备高质量石墨烯的方法主要有胶带剥离法、碳化硅或金属表面外延生长法和化学气相沉积法(CVD),但远达不到工业应用层面。前两种方法效率低,不适于大量制备,而迄今由CVD法制备的石墨烯一般是由纳米级到微米级尺寸的石墨烯晶畴拼接而成的多晶材料。 石墨烯不仅是当前已知所有材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。可应用于制造光子传感器、基因电子测序、隧穿势垒材料等,还可以代替硅生产超级计算机等等,石墨烯的应用空间广阔。但缺点就是成本昂贵,从2004年问世至今,一直未能实现产业化。石墨烯未来在触摸屏、电子器件、储能电池、显示器、传感器、半导体、航天、军工、复合材料、生物医药等领域都有用武之地。 炒作契机:石墨烯价格变化、石墨烯生产技术提升、个股石墨烯消息、石墨烯应用扩大 联动概念:新材料概念股、碳纳米管概念、动力电池概念股 活跃龙头:金路集团、中国宝安、力合股份、华丽家族 石墨烯概念股相关上市公司汇总: 深市:金路集团(000510)中国宝安(000009)烯碳新材(000511)力合股份(000532)锦富新材(300128) 沪市:华丽家族(600503)悦达投资(600805)上海新梅(600732)

石墨烯结构

石墨烯结构 石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬; 作为单质,它在室温下传递电子的速度比已知导体都快。 石墨烯(Graphene)是一种由碳原子构成的单层片 状结构的新材料。是一种由碳原子以sp2杂化轨道组成 六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的 二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。 石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为Å。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排

石墨烯

石墨烯简介 有这样一种材料,它的机械强度是世界上最好钢的100倍,有着最快的电子迁移率,1秒内就可以传完两张蓝光DVD的容量……这就是石墨烯。 石墨烯是从石墨中剥离出的单层碳原子面材料,由碳原子紧密堆积成单层二维蜂窝状晶格结构,也可称为“单层石墨”(碳原子以sp2混成轨域呈蜂巢晶格排列构成的单层二维晶体,由碳原子和其共价键所形成的原子尺寸网,为平面多环芳香烃原子晶体),它是人类已知的厚度最薄、质地最坚硬、导电性最好的材料。 一、石墨烯发展简史 20世纪初,科学家开始接触到石墨烯。2004年,英国曼彻斯特大学的物理学教授安德烈〃杰姆(AndreGeim)和他的学生克斯特亚〃诺沃消洛夫(Ko-styaNovoselov)用简单易行的胶带分离法制备出了石墨烯。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,把石墨片一分为二,不断重复这样的操作,于是薄片越来越薄,最后得到了仅由一层碳原子构成的薄片,即石墨烯。2010年,他们二人凭借着在石墨烯方面的创新研究获得了诺贝尔物理学奖。获奖后,一些媒体渲染性地报道:“物理学家用透明胶和铅笔赢得诺贝尔奖。” 二、特性 石墨烯具有优异的力学、光学和电学性质:结构非常稳定,迄今为止研究者仍未发现石墨烯中有碳原子缺失的情况,碳原子之间的连接非

常柔韧,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍,如果用石墨烯制成包装袋,它将能承受大约两吨重的物品;几乎完全透明,却极为致密、不透水、不透气,即使原子尺寸最小的氦气也无法穿透;导电性能好,石墨烯中电子的运动速度达到了光速的1/300,导电性超过了任何传统的导电材料;化学性质类似石墨表面,可以吸附和脱附各种原子和分子,还有抵御强酸强碱的能力。 三、制备方法 石墨烯的制备方法主要有机械法和化学法两种。机械法包括微机械分离法、取向附生法和加热碳化硅法,化学法包括化学还原法与化学解理法、化学气相沉积法等。 2008年,常州二维碳素科技有限公司于庆凯博士首次提出以铜箔为基质的化学气相沉积法合成石墨烯,这已成为目前石墨烯合成的主要方法。2010年,韩国科学家用此项技术较便宜地制备出了30英寸的石墨烯,并研制出以石墨烯为电极的触摸屏样品。 四、应用方向 石墨烯在物理学、化学、信息、能源以及器件制造等领域,都具有巨大的研究价值和应用前景。可用于制造超轻防弹衣、超薄超轻型飞机材料、“太空电梯”缆线、抗菌材料、超微型晶体管、代替硅用于电子产品、生产未来的超级计算机等等。 也许有一天,你会在电视上看到这样的广告。“××电脑采用1.5T 石墨烯处理器……”;也许有一天,你把掌上电脑三折两叠塞进牛仔裤后兜,这比各种Pad都拉风;也许有一天,应用了石墨烯的光调制器,可使网络速度快一万倍;也许有一天,石墨烯实现了直接快速低成本

相关主题
文本预览
相关文档 最新文档