当前位置:文档之家› 浮法抛光超光滑表面加工技术

浮法抛光超光滑表面加工技术

浮法抛光超光滑表面加工技术
浮法抛光超光滑表面加工技术

浮法抛光超光滑表面加工技术

浮法抛光技术首先出现于日本,是加工超光滑表面的先进技术之一。本文介绍用浮法抛光加工超光滑表面的机械结构和加工过程,与传统的沥青抛光方法进行比较,分析材料去除机理。最后简单介绍我国研究浮法抛光技术的进展。

正文

一、浮法抛光技术的产生与现状

光学零件的加工基本包括切割成型、研磨、抛光三道工序;最终的光学表面质量由抛光决定,因此抛光是最重要的工序。通常高质量光滑表面的抛光是以沥青或纤维等弹性材料作磨盘,配以抛光液或研磨膏来达到技术要求。

近年来,光学及微电子学极大地推动了光学加工技术的发展。大规模或超大规模集成电路对所用基片(通常为硅、锗等材料)的表面精度提出了很高的要求;短波段光学的发展尤其是强激光技术的出现,对光学元件表面粗糙度的要求极为苛刻。表面粗糙度低于1nm rms的超光滑表面加工技术已成为光学及微电子学基础技术领域的重要课题。靠传统的经验依赖性的光学加工方法是不能满足日益发展的光学、电子学要求的。国内外已有许多科学家在探索加工高精度超光滑表面的各种技术。一般原子直径小于0.3nm,而超光滑表面微观起伏的均方根值为几个原子的尺寸,因此实现超光滑表面加工的关键在于实现表面材料原子量级的去除。

1997年,日本大坂大学的难波义治教授发明了浮法抛光(Float Polishing)加工超光滑表面技术。通过使用这项技术,可使刚玉单晶的平面面形达到λ/20,表面粗糙度低于1nm Rz。1987年的研究报告表明,使用浮法技术进行多种材料的抛光实验,对φ180mm的工作,可以达到表面粗糙度优于o.2nm rms,平面度优于λ/20=0.03μm。

目前在日本,浮法抛光技术应用很广泛,尤其是用于录音机、录像机或计算机的磁头生产;每年有2500万个磁头就是采用这项技术制造的。近年来,德国也在研究类似抛光技术。德国Ulm大学的欧威(O. Wei s)研究表明,对白宝石材料的φ7mm的工件进行抛光,30分钟后达到表面粗糙度小于0.05nm的结果。

将浮法抛光样品与普通抛光样品比较可以发现浮法抛光有许多优点。普通沥青式抛光使用硬度大于工件的磨料,也可以获得所谓超光滑表面的粗糙度指标,但对磨盘的平面度的修正很有讲究,这影响到被抛光工件的面形。普通抛光后的工件,其边缘几何尺寸总不太好,经常有塌边或翘边现象;并且在高倍显微镜下可以看到表面有塑性畸变层。

应用浮法抛光法技术获得的超光滑表面,不仅具有较好的表面粗糙度和边缘几何形状,而且抛光晶体面有理想完好的晶格,亚表面没有破坏层,并且由抛光引起的表面残余应力极小。

二、浮法抛光机的机械结构与抛光过程

浮法抛光机的机械构造类似于定摆抛光机。在对工件进行浮法抛光前,被加工工件首先要进行预抛光,干燥。就可以浮法抛光。

抛光过程中,抛光液随磨盘旋转;由于流体运动产生动压,工件与磨盘之间形成一层薄薄的液膜,使得工

件浮在磨盘上旋转,保持软接触。液体旋转时的离心作用使抛光液中粒度稍大的颗粒被甩到四周,并渐渐沉到底部,这样夹在磨盘与工件间的液膜中的磨料越来越精细均匀;被加工光学表面越来越光滑,最后达到超光滑。

工件的面形主要由磨盘面形决定,浮法抛光中,由于锡材料本身的特性,其硬度及流动性适中,在抛光中锡盘的磨损可以忽略,因而锡盘的平面度是很容易控制的;这样保证了工件面形的稳定性。传统抛光的经验性主要是由于沥青盘的抛光中变形决定的;使用锡盘后,这种经验性抛光就可以成为稳定抛光。

三、浮法抛光的去除机理

浮法抛光表面粗糙度可达到亚纳米量级,接近原子尺寸,工件材料的去除是原子水平上进行的。工件表面原子在磨料微粒的撞击作用下脱离工件主体,从而被去除。原子的去除过程,是磨料与工件在原子水平的碰撞、扩散、填补过程。

四、磨料的选取

根据去除机理,利用外表面层与主体原子结合能的差异,任何材料都可作为磨料去除工件表层原子,可以获得无晶格错位与畸变的表面。

在进行浮法超光滑表面的抛光中,选择合适的材料作为磨料很重要。一般用于浮法抛光的磨料为粒度约7 nm的SiO2微粉。

综上所述,浮法抛光技术的关键在于:

高面形精度的锡盘,以此来保证工件面形的高精度。

粒度小于20nm的磨料,目的在于增大工件与磨盘的接触面积,增多磨料颗粒与工件表面的碰撞机会,达到原子量级去除的目的。

抛光液将工件和磨盘浸没,靠流体作用形成工件与磨盘间液膜,为磨料颗粒与工件的碰撞提供环境。五、我国的研究现状

长春光机所应用光学国家重点实验室,在短波段光学的带动下,从1992年开始研究浮法抛光技术,已研制出一台抛光原理样机,并进行了大量实验。目前对K9玻璃样片的抛光实验结果表明,表面粗糙度优于1nmRa。所使用磨料粒度约为25nm。有关实验正在继续进行,并且一台高精度的浮法抛光实验样机正在研制中。

手工抛光基础知识

手工抛光是用时间和经验而获得的一项技术。本章讨论手工抛光的一些基础知识。

用沥青抛光光学表面称为光学抛光。沥青抛光模或抛光工具是用一种混合抛光材料制成的,在标准室温条件下,抛光层稍有塑性流动。抛光光学表面采用两种型式的沥青抛光模。第一种是网格型式,在大网格面上压制出更小的网格面形。第二种是带有粗槽线的整体型式。

沥青胶配方

沥青胶的配方一般对同行是保密的,每一个光学技工都有其喜爱的沥青抛光胶的配方和方法。因此,并不限制他们在胶锅里混入些什么东西。管理人员和公司通常只坚持一个方针,就是要求每个新的光学技工采用标准的沥青胶配方。下面列出某些典型的抛光沥青胶的配方。

按重量比:

D光学胶1磅(453.6g)加石蜡1盎司(28.35g)

D光学胶1磅加石蜡2盎司(抛光修整用)

D光学胶1.5磅加OZHINITE3/4盎司和松香柏油5盎司

D光学胶2磅加ZORPHALAC2磅

2)号和3)号沥青抛光胶用于抛光冕牌玻璃、派勒克斯玻璃、窗玻璃和石英晶体。4)号沥青胶用于抛光稀土玻璃和火石玻璃。

后来D.亨德里克斯根据一条简单规则把沥青胶配方划为类似化合物的混合物。例如,沥青胶中松香从松树得到,蓖麻油或亚麻仁油是植物油,故称为植物性混合物。D光学胶是从炼油厂得到的软沥青化合物混合而成的无机物或无机物的混合物。

亨德里克斯研究了若干种沥青胶的配方:

按重量比:

无色透明松香5磅,蓖麻油6盎司。

D光学胶2磅,亚麻仁油6盎司。

D光学胶2磅,松香柏油4盎司,蜂蜡1.5磅,加1~3匙松节油,然后调均匀。

采用的沥青配方是5磅无色透明的松香和6盎司松香柏油(液态),可以预先置好沥青胶以作准备用。佐贝尔(Zobal)牌号有软沥青胶和硬沥青胶。这种胶是透明的,加一些较软的胶可以使较硬的胶软化。万能虫胶供应公司(Brooklyn,NY)提供的No450中硬抛光胶是广泛使用的胶。该公司也提供各种不同硬度和熔化范围的布尔根德(Burgundy)沥青胶。W.蒂查(Wn Dixon)和其公司(Newark,NJ)是又一家提供优质光学沥青胶的公司。有些进口沥青胶也是很好的并能保证质量。虽然没有各种配方的完整规格,但沥青胶是可以根据特殊需要而专门研制的。

沥青胶硬度的测量

沥青胶硬度有几种测量方法。一般采用针入度计,该仪器在压有0.5kg铜重块的滑杆上固定一只直径为6 mm的轴承钢球。在圆柱体滑杆上固定一只每英寸1000分到处圆度盘,5min以后读出轴承钢球穿入沥青胶的数值(见图3.1)。

许多早期的光学技工用拇指甲以约为2~3磅的压力在1~2s钟内压入胶内,其它测量方法是仿效该法得到的。拇指甲压胶虽是一种粗略的方法,但可以设计出一只带有锐边的轮子,棒的支点到轮子的长度为1 0cm,棒上穿一个重为8盎司的铜重块,60s后测量轮子刀刃穿入沥青胶的宽度和深度(见图3.2)。

图3.1测试抛光沥青胶硬度的典型沥青胶针入度装置

图3.2类似于拇指甲测试沥青胶硬度的另一种设计方案

虽然采用加重块的穿入方法更为精确,但它的缺点是因沥青胶的雾气凝聚在测杆上,而使昂贵的千分表渐渐失去精度。

机器抛光或手工抛光所采用的沥青胶的硬度是可以测量的。应该在室温70~72°F。抛光派勒克斯玻璃、石英晶体、冕牌玻璃和陶瓷玻璃时测量针入度的度盘读书应该为0.012~0.016in。具有这样针入度数值的

胶对手工抛光棱镜及小平面是极为适用的。用于抛修非球面的沥青抛光胶的硬度为0.018~0.025in。用于火石玻璃的胶硬度为0.025~0.03in。对于稀土玻璃,例如EDF3,其硬度范围为0.03~0.04in。以上是对40h研细的巴塞特(Barnsite)和抛光粉的标准数值。

抛光胶的基本成分(例如松香、柏油、油脂或亚麻仁油)缓慢蒸发,并且抛光粉嵌入抛光模后,沥青抛光模就逐渐变硬。大多数已开好槽的沥青抛光模表面上还印有更细致的浅槽图案,可以用刀片重新按图案开出抛光模沟槽。

沥青抛光盘开槽

手工抛光棱镜的沥青抛光模的制作方法如下:将缓慢熔化的5磅无色透明松香和6盎司松香柏油倒入熔化的松香中充分搅拌,待松香柏油充分软化或松香变硬时,加入沥青胶,使针入度值大约为0.014in。

同时做两只10in直径的抛光模,铝模厚度至少1in,接头直径1.5in或更大,以防止抛光模在连接螺旋上摇动。将两只夹模中的一只在煤气嘴下加热,一直加热到尚可以用手接触为止。然后用很小的力将夹模旋在立柱上。如果夹模是热的,会装得太紧,使大型抛光模取下来很费力气。夹模的四周用3/4in胶带纸粘贴,高出夹模表面1/2in。将半冷的沥青胶慢慢地从夹模中心倒入已加热的夹模上,沥青胶的厚度可以为1 /16~3/8in,然后让抛光模慢慢地冷却到室温。

用类似的方法制作第二只沥青抛光模,但是现在的沥青胶里含有胡桃壳的碎粒,将1杯半的胡桃壳碎粒慢慢地加入到1夸特熔化的沥青胶里面。

每只抛光模用3/4in铜条划出3/4in的方块。每个方块平面划出1/8in宽和约3/16in深的浅槽。沥青抛光模用单面刀片开槽。首次划槽完成后,最好先用洗涤水涂抹抛光模。然后在所有方格槽的另一侧切出浅槽,每切一次使凹槽切口的深度加深一次。右手拿刀片的人总是切割出凹槽的右边(反之为左手持刀者),为了改变切口方向,可把抛光盘转动180°。切割几次后,再用4in钟表刷子除去嵌入凹槽内的沥青碎屑。必须用一只12in的铸铁平模压平开过槽的抛光模。模子在热水中加热,直到手尚能接触为止。抛光模上涂一层浓的抛光粉悬浮液,把加热的平模放在沥青抛光模上,横穿抛光模,推动几个圆动程,使抛光模的边缘压得与中心一样平。完成这些动作后开槽并进一步压制小方格。这道工序可用一块更细网格或塑料窗帘来完成。把抛光液浸湿的网格用力贴合在抛光模上,再放上加热的铸铁平模。必须注意抛光模上所压出的槽深度应小于格线直径的一半。如果压得太深,当网格从沥青抛光模上取下时,会发现凸起的小方块从抛光模主体上撕裂下来。然后,抛光模必须再开一次槽,以除去流入槽中的沥青胶。图3.3所示为沥青抛光模。

图3.3压制了小方块的手工抛光和机器抛光的开槽抛光模

用模压平板控制抛光模的面形

抛光模应冷却几个小时。大多数光学技工喜欢用表面质量为4个波长或小于4个波长的光滑平模在机器上压制抛光模,在主轴转速为30r/min、摆臂摆速为20r/min和1/3直径的动程条件下抛光10min。

用派勒克斯玻璃压平模控制抛光模的表面形状。将抛光模压成所要求的形状需要三块派勒克斯玻璃。如果每块派勒克斯玻璃的两面均可利用,则做成了六块压平模的系列。第一块玻璃板的一个面的平面面形可以凸2个波长,而另一面为凹2个波长。第二块派勒克斯玻璃的一面的平面度可凸3~4个波长,而另一面可能为凹3~4个波长。第三块派勒克斯玻璃一面的平面度可为凸6~8个波长,而另一面可为凹6~8个波长。每块派勒克斯玻璃必须作上记号,表示面形的波长偏离量是凹的还是凸的。要压出凸面形的抛光模必须用凹的压平模;凹面形的抛光模必须用凸的压平板。

整体式抛光模

这种型式抛光模用的抛光胶称为中硬(稍软)沥青胶。用针入度计测量的硬度测量值范围是5min以内为0.025~0.030in。现列举几种典型沥青胶配方如下:

按重量比:

No835的中等布尔根德沥青2磅,达光学质量的松香2磅。

佐贝尔软沥青2磅,佐贝尔硬沥青2磅。

No850软抛光布尔根德沥青2磅,达光学质量的松香2磅。

可以制备许多种不通的沥青胶。瑞士软沥青(gregoly)No.55和No.64是其中的一种。整体式抛光模一般

是小直径的,典型规格是:工件直径2in,抛光模直径4in;工件直径3in,抛光模直径5in;工件直径4in,抛光模直径6in。抛光模上沥青胶层的厚度约1/4in。用刀片无规则地开出浅槽,穿过抛光模纵横方向浅槽宽度为1/4in、深为1/32in。有些操作者喜欢在抛光盘中心挖一个1/4in的小孔,以使抛光时沥青胶向中心流动(见图3.4,图中表示在整体式抛光模上所刮出的浅槽图形)。

图3.4手工抛光小平面时的整体式抛光模,用小刀

制作一组浅的径向线形槽,由压平板控制抛光模面形

用网格抛光模作手工抛光

用熟石膏上盘的平面镜盘抛光时,采用不掺有胡桃壳的抛光模;而一般的细磨与抛光应用加胡桃壳的抛光模。在后一种情况下,细磨表面抛光时必须加上5~6磅的压力。较硬的沥青抛光模与较软的沥青抛光模相比更易保持面形。

手工抛光技术建立在一些易于掌握的基本原则的基础上。用平滑的铸铁盘在抛光模上运动,使抛光粉嵌新抛光模而将面形变凸。用平板压制两只抛光模以前,最好用稍为浸湿的钟表刷子涂沫抛光粉而压制沥青抛光模的时间取取决于压平板的重量。如果采用多方面的预防措施,可以把压平板在抛光模上放过夜。首先用抛光粉稍湿润一下抛光模;再把压板放在抛光模上。(注意观察整个沥青胶表面是否压住);最后用12. 5mm的胶带纸封住压板及沥青抛光模,使水分不易向四周流出。沥青胶不易向四周流出。

从抛光模上取下凹的压板,这时抛光模表面是凸的。用钟表刷子湿润抛光模网格面的顶部,并涂布沉淀的抛光粉,用两手在抛光模的中心牢靠地拿住棱镜。如果光学零件细磨得很好,抛光模在纵横两个方向采用Z字形动程并加上5~6磅压力,则能抛去全部砂眼并达到1/8条纹的质量。这时抛光动程方向与抛光模槽形方向成45°,动程数平均每分钟30~40次。此速度似乎是慢的,但光学表面抛光时间的缩短正比于所加的压力值,故很少采用增加每分钟的动程数。因为动程数的增加使被加工光学表面在沥青抛光模上跳动,以致引起塌边。抛光5min以后就应检查表面的光学质量。

光学表面的潜热发散出来后,由凹面渐渐变为平面。如果被检面为凸面,则需要继续抛光,约加3~4抛光液,有可能使表面变为凹面。当镜盘提起来时必须注意,每次新加抛光液时,不能总加在同一侧,否则将导致该侧塌边。加两次或更多次的抛光液后,如果表面仍然向凸的方向发展,就说明原来细磨得不好。第一次加抛光液后,光学表面可能出现凹的面形。此时应立刻减少压力到2~3磅,并降低抛光模的Z字形动程的频率。加几次抛光液后,如果没有使表面凹度减少,则用两个波长的凸压板改变沥青抛光模的面形,使其变为凹面。一般压制抛光模15~20min。为加速压型过程,在压板上加一块10磅的铅块并用纸片相垫以防止划伤压板。应强调的是在抛修到凸面和凹面以前,必须对所有细磨光学表面教学预抛光。

如果继续用这只抛光模抛光许多表面时,必须记住:在抛光过程中抛光模凸面度渐渐下降,如果抛光模是凹的,则反之亦然,加工结果是渐渐地朝更凹的方向发展。

抛光时如果光学表面没有麻点、砂眼、亮道子和划痕,则应减轻压重。如果表面是凹面,则压重大约减至2磅或更小。如果有抛不掉的亮道子存在,则开始时最好不用掺有胡桃壳的抛光模。本书作者喜欢用两个波长的压板压软的抛光模,用这种软抛光模来抛光光学表面,不采用每分钟20次相同Z字形动程,来获得光学表面的质量。

用平晶检验抛光表面的表面质量将在第四章介绍。应注意的是:在加工工件以前必须仔细地分析每个抛光表面。假如能用抛光方法获得改善,则镜片不必再重磨。

抛光棱镜和其它矩形表面的光学元件时,通常带有象散。多半光学元件长度方向是表面形状是凹的,宽度方向是凸的。这称之为马鞍形曲面。若将棱镜旋转45度,并加压在最高角落处就可得到校正。另一种普通的表面缺陷是腹部突出或凹进的‘飞鸟图案’。这个意思是如果中心低(凹),则中间带区为高(凸)而边部塌边;如果中心高,则中间带区低而边缘翘边。

校正中间或中心区域高的表面,要在该区域局部加压并将光学零件稍移移向抛光片盘边缘(见图3.5a和b),而且必须在短时间内仔细完成操作当棱镜相应高带区域变小时,则在棱镜凸面四周用双手加压,以较慢速率在抛光模上平滑该棱镜表面。交换棱镜中心与边缘的压力并增加速率,用更短的工字形抛光动程来校正第二种或相反的表面形状。

图3.5棱镜抛光的典型倾斜面形偏差下面部分表示校正凹包的方法。

当棱镜或光学零件的面形得到改善时,经常在角隅附近发现小的凸包(称为谷粒)。这种谷粒常常是顽固的,不能单独用加压法消除。许多有经验的操作者借助于手指修整法,用得最多的是大姆指或中指

。修整10秒以后,将棱镜角隅搁置一边,过5min钟使潜热释放而达到正常温度。这种局部修整棱镜的方法,会导致某些不规则面形,因此必须用较软抛光模以慢行程和轻压力抛光`修整面形,因此必须用较软抛光模以慢行程和轻压力抛光`修整面形。软抛光模用面形为两个波长的压板成型。

提示

抛光模禄始时都象是锉刀的形状,在光学表面上会产局部效应,直到小网格方块变为相当大的平台时,才能完成光学表面的抛光。

石膏上盘加工玻璃表面,尽管有些操作者用带胡桃壳的抛光模,但还必须用不加胡桃壳的沥表抛光模以抛光`修整较高质量的光学表面。

抛光时,决不允许在抛光边缘处加抛光液,而应在抛光的中心处或每次换一个新的地方加抛光液。

采用z字形动程时,至少要通过抛光模两次,并在中心处结束。当围绕抛光盘四周改变位置时,不能在抛光模中心用力旋转棱镜,因为这样常导致表面一直是凹的。

穿过抛光模并与抛光模上的大槽线近似成45度方向抛光时,只有四个位置可作为动程起点的位置。

应该用3in玻璃研碎器研平新的抛光粉,研碎器带有三个波长以内平面度的平面。平面在抛光模上作旋转运动,用一只稍湿的钟表刷子在凹槽里添加新的抛光粉。

在沥青抛光模上若抛光粉稀薄则使棱镜或光学零件表面与沥青模紧贴,可能产生凹面;而浓的抛光粉则使光学零件抛成为凸面。

在由凸压板形成的凹沥青抛光模上抛光光学元件或棱镜时可以减少表面凹的程度;反之,用凹压板形成的凸抛光模来抛光棱镜或光学零件时可以减少光学表面凸的程度。

抛光模一次双一次地开槽及修乔边缘,均应重新修整成锐边,并一边高速旋转一边用单面刀片修整整体式抛光模的边缘,必须熟练地细心地用双手拿稳刀片,并且不要对沥青胶层进刀太深。

采用整体式抛光模的操作者应有一些“柱墩”,三个一组已足够,其直径为1-3in,并用下班环氧树脂做成呈小三角形的三分之一in的短手柄。

当抛光凹面有困难时,通常可在抛光模中间放一个柱墩,在沥青抛光模上便钻出一个凹坑,于是较低层的沥青就流向抛光模中央的凹坑里,导致抛光模在该区域为凹的,使抛光作用减小。柱墩的尺寸取决于被抛光光学无件的凹凸程度。

当较细网格槽熔没时,需重新修乔或压制网格抛光模。

在抛光机上用铸铁平模抛压旋转中的抛光模,可把沥青抛光模上呈网格状的小方块压平,用压板压过一但也可以达到此目的。

6.用整体式抛光模作手工抛光

用熟石膏上盘或其它一些上盘方法已经粗抛光过的光学表面通常用整体式抛光模整修成形。这种光学表面存在象散,而且表面质量最好只有1-2个波长。

被加工的光学零件直径一般不大于4in。大尺寸光学零件最好用网格式抛光模修整成形。但这并不意味着如果采用某种措施就可以在整体式抛光模上抛光。因为吸附力使光学表面与抛光模紧密接触,因而使较大表面加工发生困难。

一般用面形压板面型的整体抛光模形成一个平坦的面形。最好用1-4个波长的凸压板作补偿,在整体式抛光模上压出凹的面形。把压板放在抛光模上以前必须在整个抛光盘直么上用干抛光粉慢慢地擦几下,然后吹掉剩余物。

如果用铅锤将压板向下敲压,则在短时间内(大约5min)可获得平面面形。移支压板后,检验抛光过的表面,并确定表面的形状。如果是凹表面,则用乔刀在中心挖一个小孔,从中心到边缘刮十条或更多条么向线。然后把直么大约为整体抛光模直径四分之一的小研平器将浸湿的抛光粉研平直到有清晰的光津出现。如果工件直么小,则把光这零件放在抛光模中心,并用一只手住;如果工件直么大,则用两手抓住。整个操作过程中,各操作者经常有扬不同,有的欢喜一只因定椿柱加工零件;而另一些则欢喜在困定椿柱上装一个小轴,用一只手加手加工光学零件,而用另一只手旋转转轴,这是一种流行的方法。因为加工零

件时,操作人员可以坐着。另一种不同的方法是慢慢旋转抛光机的主轴(即1r/min),用两手抓住工件加工。

如果光学表面是凹的,则工件穿过模直径一半,以每秒三个动程速率按z字形运动,然后再反向运动,光学零件上压力是变化的。如果光学表面有两个波长,有时从抛光模上取下光学零件停抛一下是一种好办法。抛光时,操作者要保持两个工作表面的附着力及内聚力。加工凸面需要用不同的方法。压板面形通常仅凸1个波长,将抛光模压出凹的面形。抛光模压形以后,在抛光模中心开出小孔,并在两个方向上划槽,构成一毓正方形。用一只小研碎器,在湿抛光粉上工作,使它保持一定的平面性,决不允许存在太大的象散或变凸。研平器必须在凸2个波长的平模上进行。

抛光粉研碎以后,抛光模具有和的光泽用大约2的压力加工光学零件,穿过孔径的z字形动程,频率为5次每秒。

有些操作者欢喜用海棉除去所有研碎的散料抛光粉。然后在抛光前在抛光模上滴几滴水,因而可保持边缘不塌边。如果边缘边,则可将散粒抛光粉保留在抛光模上。

正如早已指出的,象散曲面是抛光中常出现的学学表面。还有一种称之为马鞍形面,因为在一个方向上为凸面;而在另一个方向上,则是凹的。应找出最高点的位置,在该区域上使用最大压力,并需用缓慢的z 字动程。通常接近边缘的四个角上总有凸包存在。除去这种凸包是困难的,只能用大姆指及中指局部修整法对这种凸包作仔细的个别修饰。

在抛光模重新工作以前,操作者对光学表面缺陷作仔细观是很重要的。若光学表面有四分之一波长或更少误差时,则会出现两种或更多种的表面缺陷。如果表面凸2-3个波长,则立即可判断,不必再等待光学零件发散完它所吸收的热,凸的表面总是比凹的表面变平的程度差一些。

加工下班或晶体需要特殊的夹具因为由于抛光热产生更大的表面面形变化,这点我们没有讨论。而特殊夹具主要用来防止光学零件吸收潜热。塑料夹具与薄片状光学材料间必须夹进一块橡皮垫块(见图3.6)。感谢石英与下班制造棱镜及单个制造的薄片,通常要着手套零件,全程铊从手上吸收的热量达到最小。

国家标准:光学零件表面疵病+手工抛光基础知识

1 主题内容与适用范围

本标准规定了光学零件表面疵病术语、代号、换算、标志、密集和试验方法。

本标准适用于光学零件抛光表面的检验。

2 术语、代号

2.1表面疵病B

表面疵病系指麻点、擦痕、开口气泡、破点及破边。

2.2级数J

级数J表征表面疵病大小,M的数值即为J。

其中,M为表面疵病的面积mm2。

正方形表面疵病级数J是以mm为单位的边长数值。

2.3个数G

G为允许的表面疵病数目。

3 换算

换算系指较大级数的表面疵病允许用若干个具有较小级数的表面疵病来代替,其面积之和不超过原级数的表面疵病面积,但不允许将表面疵病换算为多于40个较小级数的表面疵病。

根据需要,表面疵病也可以不允许换算(见4.1.2条)。

表面疵病级数与疵病个数换算系数按表1。

中华人民共和国机械电子工业部1989-02-28批准1990-01-01实施

疵病个数

换算系数1 2.5 6.3 16 40

级数J 0.004 -- -- -- --

0.0063 0.004 -- -- --

0.010 0.0063 0.004 -- --

0.016 0.010 0.0063 0.004 --

0.025 0.016 0.010 0.0063 0.0040

0.04 0.025 0.016 0.010 0.0063

0.063 0.040 0.025 0.016 0.010

0.10 0.063 0.040 0.025 0.016

0.16 0.10 0.063 0.04 0.025

0.25 0.16 0.10 0.063 0.04

0.40 0.25 0.16 0.10 0.063

0.63 0.40 0.25 0.16 0.10

1.0 0.63 0.40 0.25 0.16

1.6 1.0 0.63 0.40 0.25

2.5 1.6 1.0 0.63 0.40

4.0 2.5 1.6 1.0 0.63

6.3 4.0 2.5 1.6 1.0

10 6.3 4.0 2.5 1.6

注:①表面疵病原级数个数乘疵病个数换算系数等于换算后的级数个数(结果应化为整数)。

②级数公比数为1.6,疵病个数换算系数公比数为2.5。

③级数小于0.004和擦痕宽度小于0.001mm的疵病不作考核.

④开口气泡和破点均当作麻点处理。

4 标志

4.1 一般标志

4.1.1 表面疵病的代号为B,其值由G×J表示。表面疵病一般标为为B/G×J。

4.1.2 不允许换算的表面疵病,其值加括号(),见图1。

表面疵病B/G×J用引出线在图中表示。见图1。

4.1.3对表面疵病如有特殊要求,可在技术文件中另行规定。

4.2分区的标志

分区系指光学零件表面疵病要求不同的区域。对有分区要求的圆形零件和非圆形零件,图上划出范围并标志尺寸。范围线用细实线,见图2和图3。

4.3擦痕

除已定疵病外,如允许有任意长度的擦痕,则应在表面疵病一般标志后附加标注符号C、擦痕的数目和允许最大宽度的数值,一般标志与擦痕标志之间用分号(;)分开(见表2)。

表2(单位:mm)

B/3×0.25;C2×0.01 带有任意长度擦痕的表面疵病标志

B 表面疵病代号

3 未换算的表面疵病数

0.25 级数

C 任意长度的擦痕符号

2 允许擦痕数

0.01 允许擦痕宽度

4.4破边

4.4.1零件表面有效孔径以外的破边,若不影响零件在镜框中的牢固性、密封性和成像质量,则允许存在,但发展性的破边不允许存在。

4.4.2破边的标志是在表面疵病一般标志后附加标注符号P和破边的径向尺寸。一般标志与破边标志之间用分号(;)分开(见表3)。

表3(单位:mm)

B/8×0.4;P0.5 带有破边的表面疵病标志

B 表面疵病代号

8 未换算的表面疵病数

0.4 级数

P 破边符号

0.5 破边径向尺寸

5密集

表面疵病不允许密集,在4%的检验面积范围内(在圆形检查区相应于1/5直径范围内),不超过2个表面疵病数或不超过经换算后的1/5表面疵病数。

6试验方法

检查时应以黑色屏幕为背景,光源为36V、60~108W的普通白炽灯泡,在透射光或反射光下用4×~10×放大镜观察。

在观察时允许朝任意方向转动零件,但在确定疵病大小时,应以透射光为准(不包括棱镜和一面磨毛一面抛光的零件)。

洗车工艺流程

精细洗车工艺流程>>> 一、去除发动机仓杂物及灰尘 专业风枪去除发动机仓杂物及灰尘。 洗车首先操作,避免洗完车后对车身造成二次污染。二、喷洒泥沙松动剂 冲水前,喷洒泥沙松动剂,可迅速降低漆面上泥沙颗粒的附着力, 避免冲水时对漆面造成伤害。

三、车身冲水 冲洗原则:从上到下、从前到后、由近到远、平行重叠、先难后易,冲净车身、缝隙、轮胎及底盘泥沙。 五、擦拭泡沫 擦拭原则:从上到下、从前到后、由近到远、 平行重叠、先难后易、均匀擦拭,防止遗漏。擦拭工具采用超细纤维制成,不会对车漆造成 任何伤害。工具严格分类(车身上部专用、车 四、喷环保洗车泡沫 洗车泡沫为环保产品,PH=7属中性产品,对车漆无任何伤害。

身下部专用、轮胎专用),严禁交叉使用, 防止车身下部泥沙刮花漆面。 七、清洁轮胎 专用轮胎工具刷洗,注重细节。 六、清洁车身缝隙及标志 专用毛刷清洁车身缝隙及标志。 注重细节:专用毛刷重点清洁中网、标志、装饰条及其它缝隙处。 九、喷电脑蜡水 均匀喷洒电脑蜡水,长期使用可增加车漆亮 度, 有效保护车漆,降低水的附着力,有较强的驱 水作用。 八、冲净车身泡沫 冲洗原则:从上到下、从前到后、由近到远、平行重叠、先难后易,冲净车身及缝隙泡沫。

精细干车工艺流程>>> 一、专业拆取地垫 专业手势拆取地垫:双手从地垫前后两端对折卷起,平托取出, 防止泥沙掉进车内。二、专业工具擦净车身水 专用擦拭毛巾采用超细纤维制成,柔软细腻。不会对车漆造成任何伤害。 擦拭原则:从前到后、从上到下,专用擦拭毛巾保持绝对干净。 三、门边、缝隙、标志吹干水 采用法国原装进口风枪,规范动作对门边、缝隙、 标志处进行吹干操作。四、车内、尾箱除杂物及吸尘 操作原则:从上到下、注重细节。

超光滑光学元件文献综述2

科 研 基 础 讲 座 课题:超光滑光学元件表面的加工与检测导师: 班级: 姓名: 学号:

摘要 本文主要通过对超光滑光学元件表面的加工与检测技术进行综述。此文首先对超光滑光学元件表面从特点、加工方法、加工原理等进行概述,然后再对超光滑光学元件表面的检测主要从检测工艺流程进行论述总结,最后以典型超光滑学元件中的超环面镜加工与检测为例进行详细论证。 关键字:超光滑磁流体抛光超环面镜

目录: 1.引言 (4) 上篇:超光滑光学元件表面的加工 2.超光滑表面光学元件的特点 (4) 3.超光滑光学表面加工方法概述 (4) 4.典型的一些加工方法原理 (5) 4.1非接触式超光滑抛光原理 (5) 4.2磁流体抛光超光滑光学表面原理 (6) 4.2.1磁流体抛光装置及磁路结构 (6) 4.2.2磁流变抛光实验 (7) 下篇:超光滑光学元件表面的检测 5.超光滑光学元件表面的检测工艺 (9) 5.1光学表面曲率半径的测量 (9) 5.2光学表面面形的测量 (9) 5.3超光滑表面粗糙度的检测 (9) 典型超光滑光学元件—超环面镜加工与检测 6.超光滑超环面镜的加工工艺 (10) 6.1 4B9B光束线光学系统设计简述及超环面镜的作用 (10) 6.2超环面加工流程及工艺 (10) 6.3超环面加工工艺小结 (11) 7.超光滑光学元件的检测 (11) 7.1大曲率半径的测量 (12) 7.2面型误差的测量 (13) 7.3表面粗糙度的测量 (14) 8.参考文献 (15)

1.引言 日前,光学和光电子学,尤其是短波段光学涉及的相关技术对关键光学元件表面精度的要求越来越高,往往需要达到纳米甚至原子级,因此超光滑表而加工技术应运而生。超光滑表面不仅要具备较高的而形精度和极低的表而粗糙度,还要具有完整的表面晶格排布,消除亚表面损伤。因此,如何实现光学元件表面的超光滑加工与检测成为精密加工领域的一个重要课题。 上篇:超光滑光学元件表面的加工 2.超光滑表面光学元件的特点[]1 (1)光学系统绝大部分为反射系统; (2)光学元件表面要求粗糙度很低,一般为0.5nm~5nm ; (3)光学元件的面型多种多样:面型有平面、大半径球面、柱面、抛物面、椭球面、超环面等等,这些都是由光束线空间特性所决定的; (4)光学材料的选择:要考虑到光束线能量高,要求散热快,膨胀系数小,适合于超真空系统中工作等因素。 3.超光滑光学表面加工方法概述[]2 常用到的几种加工方法如下: (1)传统的研磨及沥青抛光法。这是众所周知的,抛光是通过抛光介质和工件表面之间的物理与化学相互作用而完成的。通过控制抛光粉的粒度及均一性和润滑剂的纯度或加入其它溶液或肥皂等会提高抛光表面的光洁度。最高可达2 ~2. 5nm RMS。 (2)碗形水中抛光法(Bowl feed polishing)。这种方法是把沥青抛光盘浸入一个装有水的塑料碗中,使抛光剂混合物处于悬浮状态。最后放出所有液体抛光剂,加入蒸馏水,非接触式超光滑抛光原理继续抛光一段时间。表面粗糙度可达0.3~0.5nm RMS (3)金属表面液体化学抛光方法。按材料不同配制化学抛光液体,零件在溶液中相对运动,也可结合电化学抛光来达到超光滑表面。 (4)离子束抛光法。在真空室里用离子束(氢、氮、等惰性气体)轰击零件表面,由计算机控制离子束在零件表面上的扫描轨迹,停留时间和轰击强度等参数来获得超精表面。 (5) SPDT与金刚石微粉研磨抛光法。SPDT是在高精度机床上,用金刚石刀具微量进给,车削出光学表面,只能加工金属镜。金刚石微粉研磨是用0.1um的钻石粉压入制好的沥青盘,加入硅油润滑,使沥青盘与工件之间保持一定的油膜厚度,这种方法可获得0.5nmRMS超光滑表面。 (6)弹性发射材料加工法(EEM)。使微小磨料在液体中浮游,使之以高速冲击

超光滑表面加工技术

超光滑表面的加工、表征和功能 1 引言 随着精密、超精密以及纳米级加工技术、先进控制系统、激光测量技术、扫描探针显微镜等相关技术的快速发展,超精密加工表面的研究不断取得新的进展,其加工精度正逐步从亚微米级提高到纳米级,通过超精加工获得超光滑表面已成为可能。但是,这些超光滑表面通常是在反复加工和试验的基础上获得的,如何稳定地、可重复地获得高质量表面,实现表面的设计功能,仍是超精密表面加工研究的一个难点。目前,关于超精密加工表面的一个重要研究方向是研究表面的加工形成机理,并根据表面的不同用途及相应的功能要求,在加工前对表面进行设计和预测,从而达到稳定获得所需功能表面以满足实际应用需求的目的。为此,必须对超精密元件表面的加工、表征及功能进行全面而深入的研究。 2 超精密加工表面及其特点 加工表面的相关定义 表面是一个物体分隔于其它物体或空间的周界面。为便于研究分析,美国国家标准ASME B46.1-1995中给出了名义表面、实际表面和测量表面的定义,即:①名义表面:预期的表面分界面(不包括任何表面粗糙度),其形状及范围通常在图示中显示并标注或者加以详细说明。②实际表面:物体的实际边界面,它与名义表面的偏差来源于表面形成的加工过程。 ③测量表面:基于测量仪获得的对实际表面的描述。 加工表面的特点 超精密加工的实际表面与名义表面的差别在于它可显现出表面的特征、缺陷和形状误差。其中,表面特征是控制工业产品表面质量的主要内容,它是实际表面上某些典型偏差的综合,主要包括粗糙度和波纹度。粗糙度是指表面特征的精细不规则性,通常来源于加工过程所固有的作用或材料条件,这些都可能是加工过程留在表面上的特征标记。波纹度是表面特征更为广泛的空间构成,产生于机床或工件的偏差或振动。粗糙度可被认为是波动表面上的叠加。 作为物质实体,表面具有许多特征。表面的几何形状即为其重要特征之一,它的自然状态是三维(3D)的,其特征细节被称为形貌。在许多应用中,形貌代表着表面的主要外部特征。 3 超精密元件表面的加工、表征及功能 工件表面产生于大量的加工过程,一旦加工完成,反映加工过程的表面特征就会体现在表面上,因此加工元件的表面特征是整个加工过程的复现(Fingerprint),任何加工变量的改变和加工刀具的误差都将体现在表面特征中。同时,这些表面特征又决定着加工元件表面的最终功能,即特定的表面特征产生相应的表面功能,因此表面是其加工控制和功能设计的联结(Link),而对表面的表征是获取表面信息的重要手段。由此可知,表面的加工、表征和功能是相互关联的:一方面,表面形成的每一加工阶段及处理过程都决定着表面宏观及微观几何特性;另一方面,工件表面的几何特性以及物理、化学特性等在相当大程度上决定了产品表面的最终功能。表面的加工、表征和功能之间的相互关系可用下图加以说明。针对具体

汽车抛光技术工艺流程

汽车抛光技术工艺流程 抛光操作方法及流程: 如果说洗车是车体护理的基础,研磨时漆面翻新的关键,那么抛光应是漆面护理的艺术创作。 汽车漆面抛光有三个步骤即研磨、抛光、还原。抛光之所以能产生无比光亮的效果主要是靠研磨,即靠摩擦材料把细微划痕去除,其次是靠车蜡,抛光剂里大多含有增亮成分,可以依靠抛光剂的光泽来弥补漆面的缺陷。 抛光原理: 1、表面粗糙,不平:任何一点光线的射入角和折射角不一样,造成表面亮度降低。 2、表面平滑:镜面反射,射入角和反射角一致,可得到最高反射亮度。所以,美容施工一定首先要将漆面整平,才有最佳的表面亮度和保护层。 操作方法:用于研磨作业的研磨剂是在随着抛光机和研磨剂摩擦作业进行,由于磨擦起热,使研磨剂中所含的"水","溶剂"成分减少,最后研磨剂变成干燥的粉状。研磨的初期阶段,研磨剂起着润滑剂的作用,几乎没有研磨力,研磨剂薄薄地随这着抛光机的转动向外涂抹;研磨溶剂中所含的水分和溶剂为了保护研磨粒子会慢慢的干燥,研磨粒子因为有了水和溶剂保护研磨粒子就会使研磨的时间比较长;水,溶剂由于磨擦发热而被蒸发,含量也减

少,变的不能保护研磨粒子,不能受到保护的研磨粒子渐渐开始破碎,研磨力下降,但是光泽呈现出来了。为了有效的使用这种时间带,为了不让发热而进行作业,如果用过大的力进行研磨就容易起热,研磨剂很就快会完全干燥,不仅研磨剂变的失去作用,而且还会因研磨剂颗粒留下出现伤痕。抛光研磨作业不是用力和快速进行的,而是为了有效的使用研磨剂的切削性来进行。 抛光的基础使用方法 1、盘面带有角度的情况 抛光机倾斜度比较的大的情况下会使漆面起热快,而且抛光盘的边的部位摩擦力加大,容易研磨坏车漆,也会使抛光盘面的接触漆面面积会变狭窄。 2、移动抛光机的基本方法 研磨作业是为了把漆面均匀地进行研磨做为基础,为此,需要想办法"在一定程度上控制抛光所承受的压力"。 (1)按动的压力--以抛光机自身的重量为基础,把在平面上的抛光机的自身重量作为基础,不要不需要使用太大的压力,即使在侧面进行抛光作业,也是需要使用与平面同等压力。不要增加或减少压力,这样就不容易因为压力不均匀产生有的部分抛的严重有的部位较轻而产生的光圈或是划痕没有清除。 (2)盘面与抛光的角度--避免在局部增加压力 抛光是根据盘面的形状使用压力。如果过度地抛光会形成"研磨面不均匀","抛光分界线","抛光伤痕"等原因,由于局部发热,会

浮法抛光超光滑表面加工技术

浮法抛光超光滑表面加工技术 浮法抛光技术首先出现于日本,是加工超光滑表面的先进技术之一。本文介绍用浮法抛光加工超光滑表面的机械结构和加工过程,与传统的沥青抛光方法进行比较,分析材料去除机理。最后简单介绍我国研究浮法抛光技术的进展。 正文 一、浮法抛光技术的产生与现状 光学零件的加工基本包括切割成型、研磨、抛光三道工序;最终的光学表面质量由抛光决定,因此抛光是最重要的工序。通常高质量光滑表面的抛光是以沥青或纤维等弹性材料作磨盘,配以抛光液或研磨膏来达到技术要求。 近年来,光学及微电子学极大地推动了光学加工技术的发展。大规模或超大规模集成电路对所用基片(通常为硅、锗等材料)的表面精度提出了很高的要求;短波段光学的发展尤其是强激光技术的出现,对光学元件表面粗糙度的要求极为苛刻。表面粗糙度低于1nm rms的超光滑表面加工技术已成为光学及微电子学基础技术领域的重要课题。靠传统的经验依赖性的光学加工方法是不能满足日益发展的光学、电子学要求的。国内外已有许多科学家在探索加工高精度超光滑表面的各种技术。一般原子直径小于0.3nm,而超光滑表面微观起伏的均方根值为几个原子的尺寸,因此实现超光滑表面加工的关键在于实现表面材料原子量级的去除。 1997年,日本大坂大学的难波义治教授发明了浮法抛光(Float Polishing)加工超光滑表面技术。通过使用这项技术,可使刚玉单晶的平面面形达到λ/20,表面粗糙度低于1nm Rz。1987年的研究报告表明,使用浮法技术进行多种材料的抛光实验,对φ180mm的工作,可以达到表面粗糙度优于o.2nm rms,平面度优于λ/20=0.03μm。 目前在日本,浮法抛光技术应用很广泛,尤其是用于录音机、录像机或计算机的磁头生产;每年有2500万个磁头就是采用这项技术制造的。近年来,德国也在研究类似抛光技术。德国Ulm大学的欧威(O. Wei s)研究表明,对白宝石材料的φ7mm的工件进行抛光,30分钟后达到表面粗糙度小于0.05nm的结果。 将浮法抛光样品与普通抛光样品比较可以发现浮法抛光有许多优点。普通沥青式抛光使用硬度大于工件的磨料,也可以获得所谓超光滑表面的粗糙度指标,但对磨盘的平面度的修正很有讲究,这影响到被抛光工件的面形。普通抛光后的工件,其边缘几何尺寸总不太好,经常有塌边或翘边现象;并且在高倍显微镜下可以看到表面有塑性畸变层。 应用浮法抛光法技术获得的超光滑表面,不仅具有较好的表面粗糙度和边缘几何形状,而且抛光晶体面有理想完好的晶格,亚表面没有破坏层,并且由抛光引起的表面残余应力极小。 二、浮法抛光机的机械结构与抛光过程 浮法抛光机的机械构造类似于定摆抛光机。在对工件进行浮法抛光前,被加工工件首先要进行预抛光,干燥。就可以浮法抛光。 抛光过程中,抛光液随磨盘旋转;由于流体运动产生动压,工件与磨盘之间形成一层薄薄的液膜,使得工

第二讲 表面微机械加工技术应用

牺牲层技术 刻蚀与选择性 etch:To cut into the surface of (glass, for example) by the action of acid. Etching:The art of preparing etched plates, especially metal plates, from which designs and pictures are printed. Corrode:To destroy a metal or alloy gradually, especially by oxidation or chemical action 其实刻蚀还包含分解、转化、溶解等一系列含义。 半导体技术的刻蚀并不仅仅局限于金属材料,半导体、化合物、包括有机物薄膜才是刻蚀研究的重点。 Etching还有一个特征:选择性或者局部队有控制刻蚀。 干法刻蚀也是半导体技术赋予Etching的新内涵。 选择性源于化学反应的热力学选择性和刻蚀过程度动力学因素控制。 下面这张表格概括了一些简单物质与常用反应物之间相互作用的规律,其中既有热力学因素控制的结果,也有动力学因素促成。它们都是湿法反应机制度结果

MUMPS工艺概况 The MUMPS process is a three-layer polysilicon surface micromachining process derived from work performed at the Berkeley Sensors and Actuators Center (BSAC) at the University of California.Several modifications and enhancements have been made to increase the flexibility and versatility of the process for the multi-user environment. The process flow described below is designed to introduce inexperienced users to polysilicon micromachining. The text is supplemented by detailed drawings that show the process flow in the context of building a typical micromotor. 工艺流程详解 衬底:100 mm n-type (100) silicon wafers of 1-2 ohm-cm resistivity.

模具抛光的工艺流程及技巧

模具抛光的工艺流程及技巧 抛光在模具制作过程中是很重要的一道工序,也是收官之作,随着塑料制品的日溢广泛应用,对塑料制品的外观品质要求也越来越高,所以塑料模具型腔的表面抛光质量也要相应提高,特别是镜面和高光高亮表面的模具对模具表面粗糙度要求更高,因而对抛光的要求也更高。抛光不仅增加工件的美观,而且能够改善材料表面的耐腐蚀性、耐磨性,还可以方便于后续的注塑加工,如使塑料制品易于脱模,减少生产注塑周期等。 目前常用的抛光方法有以下几种: ㈠机械抛光机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。光学镜片模具常采用这种方法。 ⑴机械抛光基本程序要想获得高质量的抛光效果,最重要的是要具备有高质量的油石、砂纸和钻石研磨膏等抛光工具和辅助品。而抛光程序的选择取决于前期加工后的表面状况,如机械加工、电火花加工,磨加工等等。 机械抛光的一般过程如下:①粗抛经铣、电火花、磨等工艺后的表面可以选择转速在35 000—40 000 rpm 的旋转表面抛光机或超声波研磨机进行抛光。常用的方法有利用直径Φ3mm、WA # 400的轮子去除白色电火花层。然后是手工油石研磨,条状油石加煤油作为润滑剂或冷却剂。一般的使用顺序为#180 ~ #240 ~ #320 ~ #400 ~ #600 ~ #800 ~ #1000。许多模具制造商为了节约时间而选择从#400开始。 ②半精抛半精抛主要使用砂纸和煤油。砂纸的号数依次为:#400 ~ #600 ~ #800 ~ #1000 ~ #1200 ~ #1500。实际上#1500砂纸只用适于淬硬的模具钢(52HRC以上),而不适用于预硬钢,因为这样可能会导致预硬钢件表面烧伤。 ③精抛精抛主要使用钻石研磨膏。若用抛光布轮混合钻石研磨粉或研磨膏进行研磨的话,则通常的研磨顺序是9μm(#1800)~ 6μm(#3000)~3μm(#8000)。9μm的钻石研磨膏和抛光布轮可用来去除#1200和#1500号砂纸留下的发状磨痕。接着用粘毡和钻石研磨膏进行抛光,顺序为1μm(#14000)~ 1/2μm(#60000)~1/4μm(#100000)。 精度要求在1μm以上(包括1μm)的抛光工艺在模具加工车间中一个清洁的抛光室内即可进行。若进行更加精密的抛光则必需一个绝对洁净的空间。灰尘、烟雾,头皮屑和口水沫都有可能报废数个小时工作后得到的高精密抛光表面。 ⑵机械抛光中的技巧 Ⅰ用砂纸抛光应注意以下几点: ①用砂纸抛光需要利用软的木棒或竹棒。在抛光圆面或球面时,使用软木棒可更好的配合圆面和球面的弧 度。而较硬的木条像樱桃木,则更适用于平整表面的抛光。修整木条的末端使其能与钢件表面形状保持吻合,这样可以避免木条(或竹条)的锐角接触钢件表面而造成较深的划痕。 ②当换用不同型号的砂纸时,抛光方向应变换45°~ 90°,这样前一种型号砂纸抛光后留下的条纹阴影即 可分辨出来。在换不同型号砂纸之前,必须用100%纯棉花沾取酒精之类的清洁液对抛光表面进行仔细的擦拭,因为一颗很小的沙砾留在表面都会毁坏接下去的整个抛光工作。从砂纸抛光换成钻石研磨膏抛光时,这个清洁过程同样重要。在抛光继续进行之前,所有颗粒和煤油都必须被完全清洁干净。 ③为了避免擦伤和烧伤工件表面,在用#1200和#1500砂纸进行抛光时必须特别小心。因而有必要加载一个 轻载荷以及采用两步抛光法对表面进行抛光。用每一种型号的砂纸进行抛光时都应沿两个不同方向进行两次抛光,两个方向之间每次转动45°~ 90°。

目前常用的超光滑表面加工方法

目前常用的超光滑表面加工方法,是由传统的研磨抛光加工技术改进而来的,如浴法抛光、浮法抛光等,此类方法材料去除率低,也能够达到亚纳米量级的表面粗糙度,但很难避免机械接触式抛光对工件表面带来的亚表面损伤和加工变质层。各种基于新原理的抛光方法逐渐被提出,如离子束抛光、等离子体辅助化学抛光、液体喷射抛光、磁流变抛光、化学机械抛光和弹性发射加工等。其中日本大阪大学学者发明的弹性发射加工方法利用工件材料与磨料之间发生固相反应实现原子级材料去除,被认为是获得最高表面质量的加工方法,可以达到RMS 0.1nm 的表面粗糙度,但其加工效率很低,并且设备复杂,维护成本高。纳米颗粒射流抛光是借鉴了弹性发射加工的去除原理的一种超光滑表面加工方法,结合数控技术可以实现光学零件纳米级粗糙度、无表面损伤的精确抛光,但仍然存在抛光效率不高的问题。 光学元件的加工一般都需要三大基本步骤:铣磨、精磨和抛光,其中铣磨和抛光是最主要的两道工序。抛光的目的是在去除表面破坏层的同时精修面形。现行的抛光理论认为抛光是三种作用的结果:磨料与工件之间的机械磨削、抛光液的化学作用和工件表面的热流动。这些理论对于超光滑表面加工已经不完全适用,基于新原理的超光滑表面加工方法不断涌现。 液体喷射抛光技术:液体喷射抛光技术(Fluid Jet Polishing, FJP)是近几年提出的用于加工脆性材料光学元件的新方法。液体喷射抛光技术系统如图1-4 a)所示,其思想源于磨料射流加工技术,高压泵加速混有磨料粒子的抛光液,利用磨料粒子对工件表面材料的冲击和剪切作用实现材料去除。该方法通过控制液体喷射的压力、方向及驻留时间实现对工件面形的定量修正。

微机械加工

微机械加工应用趋势与前沿技术简述

摘要:微机电系统(MEMS)是由电子和机械组成的集成化器件或系统,采用与集成电路兼容的大批量处理工艺制造,尺寸在微米到毫米之间。尤其将计算、传感和执行融为一体,从而改变了感知和控制自然界的方式。本文介绍了微机电系统近几年应用领域及前景展望,并简单阐述了关于微制造的几种前言加工技术,从而对MEMS系统有一个粗略的了解。 关键字:MEMS 应用领域前景前沿技术 LIGA技术 前言 微型机械加工或称微机电系统(MEMS),早在1959年就由著名的物理学家理查德·范蔓(Richard·Feynman)提出其概念,然而此后数十年间的发展并未受到过多的关注,直到近年来才逐渐发展成为一门交叉学科。 MEMS主要包括微型传感器、微型执行器以及相应地处理电路三部分。作为输入信号的各种信号首先通过微传感器转换成电信号,经过信号处理以后,再通过微执行器对外部世界发生作用。传感器可以把能量从一种形式转换成另一种形式,从而将现实世界的信号(热、化学、运动等)转换成系统可以处理的信号(如电信号)。信号处理器则可以对信号进行转换、放大和计算等处理。执行器根据信号处理电路发出的指令来完成人们所需要的操作。 MEMS的快速发展只不过是10多年的时间,却已在各个应用领域显示出强大的生命力,甚至单个领域的MEMS器件就已经形成了一个较大规模的产业。面向21世纪,MEMS将逐步走向实用化,并被广泛应用于国防、航空、航天、通信、环保、生物工程、医疗、制造业、农业和家庭。在某种意义上,可认为MEMS是“信息化带动工业化”的一个典范。 一、应用领域与前景展望 作为信息获取关键的传感MEMS,已成功应用于汽车、电子等行业和军事领域;在令人瞩目的信息技术和生命技术的发展中,MEMS更将发挥不可估量的作用:光MEMS被认为是开启通信之门的钥匙;RF MEMS将成为移动通信的一项核心技术;高密度MEMS生物芯片将强有力地推动生命科学和生物技术的发展。近几年,采用MEMS的发展将对人类生产和生活方式产生革命性的影响,将关系到国民经济发展和国家发展安全保障的战略高技术,已引起了广泛的关注。 微机电系统在国防中的应用 美国和西方国家为了掌握现代战争的主动权,大力发展微型飞行器、战场侦察传感器、智能军用机器人,以增加武器效能,军用武器装备的小型化是重要的发展趋势。MEMS是未来武器中最精华的部分,为了适应这一发展的需要,主要采用的是MEMS技术制造的传感器和微系统。大量采用MEMS器件,以改进武器性能,已成为美国发展新型高科技武器装备的方向。根据美国防卫高级研究计划署(Defense Advanced Research Projects Agency)公布的资料,MEMS在武器装备中的主要应用领域包括以下几个方面:武器制导和个人导航的惯性导航组合;超小型、超低功率无线通信(RF MEMS)的机电信号处理;军备跟踪、环境监控、安全勘测的无人值守分布式传感器;小型分布式仪器、推进和燃烧控制的集成流量系统;武器安全、保险和引信;有条件保养的嵌入式传感器和执行器;高密度、低功耗的大规模数据存储器件;敌友识别系统、显示和光纤开关的集成微光学器件,以及飞机分布式空气动力学控制和自适应光学的主动和共型表面。 航天领域对器件的功能密度要求很高。因此,MEMS的发展,从一开始就受到航天部门的重视并得到应用。目前,微型飞行器的研究主要集中在美、日、德等发达国家。美国LMB公司研制出翼展为45cm的微型飞行器Bat,该机飞行时间20min,飞行速度大约为64km/h,飞行高度457m,1995年,日本东北大学利用MEMS技术,制造出一个靠磁力矩驱动的飞行装置,该装置宽30mm,长20mm,重5.3mg,等等。美国五角大楼认为,军用

汽车钣金工艺流程知识交流

钣金工艺流程 汽车车身表面操作的钣金修复一般要经过几个过程。首先,对送修车辆进行检查,确定其车身结构类型,然后根据受损部位的情况确定修复方式,最后,按要求对不同的部位安排合理的修理工艺。 一、根据车身结构确定修理工艺 1、车身校正固定,对于车身的拔拉索引校正,必 须保证车身固定,否则,在拉力作用下会产生 整体位移,达不到索引校正的目的。 2、车身校正程序 ●了解设备的性能及安全使用措施 ●对车身损伤作出分析判断,确定牵拉方案 ●初步校正基础的固定点 ●修正定位点,检查校正效果,按计划牵拉校正 3、在进行牵拉校正之前,应对车身内部和外部进 行如下保护 ●尽量取出内部部件,如座位,仪表台,车垫等 ●焊接时用隔热材料盖住玻璃,座位,仪表台等 部件,以防烧伤 ●拆除车身外面部件,并用棉布或保护带保护好 车身,防止擦伤 ●如果油漆表面擦破,必须修好,防止锈蚀

4、车身前端损坏的修复 ●车身前端损坏主要是前端受碰撞(如追尾事 故)形成的。损坏的部位包括前部的横梁一侧 的挡泥板,侧梁以及另侧的前翼板等相关区域 ●整修前端要从前挡泥板一侧梁开始,首先,需 要修复支撑结构件,选择需要更换部件的一侧 先进行侧梁的牵拉 5、车身后部损坏的修复 ●校正时,将夹钳或钩子接到后侧梁的后部,后 地板或后顶盖,侧板后端部,一边牵拉,一边 测量车身下面每一部份的尺寸,观察车身板的 配合间隙来确定必要的修理程度 ●当后侧梁被严重碰撞,影响到后门框变形开关 不畅时,但能靠牵拉侧梁来消除后顶盖侧板的 应力 二、根据车身表面损伤程度确定修理工艺 1、凹凸表面的整修 ●小范围局部凸起的整形:用垫铁贴紧凸起的反 面,手锤敲击凸起部位,使凸起部份被压缩到 原来形状。操作时,要求捶击力量要轻巧,以 每秒2次的频率连续冲击,并做到捶击点均匀 分布

省模抛光步骤

随着塑料制品日溢广泛的应用,如日化用品和饮料包装容器等,外观的需要往往要求塑料模具型腔的表面达到镜面抛光的程度。而生产光学镜片、镭射唱片等模具对表面粗糙度要求极高,因而对抛光性的要求也极高。抛光不仅增加工件的美观,而且能够改善材料表面的耐腐蚀性、耐磨性,还可以使模具拥有其它优点,如使塑料制品易于脱模,减少生产注塑周期等。因而抛光在塑料模具制作过程中很重要的一道工序。 1 抛光方法 目前常用的抛光方法有以下几种: 1.1 机械抛光 机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。光学镜片模具常采用种方法。 1.2 化学抛光 化学抛光是让材料在化学介质中表面微观凸出的部分较凹部分优先溶解,从而得到平滑面。这种方法的主要优点是不需复杂设备,可以抛光形状复杂的工件,可以同时抛光很多工件,效率高。化学抛光的核心问题是抛光液的配制。化学抛光得到的表面粗糙度一般为数10μm。 1.3 电解抛光 电解抛光基本原理与化学抛光相同,即靠选择性的溶解材料表面微小凸出部分,使表面光滑。与化学抛光相比,可以消除阴极反应的影响,效果较好。电化学抛光过程分为两步: (1)宏观整平溶解产物向电解液中扩散,材料表面几何粗糙下降,Ra>1μm。 (2)微光平整阳极极化,表面光亮度提高,Ra<1μm。 1.4 超声波抛光

超光滑加工

一、超光滑表面加工技术   现代科学技术的不断发展对超光滑表面的需求越来越多。所谓的超光滑表面通常是指表面粗糙度小于10Å(rms)的表面,与之相应的加工技术就称为超光滑表面加工技术。   目前是,超光滑表面的应用主要集中在两个方面:一是一强激光、短波等为代表的工程光学领域。 二是以磁记录头、大规模集成电路基板等器件为主的电子工业领域。   近年来,超光滑表面加工已成为加工领域争先发展的热点。 1.1超光滑表面加工概述     超光滑表面加工技术从某中意义上讲是一种“超级”抛光技术。抛光是超光滑表面加工的 关键环节。     传统的抛光机理认为抛光是磨料对工件的机械磨削、工件表面的热流动、抛光液的化学作用共同作用的结果。然而,对于超光滑表面加工这一理论就不完全实用了。     现今,超光滑表面加工技术种类很多,很难用同一中理论来加以解释。然而,从已有技 术的材料去除方式来看可大致有以下特点: (1)以机械磨削去除为注的超光滑表面加工技术。 (2)采用化学方法进行表面去除,实现无破坏层超光滑表面加工。 (3)以物理“碰撞”方法将工件以原子量级去除,实现超光滑表面加工。 2.2几种超光滑表面加工技术的介绍 1、浴法抛光 浴法抛光(bowel-feed polishing)是已有超光滑表面加工技术中所需设备较为简单 的一种。    它的特点是:抛光过程中液槽使抛光盘和工件浸没于抛光液中,抛光液的深度以静止时淹没工件10~15mm为宜;另有搅拌器,它能是抛光液处于悬浮状态。    浴法抛光加工超光滑表面可分为两个阶段: (1)获取较高面形。这一过程类似与传统抛光的面形修改。 (2)获得超光滑表面。    当选好的磨料、保持抛光盘与工件面形吻合等也是获得超光滑表面的重要因素。 几种材料的浴法抛光的结果 材    料磨    料粗糙度/Å F4Al2O3(超级--Sol 200A)10 BK-76 Duran50硼硅酸玻璃5.3 Herasil 熔石英5.5 Homosil 熔石英3.3 晶体石英4.4 Zerldur M2.5 2、聚四氟乙烯抛光 聚四氟乙烯(Teflon)抛光最先是由澳大利亚国家计量实验室(NML)为加 工Fabry-Perot干涉仪所用高精度光学元件而提供的。    聚四氟乙烯抛光盘具有抗老化、耐磨损、可长时间保持面形等优点,既可用于传统抛光又可用于浴法抛光可用于。其关键在于抛光盘的制作。    抛光盘的制作可分为如下三步: (1)基底的准备。选择一块膨胀系数较小的材料。 (2)抛光层的制作。先在基底上涂一层增强结合层,然后再涂一层聚四氟乙烯抛光层即可。 (3)抛光盘的修整。并用样板或干涉仪检测。  值得一提的是,在用聚四氟乙烯抛光盘进行超光滑表面加工加工过程中,由于磨削量小,工件均

微机械及其微细加工技术

3?6嶽机織及*抵佃彌工牧* 一、引言 随着微/纳米科学与技术(Micro/Nano Science and Technology)的发展,以本身形状尺寸微小或操作尺度极小为特征的微机械已成为人们在微观领域认识和改造客观世界的一种高新技术。

80年代末出现的一门崭新的学 21世纪最具代表性的技术之O 微机电系统与微电子学、信息学、材料科学和纳米技术的发展等密切相关。被公认为21世纪的重点发展学科,是国家重点发展的高技术产业。 微机电系统是微电子技术的延伸和拓 宽,通过传感器、致动器、信号处理、控制等多项功能,与外部世界有机联系起来 O

微机电系统的概念始于20世纪80年代,一般泛指尺度在亚微米至亚毫米范围内的装置。在不同国家和地区有不同的术语和解释: ?美国称作Micro Electro-Mechanical System - MEMS (微型电-机系统)微型电-机系统是由电子和机械组成的集成化器件或系统,釆用与集成电路兼容的大批量处理工艺制造,尺寸在微米到毫米之间。

3?6截机鐵及裏紙佃勉工藝* ?在欧洲则称作Micro System (微系统)是指具有微米级结构,可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通信电路和电源等于一体的微型慕件或系统。 ?在日本称作Micro Machine (微机器)微机器由只有几毫米大小的功能元件组成,它能够执行复杂、细微的任务。

?微机电系统是指特征尺寸在微米至毫米 范围内,由电子和机械组成的集成化器 件或系统。按外形尺寸,微机械可划分为l-10mm的微小型机械,lgm-lmm的微机械,以及lnm~l(im的纳来机械。

微型机械加工技术发展现状和趋势分析

微型机械加工或称微型机电系统或微型系统是只可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通讯电路和电源等于一体的微型器件或系统。其主要特点有:体积小(特征尺寸范围为:1μm-10mm)、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化、来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。 微型机械加工技术是指制作为机械装置的微细加工技术。微细加工的出现和发展早是与大规模集成电路密切相关的,集成电路要求在微小面积的半导体上能容纳更多的电子元件,以形成功能复杂而完善的电路。电路微细图案中的最小线条宽度是提高集成电路集成度的关键技术标志,微细加工对微电子工业而言就是一种加工尺度从微米到纳米量级的制造微小尺寸元器件或薄模图形的先进制造技术。目前微型加工技术主要有基于从半导体集成电路微细加工工艺中发展起来的硅平面加工和体加工工艺,上世纪八十年代中期以后在LIGA加工(微型铸模电镀工艺)、准LIGA加工,超微细加工、微细电火花加工(EDM)、等离子束加工、电子束加工、快速原型制造(RPM)以及键合技术等微细加工工艺方面取得相当大的进展。 微型机械系统可以完成大型机电系统所不能完成的任务。微型机械与电子技术紧密结合,将使种类繁多的微型器件问世,这些微器件采用大批量集成制造,价格低廉,将广泛地应用于人类生活众多领域。可以预料,在本世纪内,微型机械将逐步从实验室走向适用化,对工农业、信息、环境、生物医疗、空间、国防等领域的发展将产生重大影响。微细机械加工技术是微型机械技术领域的一个非常重要而又非常活跃的技术领域,其发展不仅可带动许多相关学科的发展,更是与国家科技发展、经济和国防建设息息相关。微型机械加工技术的发展有着巨大的产业化应用前景。 微型机械加工技术的国外发展现状 1959年,RichardPFeynman(1965年诺贝尔物理奖获得者)就提出了微型机械的设想。1962年第一个硅微型压力传感器问世,气候开发出尺寸为50~500μm的齿轮、齿轮泵、气动涡轮及联接件等微机械。1965年,斯坦福大学研制出硅脑电极探针,后来又在扫描隧道显微镜、微型传感器方面取得成功。1987年美国加州大学伯克利分校研制出转子直径为60~12μm的利用硅微型静电机,显示出利用硅微加工工艺制造小可动结构并与集成电路兼容以制造微小系统的潜力。

喷漆工艺流程

喷漆工艺流程 喷漆工艺标准流程 1.检查钣金修复的平整度: 首先对要喷漆的部位进行检查是否平整,擦干净没有钣金的喷漆部份,检查是否有凹陷。 2.打磨处理需要补土的部份: 用砂轮机将钣金边缘进行处理,用砂纸将钣金周围磨出羽状边,再用砂纸打磨旧漆面,扩大补土的范围。 3.清洁涂油 打磨完成后,清洗干净打磨位置及喷漆位置。 4,中涂 尽量控制中涂底漆在较小的范围,并注意边缘位置要渐进,不要成台阶状。 5,打磨中涂 待中涂底漆干燥固化后,用砂纸打磨中涂底漆,并准备补土。 6.补土 将低凹处的汽车表面用原子灰将其补平,待干打磨。 7.研磨 根据不同的表面形状选择不同的打磨方式后将原子灰的边缘与原车旧漆平稳过渡至原车的流水线要求。 8.喷底漆或刮填眼灰 对补土处进行喷涂底漆或刮填眼灰并平整原子灰的一些小孔和涂物损坏处。 9.底漆打磨 对底漆或填眼灰进行打磨,平整后用砂纸扩大打磨范围,增强新漆面在旧漆膜上的附着力,完成打磨后便可进入喷漆前的准备。 10.吹水遮蔽 对要喷漆的范围内所有的边缘接口,用压缩空气的方式将边缝内的水吹干,对不喷漆的部位进行遮蔽。 11.涂油,涂尘 用除油剂清洁整个需要喷涂的工作,用粘尘布进行喷涂前涂尘工作。 12.喷漆面漆 喷漆面漆可分三个工序:A,单工序——单工序针对纯色漆。B,双工序——双工序针对金属漆。C,三工序——三工序针对白珍珠,变色龙。(注:针对不同色漆~所喷涂面漆的施工工艺流程不同。) 13.打磨抛光 用水磨砂纸,打磨漆面上面的尘点及橘皮纹后用腊抛光 漆面抛光是汽车美容技术中最重要的组成部分。抛光技术水平的高低直接关系到汽车美容的最终效果。因此,抛光技术是汽车美容服务的基础。车身漆面彻底清洁后,就可根据漆面损伤的程度进行抛光处理。 一、材料选用及抛光方法 以英国特使系列产品为例,特使系列C3全能抛光剂含有研磨剂、去污剂、还原剂、光亮剂等多种成分,专为车身镜面抛光而设计,已被越来越多的欧美汽车厂指定使用。这种产品抛光速度快,可快速去除交通膜及中度划痕,不伤漆面,不留光环,节省工时,1小时可抛光、翻新一辆旧车漆面。抛光后残留物少,容易擦净,克服了其他同类产品抛光后残窖物到处飞溅,不易清除的缺点。可有效解决漆面划痕、哑光、褪色、氧化、粗糙等漆面缺陷,尤其适用于旧车漆面、划痕较深的漆面和桔皮、流挂等,若配合镜面釉使用,瞬间即可达到超亮镜面效果,是护车“三宝”中的重点用品。 抛光方法:将抛光机调整好转速,海绵轮用水充分润湿后,甩去多余水分。先取少量C3抛光剂涂于漆面(每一小块作一次处理,不可大范围涂抹),从车顶篷开始抛光。抛光机的海绵轮应保持与漆面相切,力度适中,速度保持一定。抛光时按一定的顺序抛光,不可随意进行。用过C3抛光剂后,再换用增艳剂按以上步骤操作一次。 二、镜面釉处理 当整车漆面处理完毕后,漆面会很平滑、光亮,但有时也还会有一些极其细小的划痕和花痕或光环,为了保持漆面的光滑和光亮,则需上特使系列镜面釉。这种镜面釉以高分子釉剂等聚合物为主要原材料,不含蜡、硅及硝基合成氨,可在任何车型的漆面上做出釉质镜面效果,在汽车漆面上形成具有光滑、明亮、密封的釉质镜面保护膜,专车身时刻保持光亮如镜。同时具有防酸雨、抗氧化、防紫外线、防褪色等多项显著功能,还可抵御硬物轻度刮伤,不怕火和油污等,并具有一年以上的保持功效。 使用方法:使用时先用干净软布将抛光残留物清除干净,摇匀镜面釉,用软布或海绵将其涂在漆面上,停留60s后用手工或机器抛光。机器抛光保持转速在1000r/min以下,最后用干净软布擦去残留物。手工处理时,直线抛光、抛亮即可。注意事项: 控制抛光机的转速,不可超过选定的速度范围; 保持抛光方向的一致性,应有一定的次序; 更换抛光剂的同时更换海绵轮,不可混用海绵轮; 严禁使用羊毛轮进行镜面釉处理。 三、漆面护理 抛光后并做过镜面釉处理的漆面,必须再上蜡层才能完成最后的保护,这样才会更加充分地达到保护汽车的目的。因为

模具抛光的工艺流程及技巧

模具抛光的工艺流程及技巧 模具抛光的工艺流程及技巧 抛光在模具制作过程中是很重要的一道工序,也是收官之作,随着塑料制品的日溢广泛应用,对塑料制品的外观品质要求也越来越高,所以塑料模具型腔的表面抛光质量也要相应提高,特别是镜面和高光高亮表面的模具对模具表面粗糙度要求更高,因而对抛光的要求也更高。抛光不仅增加工件的美观,而且能够改善材料表面的耐腐蚀性、耐磨性,还可以方便于后续的注塑加工,如使塑料制品易于脱模,减少生产注塑周期等。目前常用的抛光方法有以下几种: ㈠机械抛光 机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。光学镜片模具常采用这种方法。 ⑴机械抛光基本程序 要想获得高质量的抛光效果,最重要的是要具备有高质量的油石、砂纸和钻石研磨膏等抛光工具和辅助品。而抛光程序的选择取决于前期加工后的表面状况,如机械加工、电火花加工,磨加工等等。机械抛光的一般过程如下: ①粗抛经铣、电火花、磨等工艺后的表面可以选择转速在35 000—40 000 rpm的旋转表面抛光机或超声波研磨机进行抛光。常用的方法有利用直径Φ3mm、WA # 400的轮子去除白色电火花层。然后是手工油石研磨,条状油石加煤油作为润滑剂或冷却剂。一般的使用顺序为#180 ~ #240 ~ #320 ~ #400 ~ #600 ~ #800 ~ #1000。许多模具制造商为了节约时间而选择从#400开始。 ②半精抛半精抛主要使用砂纸和煤油。砂纸的号数依次为:#400 ~ #600 ~ #800 ~ #1000 ~ #1200 ~ #1500。实际上#1500砂纸只用适于淬硬的模具钢(52HRC以上),而不适用于预硬钢,因为这样可能会导致预硬钢件表面烧伤。 ③精抛精抛主要使用钻石研磨膏。若用抛光布轮混合钻石研磨粉或研磨膏进行研磨的话,则通常的研磨顺序是9μm(#1800)~ 6μ m(#3000)~3μm(#8000)。9μm的钻石研磨膏和抛光布轮可用来去除#1200和#1500号砂纸留下的发状磨痕。接着用粘毡和钻石研磨膏进行抛光,顺序为1μm(#14000)~ 1/2μm(#60000)~1/4μm(#100000)。 精度要求在1μm以上(包括1μm)的抛光工艺在模具加工车间中一个清洁的抛光室内即可进行。若进行更加精密的抛光则必需一个绝对洁净的空间。灰尘、烟雾,头皮屑和口水沫都有可能报废数个小时工作后得到的高精密抛光表面。 ⑵机械抛光中的技巧 Ⅰ用砂纸抛光应注意以下几点: ①用砂纸抛光需要利用软的木棒或竹棒。在抛光圆面或球面时,使用软木棒可更好的配合圆面和球面的弧度。而较硬的木条像樱桃木,则更适用于平整表面的抛光。修整木条的末端使其能与钢件表面形状保持吻合,这样可以避免木条(或竹条)的锐角接触钢件表面而造成较深的划痕。 ②当换用不同型号的砂纸时,抛光方向应变换45°~ 90°,这样前一种型号砂纸抛光后留下的条纹阴影即可分辨出来。在换不同型号砂纸之前,必须用100%纯棉花沾取酒精之类的清洁液对抛光表面进行仔细的擦拭,因为一颗很小的沙砾留在表面都会毁坏接下去的整个抛光工作。从砂纸抛光换成钻石研磨膏抛光时,这个清洁过程同样重要。在抛光继续进行之前,所有颗粒和煤油都必须被完全清洁干净。 ③为了避免擦伤和烧伤工件表面,在用#1200和#1500砂纸进行抛光时必须特别小心。因而有必要加载一个轻载荷以及采用两步抛光法对表面进行抛光。用每一种型号的砂纸进行抛光时都应沿两个不同方向进行两次抛光,两个方向之间每次转动45°~ 90°。 Ⅱ钻石研磨抛光应注意以下几点: ①这种抛光必须尽量在较轻的压力下进行特别是抛光预硬钢件和用细研磨膏抛光时。在用#8000研磨膏抛光时,常用载荷为100~200g/cm2,但要保持此载荷的精准度很难做到。为了更容易做到这一点,可以在木条上做一个薄且窄的手柄,比如加一铜片;或者在竹条上切去一部分而使其更加柔软。这样可以帮助控制抛光压力,以确保模具表面压力不会过高。 ②当使用钻石研磨抛光时,不仅是工作表面要求洁净,工作者的双手也必须仔细清洁。 ③每次抛光时间不应过长,时间越短,效果越好。如果抛光过程进行得过长将会造成“橘皮”和“点蚀”。 ④为获得高质量的抛光效果,容易发热的抛光方法和工具都应避免。比如:抛光轮抛光,抛光轮产生的热量会很容易造成“橘皮”。 ⑤当抛光过程停止时,保证工件表面洁净和仔细去除所有研磨剂和润滑剂非常重要,随后应在表面喷淋一层模具防锈涂层。 由于机械抛光主要还是靠人工完成,所以抛光技术目前还是影响抛光质量的主要原因。除此之外,还与模具材料、抛光前的表面状况、

相关主题
文本预览
相关文档 最新文档