当前位置:文档之家› Matlab在物理学中的应用--光衍射

Matlab在物理学中的应用--光衍射

Matlab在物理学中的应用--光衍射
Matlab在物理学中的应用--光衍射

光的干涉和衍射

一、实验目的

①学习用用模拟实验方法探究光的干涉和衍射问题.

②进一步熟悉MA TLAB编程.

二、实验内容和要求

1. 双缝干涉模拟实验

杨氏双缝干涉实验是利用分波前法获得相干光束的典型例子. 如图2.24所示,单色光通过两个窄缝s1,s2射向屏幕,相当于位置不同的两个同频率同相位光源向屏幕照射的叠合,由于到达屏幕各点的距离(光程)不同引起相位差,叠合的结果是在有的点加强,在有的点抵消,造成干涉现象.

P

O

图2.24 双缝干涉示意图

考虑两个相干光源到屏幕上任意点P的距离差为

1

2

21

r

r

r r r

=

?=-

(2.19)引起的相位差为

r

?

λ

?

=

设两束相干光在屏幕上P点产生的幅度相同,均为A0,则夹角为φ的两个矢量A0的合成矢量的幅度为

A=2A0 cos(φ/2)

第二章 数理探究试验 135

光强B 正比于振幅的平方,故P 点光强为

B =4B 0cos 2(φ/2) (2.20)

运行sy211.m 程序得到干涉条纹如图2.27所示.

clear all %sy211.m

lam=500e-9; %输入波长

a=2e-3; D=1;

ym=5*lam*D/a; xs=ym; %设定光屏的范围

n=101;ys=linspace(-ym,ym,n); % 把光屏的y 方向分成101点

for i=1:n

r1=sqrt((ys(i)-a/2).^2+D^2);

r2=sqrt((ys(i)+a/2).^2+D^2);

phi=2*pi*(r2-r1)/lam;

B(i,:)=4*cos(phi/2).^2;

end

N=255; % 确定用的灰度等级为255级

Br=(B/4.0)*N; %使最大光强对应于最大灰度级(白色)

subplot(1,2,1)

image(xs,ys,Br); %画干涉条纹

colormap(gray(N));

subplot(1,2,2)

plot(B,ys) %画出光强变化曲线

图2.25中左图是光屏上的干涉条纹,右图是光屏上沿y 轴方向光强的变化曲线. 从图中也不难看出,干涉条纹是以点o 所对应的水平线为对称,沿上下两侧交替,等距离

排列,相邻亮条纹中心间距为2.5×10-4m. -0.4-0.200.20.4-1.5

-1-0.500.511.5x 10图2.25 单色光的干涉条纹

这与理论推导和实验结果基本一致.

下面我们从理论上加以推导,由上面的式(2.19)可得

22212121()()2d r r r r r r y -=+-=

-1.5 -1 -0.5 0 0.5 1 1.5 -0.4 -0.2 0 0.4 0.2

基于MA TLAB 的数学实验

136 考虑到a ,y 很小,(r 1+r 2)=2D ,所以

21D r r y a

-= 这样就得到点P 处于亮条纹中心的条件为

20122

D y k k a λ==±±,,,, (2.21) 因此,亮条纹是等间距的,相邻条纹间距为94150010 2.510m 0.002

D a λ--=?=?. 问题2.39:推导出点P 处于暗条纹中心的条件并与模拟结果相比较,看是否一致? 考虑到纯粹的单色光不易获得,通常都有一定的光谱宽度,这种光的非单色性对光的干涉会产生何种效应,下面我们用MA TLAB 计算并仿真这一问题.

非单色光的波长不是常数,必须对不同波长的光分别处理再叠加起来. 我们假定光源的光谱宽度为中心波长的±10%,并且在该区域均匀分布. 近似取11根谱线,相位差的计算表达式求出的将是不同谱线的11个不同相位. 计算光强时应把这11根谱线产生的光强叠加并取平均值,即

21101

2π4cos ()211k k

k k r B B ?λ?=?==∑ 将程序sy211.m 中的9,10两句换成以下4句,由此构成的程序就可仿真非单色光的干涉问题.

N1=11;dL=linspace(-0.1,0.1,N1);

%设光谱相对宽度±10%, lam1=lam*(1+dL');

%分11根谱线,波长为一个数组 Phi1=2*pi*(r2-r1)./ lam1;

%从距离差计算各波长的相位差 B(i, :)=sum(4*cos(Phi1/2).^2)/N1; %叠加各波长并影响计算光强

运行修改后的程序得到的干涉条纹如图2.26所示. 可以看出,光的非单色性导致干涉现象的减弱,光谱很宽的光将不能形成干涉.

第二章 数理探究试验 137

-0.4-0.200.20.4-1.5-1-0.500.511.5-3

-3

图2.26 非单色光的干涉条纹 2. 单缝衍射的模拟实验

一束单色平行光通过宽度可调的狭缝,射到其后的光屏上. 当缝宽足够小时,光屏上形成一系列亮暗相间的条纹,这是由于从同一个波前上发出的子波产生干涉的结果. 当光源到衍射屏的距离和光屏到衍射屏的距离都是无穷大时,即满足远场条件时,我们称这种衍射为夫琅禾费衍射. 所以夫琅禾费衍射中入射光和衍射光都是平行光. 为了模拟单缝衍射现象,我们把单缝看成一排等间隔光源,共NP 个光源分布在A ~B 区间内,离A 点间距为yp ,则屏幕上任一点S 处的光强为NP 个光源照射结果的合成.

如图2.27所示,子波射线与入射方向的夹角?称为衍射角,0=?时,子波射线通过透镜后,必汇聚到O 点,这个亮条纹对应的光强称为主极大. NP 个光源在其他方向的射线到达S 点的光程差,应等于它们到达平面AC 的光程差,即sin yp ??=,其中

sin ys D

?≈ ys 为S 点的纵坐标,则与A 点光源位相差为

2π2πyP ys D

αλλ=?=

s O

基于MA TLAB 的数学实验 138 -0.4-0.200.20.4-1.5

-1

-0.5

00.511.5-3-3图2.28 单缝衍射条纹

图2.27 单缝衍射的模拟实验

设单缝上NP 个光源的振幅都为1,在x ,y 轴上的分量各为cos sin αα,,合振幅的平方为:()()22COSa COSa ∑+∑. 又光强正比于振幅的平方,所以相对于O 点主极大光强也为

22

(cos )(sin )0I I αα=+∑∑

程序sy212.m 模拟了单缝衍射现象,这里取波长λ=500nm ,缝宽a =1mm ,透镜焦距D =1m ,运行结果如图2.28所示.

clear all %sy212.m

lam=500e-9;a=1e-3;D=1;

ymax=3*lam*D/a; %屏幕范围(沿y 向)

Ny=51; %屏幕上的点数(沿y 向)

ys=linspace(-ymax,ymax,Ny);

NP=51;

yP=linspace(0,a,NP); %把单缝分成NP 个光源

for i=1:Ny %对屏幕上y 向各点作循环

SinPhi=ys(i)/D;

alpha=2*pi*yP*SinPhi/lam; SumCos=sum(cos(alpha)); SumSin=sum(sin(alpha));

B(i,:)=(SumCos^2+SumSin^2)/NP^2;

end N=255; % 确定用的灰度等级为255级

%使最大光强对应于最大灰度级(白色)

Br=B/max(B)*N; subplot(1,2,1)

%画衍射条纹,用灰度级颜色图

image(ymax,ys,Br); colormap(gray(N));

subplot(1,2,2)

%画屏幕上光强曲线 plot(B,ys,'*',B,ys);grid;

分析图2.28中的衍射条纹,我们可以看出所

有亮暗条纹都平行于单缝,O 点光强为最大,这

都和理论推导结果相一致.

问题2.40: 从理论上讲,中央亮条纹的半角

宽和第一条暗条纹的衍射角都应等于λ/a ,各次极大角宽都等于中央亮条纹的半角宽,图2.28模拟的衍射条纹符合这个结论吗?

3. 光栅衍射的模拟实验

有大量等宽度、等间距的平行狭缝组成的光学系统称为衍射光栅. 单缝宽度a 和刻

第二章 数理探究试验 139

痕宽度b 之和称为光栅常数d ,d =a +b . 光栅衍射条纹是单缝衍射和缝间干涉的共同结果.

设光栅有N 条狭缝,透镜焦距为D ,理论分析可以得到,光屏上P 点的夫琅禾费衍射光强I P /I 0分布为

220sin sin ()()sin P I N I αβαβ

= 式中

sin sin sin s y a d D

ππα?β??λλ==≈,, 运行程序sy213.m 得到衍射条纹如图2.29所示.

clear all %sy213.m

lam=632.8e-9; N=2;

a=2e-4; D=5;d=5*a;

ym=1.89*lam*D/a;xs=ym; %设定光屏的范围

n=1001;ys=linspace(-ym,ym,n); % y 方向分成1001点

for i=1:n

Sinphi=ys(i)/D;

alpha=pi*a*Sinphi/lam;

beta=pi*d*Sinphi/lam;

B(i, :)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2 ;

B1=B/max(B); %将最大光强设为1

end

NC=255;

Br=B/max(B)*NC;

subplot(1,2,1)

image(xs,ys,Br); %画衍射条纹

colormap(gray(NC))

subplot(1,2,2)

plot(B1,ys) %画出沿y 向的相对光强变化曲线

问题2.41:程序sy213.m 中d =5a ,观察图2.29衍射条纹,看有无缺级现象,为什么?改变sy213.m 中的波长、缝宽、光栅常数值,看衍射条纹有何变化?试加以解释.

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体 积,则致密度ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为, , 4 33a V r a= =晶胞内包含2个原子,所以 ρ=π π 8 3 ) ( * 2 3 3 4 3 3 4 = a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ=6 2)( *4334234 ππ=a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23232c r a == 晶胞体积 V = 222 360sin ca ca =ο, 一个晶胞内包含两个原子,所以 ρ=ππ62) (*2223 3234 =ca a .

《固体物理学答案》第一章晶体的结构

第一章、 晶体的结构 1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6π; (2)体心立方, ;8 3π (3)面心立方, ;62π (4)六角密积,;62 π (5)金刚石结构, ;16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体 积,则致密度ρ=V r n 3 34π (1) 对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积, 如图1.2所示,中心在1,2,3,4 处的原子球将依次相切,因为 ,,433a V r a == 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) (3 3 23 4π π= a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如 图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为 3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ= 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23 2 32c r a == 晶胞体积 V = 2 22 360sin ca ca = , 一个晶胞内包含两个原子,所以 ρ= ππ6 2)(*22 2 3 3 234= ca a .

固体物理第一章习题解答

固体物理学第一章习题解答 1、简述晶态、非晶态、准晶态、单晶、多晶的特征和性质。 答:晶态:内部质点在三维空间呈周期性重复排列的固体为晶体。其特征是原子排列具有周期性,表现为既有长程取向有序又有平移对称性。晶态的共性质:(1)长程有序;(2)自限性和晶面角守恒;(3)各向异性;(4)固定熔点。 非晶态特点:不具有长程序。具有短程序。短程序包括:(1)近邻原子的数目和种类;(2)近邻原子之间的距离(键长);(3)近邻原子配臵的几何方位(键角)。 准晶态是一种介于晶态与非晶态之间的新的状态。准晶态结构的特点:(1)具有长程的取向序而没有长程的平移对称序(周期性);(2)取向序具有周期性所不能容许的点群对称;(3)沿取向序对称轴的方向具有准周期性,由两个或两个以上不可公度的特征长度按着特定的序列方式排列。 晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2、什么是布喇菲格子?画出氯化钠晶体的结点所构成的布格子。说明基元代表点构 成的格子是面心立方晶体,每个原胞包含几个格点。 答:布喇菲格子(或布喇菲点阵)是格点在空间中周期性重复排列所构成的阵列。布喇菲格子是一种数学抽象,即点阵的总体,其特点是每个格点周围的情况完全相同。实际工作中,常是以具体的粒子(原子、离子等)做格点,如果晶体由完全相同的一种原子组成,则由这些原子所组成的格子,称为布喇菲格子。 NaCl晶体的结点构成的布格子实际上就是面心立方格子。每个原胞中包含一个格点。

3、指出下列各种格子是简单格子还是复式格子。 (1)底心六角(在六角格子原胞底面中心存在一个原子) (2)底心立方(3)底心四方 (4)面心四方(5)侧心立方 (6)边心立方 并指出它们分别属于十四种布拉菲格子中的哪一种? 答:要决定一个晶体是简单格子还是复式格子,首先要找到该晶体的基元,如果基元只包含一个原子则为简单格子。反之,则为复式格子。 (1)底心六角的原胞为AIBKEJFL所表示,它具有一个垂直于底面的四度旋转轴,它的原胞形状如图所示,是简单格子,属于单斜晶系。 (2)底心立方如下图所示,它的底面原子的排列情况可看出每个原子的周围情况都是相同的,因而都是等价的,所以它的基元也由一个原子组成,是简单格子,属于四角晶系。 (3)底心四方如下图所示,每个原子的周围情况完全相同,基元中只有一个原子,属于简单格子,属于四角晶系。

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

《固体物理学答案》第一章晶体的结构

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密 度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子 球占据的体积与晶胞体积的比值称为结构的致 密度, 设n为一个晶胞中的刚性原子球数,r表示 刚性原子球半径,V表示晶胞体积,则致密度 ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原 子以刚性球堆积,如图1.2所示,中心在1,2, 3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个 最近邻,若原子刚性球堆积,如图1.3所示,体 心位置O的原子8个角顶位置的原子球相切,

因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a 图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ = 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,

固体物理学1~6章习题解答

《固体物理学》习题解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b 那么, Rf Rb 1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分 别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010) (213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

《固体物理学》房晓勇-习题01第一章 晶体的结构

第一章 晶体的结构 1.1试证明体心立方格子和面心立方格子互为正倒格子。 解:我们知体心立方格子的基矢为: () () () 123222a a i j k a a i j k a a i j k ?=-++?? ?=-+? ? ?=+-?? 根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为: ()( )( ) 1232313122πΩ2πΩ2πΩb a a b a a b a a ?=??? ? =??? ?=??? () 3 1231Ω2 a a a a =??= 23222222222222 2 2 2 2 2 2 i j k a a a a a a a a a a a i j k a a a a a a a a a - - ?= - =++--- 22 22 a a j k =+ ()()() 223132π2π2πΩ22 a b a a j k j k a a =?=+=+ 同理 ()() 232π2π ,b i k b i j a a = +=+ () () () 1232π2π2πb j k a b i k a b i j a ?=+?? ?=+? ? ?=+?? 由此可知,体心立方格子的倒格子为一面心立方格子。

我们知面心立方格子的基矢为 () () () 123222a a j k a a i k a a i j ?=+?? ?=+? ? ?=+?? ()( )( ) 1232313122πΩ2πΩ2πΩb a a b a a b a a ? =??? ?=?? ? ?=??? () 31231Ω4 a a a a =??= 230 02222022 00 22 2 2 2 2 i j k a a a a a a a a i j k a a a a a a ?= =++- 222444 a a a i j k =-++ ()() 222223132π2π2π Ω24444 a a a a b a a i j k i j k a a ??=?=-+ +=-++ ???同理 ()() 232π2π,b i j k b i j k a a =-+=+- () () () 1232π2π2πb i j k a b i j k a b i j k a ?=-++?? ? =-+?? ?=+-?? 由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2在六角晶系中,晶面常用四个指数(hkil )来表示,如图所示,前三个指数表示晶面族中最靠近原点的晶面在互成1200的共面轴123,,a a a 上的截距为 3 12,,a a a h k i ,第四个指数表示该晶面在六重轴c 上的截距为c l 。证明: ()i h k =-+ 并将下列用(hkl )表示的晶面改用(hkil )表示:

《固体物理学》房晓勇-思考题01第一章 晶体的结构

第一章 晶体的结构 思考题 1.1 为什么自然界中大多数固体以晶态形式存在?为什么面指数简单的晶面往往暴露在外表面? 解答: 在密勒指数(面指数)简单的晶面族中,面间距d 较大。对于一定的晶格,单位体积内格点数目一定,因此在晶面间距大的晶面上,格点(原子)的面密度必然大。面间距大的晶面,由于单位表面能量小,容易在晶体生长过程中显露在外表面,所以面指数简单的晶面往往暴露在外表面。 1.2 任何晶面族中最靠近原点的那个晶面必定通过一个或多个基矢的末端吗? 解答: 根据《固体物理学》式(1-10a ) ()()( ) ()111222333cos ,cos ,110cos ,a a n h d a a n h d a a a n h d ?=?? =-?? ?=? 1.3 解理面是面指数低的晶面还是指数高的晶面?为什么? 解答:晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 1.4在14种布喇菲格子中,为什么没有底心四方、面心四方和底心立方? 解答:参考陈金富P33页,徐至中1-13 1)图(a )代表向c 轴俯视所观察到的体心四方的格点分布。格点②距离由格点①组成的晶面的C/2处。如C=a ,则点阵为bcc;如图所示,为已经伸长的bcc ,c ≠a ,它是体心四方点阵。如 图(b )与图(a )代表同样的点阵,只是观察的角度不同,图中①构成四方面心格点, 面心格点间的距离a '= ,如2a C '= =,则点阵为fcc ;对于一般的C 值,图(b ) 是沿c 轴伸长后的点阵,因此相同的点阵从(a )是体心点阵,从(b )看是面心点阵,本质上相同,都称为体心四方点阵。 2)类似的底心四方和简单四方是同一种点阵。 3)底心立方不再具有立方对称性。所以不存在。 1.5 许多金属既可以形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积

固体物理题库第一章晶体的结构

第一章晶体的结构 一、填空体(每空1分) 1. 晶体具有的共同性质为长程有序、自限性、各向异性。 2. 对于简立方晶体,如果晶格常数为a,它的最近邻原子间距为 a ,次近邻原子间 ,原胞与晶胞的体积比1:1 ,配位数为 6 。 3. 对于体心立方晶体,如果晶格常数为a a2,次近邻原子间距为 a ,原胞与晶胞的体积比1:2 ,配位数为8 。 4. 对于面心立方晶体,如果晶格常数为a 邻原子间距为 a ,原胞与晶胞的体积比1:4 ,配位数为12 。 5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。 6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。 7. 根据晶体内晶粒排列的特点,晶体可分为单晶和多晶。 8. 常见的晶体堆积结构有简立方(结构)、体心立方(结构)、面心立方(结构)和六角密排(结构)等,例如金属钠(Na)是体心立方(结构),铜(Cu)晶体属于面心立方结构,镁(Mg)晶体属于六角密排结构。 9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。 10.晶体结构的宏观对称只可能有下列10种元素:1 ,2 ,3 ,4 ,6 ,i ,m ,3,4,6,其中3和6不是独立对称素,由这10种对称素对应的对称操作只能组成32 个点群。 11. 晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有 1 个原子。 12. 晶体原胞中含有 1 个格点。 13. 魏格纳-塞茨原胞中含有 1 个格点。 二、基本概念 1. 原胞 原胞:晶格最小的周期性单元。 2. 晶胞 结晶学中把晶格中能反映晶体对称特征的周期性单元成为晶胞。 3. 散射因子 原子内所有电子在某一方向上引起的散射波的振幅的几何和,与某一电子在该方向上引起的散射波的振幅之比。 4. 几何结构因子 原胞内所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射

固体物理学课后题答案

第一章 晶体结构 1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明: 结构 X 简单立方 52.06 =π 体心立方 68.08 3 ≈π 面心立方 74.06 2 ≈π 六角密排 74.06 2 ≈π 金刚石 34.06 3≈π 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06834343 333====πππr r a r x (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)3 34(3423423 3 33≈=?=?= πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) 22(3443443 3 33≈=?=?=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ?? =??=2 a 233

晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062) 22(3443443 3 33≈=?=?=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3 34.0633 3834 83483 33 33≈=?=?=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+?? ? =+?? ?=+?? 由倒格子基矢的定义:1232()b a a π = ?Ω 3 1230, ,22 (), 0,224 ,,0 2 2a a a a a a a a a a Ω=??==,2 23,,, 0,()224,,0 2 2 i j k a a a a a i j k a a ?==-++ 213422()()4a b i j k i j k a a π π∴=??-++=-++ 同理可得:232()2() b i j k a b i j k a π π= -+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。 所以,面心立方的倒格子是体心立方。

相关主题
文本预览
相关文档 最新文档