当前位置:文档之家› [理学]第七章高聚物的力学性能

[理学]第七章高聚物的力学性能

[理学]第七章高聚物的力学性能
[理学]第七章高聚物的力学性能

工程材料力学性能

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能指标? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降

材料力学性能

第一章 1.退火低碳钢在拉伸作用下的变形过程可分为弹性变形,不均匀屈服塑性变形,均匀塑性变形,不均匀集中塑性变形和断裂 2.弹性表征材料发生弹性变形的能力 3.应力应变硬化指数表征金属材料应变硬化行为的性能指标,反应金属抵抗均匀苏醒变形的能力 4.金属材料在拉伸试验时产生的屈服现象是其开始产生宏观塑性变形的一种标志 5. σs 呈现屈服现象的金属材料拉伸时试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点,记作σs 6. σ0.2 屈服强度 7.断裂类型:韧性断裂和脆性断裂;穿晶断裂和沿晶断裂;解理断裂、纯剪切断裂和微孔聚集型断裂 8.塑性是指金属材料断裂前发生塑性变形的能力 9.韧性断裂和脆性断裂的断口形貌:①韧性断裂断口呈纤维状,灰暗色;中低碳钢断口形貌呈杯锥状,有纤维区,放射区和剪切唇三个区域②脆性断裂断口平齐而光亮,呈放射状或结晶状,有人字纹花样 10.沿晶断裂断口形貌:沿晶断裂冰糖状 11.常见力学行为:弹性变形,塑性变形和断裂 第二章 1.应力状态软性系数Tmax与σmax的比值 2.相对关系压缩试验α=2,扭转试验α=0.8 3(1)渗碳层的硬度分布---- HK或-显微HV (2)淬火钢-----HRC (3)灰铸铁-----HB (4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK (5)仪表小黄铜齿轮-----HV (6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度) (7)渗氮层-----HV (8)高速钢刀具-----HRC (9)退火态低碳钢-----HB (10)硬质合金----- HRA 第三章 1.冲击韧性指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示 2.冲击吸收功摆锤冲击试样前后的势能差 3.低温脆性实验温度低于某一温度tk时,会由韧性状态转变为脆性状态,冲击吸收功明显下降。原因:材料屈服强度随温度降低急剧增加的结果 4. 韧脆转变温度转变温度tk称为韧脆转变温度 第四章 1.断裂韧度(K IC )在平面应变条件下材料抵抗裂纹失稳扩展的能力(与组织有关) 2.应力场强度因子(K I)受外界条件影响的反映裂纹尖端应力场强弱程度的力学度量(与本身有关) 3.断裂韧度(G IC)表示材料阻止裂纹失稳扩展是单位面积所消耗的能量 4.K IC的测量标准三点弯曲试样,紧凑拉伸试样,F形拉伸试样和圆形紧凑拉伸试样

高聚物结构与性能的关系

高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 1.1 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。 高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 1.2 高聚物的聚集态结构 高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 2.1链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点 第一章 弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。 滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。 塑性:指金属材料断裂前发生塑性变形的能力。 脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。 韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。 应力、应变;真应力,真应变概念。 穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。 拉伸断口形貌特征? ①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。用肉眼或放大镜观察时,断口呈纤维状,灰暗色。纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。 ②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。板状矩形拉伸试样断口呈人字形花样。人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。 韧、脆性断裂区别? 韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆 拉伸断口三要素? 纤维区,放射区和剪切唇。 缺口试样静拉伸试验种类? 轴向拉伸、偏斜拉伸 材料失效有哪几种形式? 磨损、腐蚀和断裂是材料的三种主要失效方式。 材料的形变强化规律是什么? 层错能越低,n越大,形变强化增强效果越大 退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。 在某些合金中,增强效果随合金元素含量的增加而下降。 材料的晶粒变粗,增强效果提高。 第二章 应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmax σmax 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能 课后答案

第一章 1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时 ,由于晶粒发生滑移 , 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ(屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有 5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有 45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振

2015年材料力学性能思考题大连理工大学.

一、填空: 1.提供材料弹性比功的途径有二,提高材料的,或降低。 2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是 具有的普遍现象。 3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。 5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。消除包申格效应的方法有和。 6.单向静拉伸时实验方法的特征是、、必须确定的。 7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。 8. 依据磨粒受的应力大小,磨粒磨损可分为、 、三类。 9.解理断口的基本微观特征为、和。10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。 11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用 、标记。 16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。 17. 机件的失效形式主要有、、三种。 18.低碳钢的力伸长曲线包括、、、 、断裂等五个阶段。 19.内耗又称为,可用面积度量。 20.应变硬化指数反映了金属材料抵抗均匀塑性变形的能力,在数值上等于测量形成拉伸颈缩时的。应变硬化指数与金属材料的层错能有关,层错能低

材料力学性能习题

第一章 1什么是材料力学性能?有何意义? 2金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能? 3 不同材料的拉伸曲线相同吗?为什么? 4塑性材料和脆性材料的应力应变曲线有何不同? 5 弹性变形的实质是什么? 6弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?7比例极限、弹性极限、屈服极限有何异同? 8你学习了哪几个弹性指标? 9弹性不完整性包括哪些方面? 10 什么是滞弹性?举例说明滞弹性的应用? 11内耗、循环韧性、包申格效应? 12什么是屈服强度?如何度量屈服强度? 13如何强化屈服强度? 14屈服强度的影响因素有哪些? 15 屈服强度的实际意义? 16真实应力应变曲线与工程应力应变曲线有何不同?有何意义? 17 什么是应变硬化指数n?有何特殊的物理意义?有何实际意义? 18 什么是颈缩?颈缩条件、颈缩点意义? 19 抗拉强度σb和实际意义。 20塑性及其表示和实际意义; 21静力韧度的物理意义。 22 静拉伸的断口形式; 23静拉伸断口三要素及其意义; 24解理断裂及其微观断口特征; 25解理面、解理刻面、解理台阶、河流花样; 26解理舌、二次解理、撕裂棱; 27穿晶断裂、沿晶断裂;脆性断裂、韧性断裂; 28微孔聚集断裂及其微观断口特征。 第二章 1应力状态软性系数α及其意义; 2压缩、弯曲、扭转各有什么特点? 3 缺口试样在弹性状态和塑性状态下的应力分布特点; 4缺口效应及其产生原因; 5缺口强化; 6缺口敏感度; 7什么是金属硬度?意义何在? 8硬度测试方法有几种(三类)?有何不同? 9金属硬度测试的意义(或者硬度测试为什么广泛应用)? 10布氏硬度原理; 11布氏硬度的相似原理; 12布氏硬度的特点和适用范围;

第一章 材料的力学性能

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为___________ 和。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、和。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要是、、 、。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括和两部分。 部分越大,表明变形能力越,越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。 13、硬钢在应力达到假定屈服点时,塑性应变为0.002。 14、冷拉与冷拔一样,可同时提高钢筋的抗拉及抗压强度。 15、冷拔低碳钢丝本身是硬钢,其母材为软钢。 16冷拔钢丝的冷拔次数越多则延性越差。 17、边长200mm的混凝土立方体抗压强度为18MPa,则标准立方体强度为18.9MPa。 18、若混凝土立方强度与的试验方法由在试块表面不涂油改为涂油,三种边长尺寸100mm、150mm、200mm的试块强度是相同的。 19、高宽比为3的棱柱体抗压强度可以代替高宽比为5的棱柱体抗压强度。

材料力学性能-第2版课后习题答案

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】

第七章 高聚物的力学性质

第七章 高聚物的力学性质 1 298K 时聚苯乙烯的剪切模量为1.25×109N ?m -2 ,泊松比为0.35,求其拉伸模量(E)和本体模量(B)是多少?并比较三种模量的数值大小. 解: 2 991038.3)35.01(1025.12)1(2-??=+??=+=m N G E ν 299 1075.3) 35.021(31038.3)21(3-??=?-?=-=m N E B ν ∴ 本体模量(B) > 拉伸模量(E) > 剪切模量(G) 2 一种橡胶的剪切模量为107 cm -2 ,试用N ?m -2 和kg ?cm -2 表示时该模量的数值为多大? 解:)1.01(101.01022 2 6 7 ---?=??=?=m N cm dyn m N G 24 6 2.1010 81.910-?=?=cm kg G 3 试证明当形变较小而各向同性的材料,在形变前后体积近似不变时,其泊松比υ=1/2,并指出各种模量的极限值. 解: 由题意, 0=?V ,或∞=?=V PV B /0 在)21(3)1(2νν-=+=B G E 中,得 0)21(3=-=νB E ,即2 1 =ν和G E 3= 故有 2 1 ~0=ν, G G E 3~2=, ∞=~3/E B , 3/~2/E E G =. 4 边长为2×10-2m 的粘弹立方体,其剪切柔量与时间的关系为1279 ]10/10 [)(--?+=N m t t J ,今要 使它在10-4、10-2、100、104、106s 后各产生剪切形变为m 3 104-?=?γ.试计算各需多重的砝码? (实验测定装置示意图见下).(缺图) 解: 由题意,剪切应变 2.002.01043 =?=?=-D x s ε 由]10/10 [)(79 t t J +=-,当t=10-4s 时,

高分子材料的力学性能及表征方法

高分子材料的力学性能及表征方法 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。 采用摆锤式冲击试验机,按一定标准制备样品,在恒定温度、湿度下,用摆锤迅速冲击被测试样,根据摆锤的质量和刚好使试样产生裂痕或破坏时的临界下落高度及被测样品的截面积,按一定公式计算聚合物试样的冲击强度(或冲击韧性单位为J/cm2)。 (4)聚合物单分子链的力学性能。 用原子力显微镜(AFM)。将聚合物样品配成稀溶液,铺展在干净玻璃片上,除去溶剂后得到一吸附在玻璃片上的聚合物薄膜(厚度约90mm)。用原子力显微镜针尖接触、扫描样品膜,由于针间与样品中高分子的相互作用,高分子链将被拉起,记录单个高分子链被拉伸时拉力的变化,直至拉力突然降至为零。可得到若干高分子链被拉伸时的拉伸力和拉伸长度曲线,由此曲线可估算单个高分子链的长度和单个高分子从凝聚态中被拉出时的“抗张强度”。所用仪器 万能材料试验机 摆锤式冲击试验机

材料力学性能课后作业

材料力学性能课后作业 主编时海芳任鑫副主编胡全文高志玉北京大学出版社 第一章 1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 ②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζp(规定非比例伸长应力)、ζe(弹性极限)、ζs(屈服强度)、ζ0.2(屈服强度);(3)ζb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率) 4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE制造工艺:U阶段是将原始板材冲压弯曲成U形,O阶段是将U形板材径向压缩成O形,再进行周边焊接,最后将管子内径进行扩展,达到给定大小,即E阶段。按UOE工艺制造的管子,希望材料具有非常小的或者几乎没有包申格效应,以免管子成型后强度的损失。其次,包申格效应大的材料,内应力大。例如,铁素体+马氏体的双相钢对氢脆就比较敏感,而普通低碳钢或低合金高强度钢对氢脆不敏感,这是因为双相钢中铁素体周围有高密度位错和内应力,氢原子与长程内

高聚物力学性能

第十三章高分子材料的力学性能(2学时) [教学要求] 掌握聚合物应力—应变曲线以及各种因素对应力—应变曲线影响、屈服现象和机理,了解银纹、剪切带的概念;掌握聚合物的强度、韧性和疲劳等概念,了解聚合物强度的影响因素、增强方法和增强机理;聚合物韧性的影响因素、增韧方法和增韧机理。 [教学重点] 介绍聚合物应力—应变曲线以及各种因素对应力—应变曲线影响;玻璃化转变温度、聚合物的强度、韧性和疲劳等概念;增韧方法和增韧机理。 [教学难点] 玻璃化转变温度的影响因素、增强方法和增强机理、聚合物韧性的影响因素和增韧机理。 [教学方法] 多媒体辅助教学,充分利用图片多媒体素材,激发学生学习兴趣。 [教学内容] §1概述 1-1 描述力学性质的基本物理量 三种基本应变的模量 拉伸: 杨氏模量 E (MPa)、σ-应力、ε-应变、 F-拉伸力 AO-试样原始截面积 lO-试样原始长度 Δl-伸长长度 剪切: 压缩: 三种应变模量的关系 对于各向同性的材料有 E = 2G (1+í) = 3B (1-2 í) 常用的几种力学强度 拉伸强度σt= P/bd (最大负荷/截面积)Mpa 1 Mpa = 9.8 kg/cm 2 ≈ 10 kg/cm2 弯曲强度σf = 1.5(Plo/bd) MPa 冲击强度σi = W/bd Kg cm/cm2 1-2 高聚物力学性能的特点 高弹性——高聚物特有

粘弹性——力学行为对温度和时间有强烈的依赖关系 比强度特高 §2 高聚物的拉伸行为 1—1 应力σ ~应变ε曲线 最常用于描述高聚物的力学性能,应力~应变曲线的形状取决于化学结构、物理结构、试验测试条件——温度、速率等 典型的σ~ε曲线 屈服点Y : Y前部——弹性区域 E大形变小可逆 Y后部——塑性区域 E小形变大不可逆 拉伸(断裂)强度σX 屈服点Y前断裂——脆性断裂 屈服点Y后断裂——韧性断裂 2 —2 玻璃态非晶高聚物的拉伸 <1>温度影响 a) T << Tg 脆性断裂、形变小 b) T < Tg 出现屈服点形变稍大 c) T < Tg 脆性断裂、形变大 d) T > Tg 进入高弹态、形变大,不出现屈服点 <2> 拉伸速率的影响 拉伸速率增加,相当于温度下降,拉伸强度增加,断裂伸长率降低。 <3> 受迫高弹态 有些玻璃态高聚物在大应力作用下能产生大的形变(高弹形变); 产生原因:外力使链段运动松弛时间减小。 2—3 结晶高聚物的拉伸

材料力学性能基础

材料力学性能基础 课程编号:30350193 课程名称:材料力学性能基础 英文名称:Foundation for Mechanical Properties of Materials 学分:3 先修课程:材料科学基础 教材:自编 一、课程简介 本课程目的在于使学生了解金属、陶瓷、复合材料、高分子材料等材料的强度、塑性、韧性等力学行为的物理意义、测量方式,特别是材料宏观力学行为与细观、微观组织结构的关系,从而对材料力学行为的本质和机理有一正确的理解。为学生在今后工作中对材料的选用、设计、改造、创新打下良好的基础。 二、基本要求 实验及技能:几种主要实验的设计、数据分析、实验报告 基础知识:强度、韧性、塑性、强韧化等方面的材料宏观行为与微观结构的关系。 分析能力:不同工况要求下材料的选用;材料强韧化途径 三、内容概要 第一章材料力学性能概论 1.1 引言 1.2 材料力学性能的应用背景 1.3 材料几种主要力学性能的意义 第二章材料的强度和塑性 2.1 材料静态拉伸试验方法 2.2 材料其它静态试验 a.压缩试验 b.扭转试验 c.弯曲试验 d.硬度试验 2.3 弹性变形和塑性变形 2.4 几种典型的应力-应变曲线及其微观过程 a.理想弹塑性 b.线性强化弹塑性 c.刚塑性 2.5 粘弹性、粘塑性和牛顿流体 第三章材料的断裂 3.1 断裂的基本特征-塑性断裂和脆性断裂等

3.2 裂纹形核核扩展的位错模型 3.3 冲击韧性、断裂韧性的试验、典型材料及微观过程 第四章材料的增强、增韧和表面改性 4.1 材料几种强化方式及其微观机理 4.2 材料几种韧化方式及其微观机理 4.3 强度、塑性、韧性的合理配合 4.4 金属、陶瓷等材料的表面改性 第五章材料的疲劳 5.1 疲劳试验及材料的疲劳性能 5.2 疲劳裂纹萌生与扩展 5.3 疲劳失效分析和防止 第六章材料在特殊条件下的力学行为 6.1 材料在高温和低温下的力学行为 6.2 材料在高速加载和低速率变形下的行为 6.3 材料在环境介质作用下的力学行为 6.4 材料在辐照条件下的力学行为 第七章若干材料的力学特征及其应用 7.1 工程结构陶瓷的力学性能 7.2 聚合物的力学行为 7.3 复合材料的力学性能 7.4 岩石、土壤的力学性能 四、实验 1. 拉伸试验 2. Gleeble 1500D 热力模拟试验 3. 疲劳试验 五、参考书 l. 匡震邦,顾海澄,李中华,材料的力学行为,高等教育出版社,1998 2. 潘金生,全健民,田民波,材料科学基础,清华大学出版社,1998 3. M.A.Meyers and K.K.Chawla,金属力学原理及应用,高等教育出版社,1992

高聚物结构与性能的关系

高聚物结构与性能的关系;1.高聚物的结构;按研究单元的不同分类,高聚物结构可分为两大类:一;1.1高聚物链结构;高聚物的链结构包括近程结构和远程结构;高聚物链结构是决定高聚物基本性质的主要因素,各种;1.2高聚物的聚集态结构;高聚物的分子聚集态结构包括晶态、非晶态、液晶态、;因此对高聚物材料来说,链结构只是间接影响其性能,;2.高聚物结构与力学性能的关系; 2高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 1.1 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 1.2 高聚物的聚集态结构

高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 2.1链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯腈、环氧树脂和聚二甲基硅氧烷(硅橡胶)等等都是不同分子结构的高聚物,它们或是晶态高聚物,或是非晶态高聚物,或是橡胶,或是不溶不熔的热固性树脂,这些都是一般人都知道的常识。交联能使本来可溶可熔的热塑性塑料成为既不能溶解也不会熔融的热固性树脂,物理力学性能有了大幅提高;普通的支化会使高聚物的性能变坏;单官能团的封端能大大改善聚碳酸酯的热稳定性,以及具有离子键的高聚物玻璃化温度会提高很多等等,这样的例子俯首可拾。在我们的高分子物理教材中都详细的介绍高聚物结构单元的化学组成、端基、结构单元的键接方式、结构单元的空间立构、结构单元的键接序列以及支化和交联导致的不

相关主题
文本预览
相关文档 最新文档