当前位置:文档之家› 选修4-2 矩阵与变换 第一节 线性变换与二阶矩阵

选修4-2 矩阵与变换 第一节 线性变换与二阶矩阵

选修4-2  矩阵与变换 第一节 线性变换与二阶矩阵
选修4-2  矩阵与变换 第一节 线性变换与二阶矩阵

第一节 线性变换与二阶矩阵

1.矩阵的相关概念

(1)由4个数a ,b ,c ,d 排成的正方形数表??????

a b c

d 称为二阶矩阵,数a ,b ,c ,d 称为矩

阵的元素.在二阶矩阵中,横的叫行,从上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次称为矩阵的第一列、第二列.矩阵通常用大写的英文字母A ,B ,C ,…表示.

(2)二阶矩阵??

??

??

00

0称为零矩阵,简记为0,矩阵??

??

??1

00 1称为二阶单位矩阵,记作E 2.

2.矩阵的乘法

(1)行矩阵[]a 11a 12与列矩阵??

??

??

b 11b 21的乘法规则:为[]a 11a 12??

?

?

??

b 11b 21=[]a 11×b 11+a 12×b 21. (2)二阶矩阵??????a 11 a 12a 21 a 22与列向量??????x 0y 0和乘法规则:??????a 11 a 12a 21 a 22??????x 0y 0=??????a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:

??????a 11 a 12a 21 a 22??????b 11 b 12b 21 b 22=????

??a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB )C =A (BC ), AB ≠BA ,

由AB =AC 不一定能推出B =C .

一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算.

3.线性变换的相关概念

(1)我们把形如????

?

x ′=ax +by y ′=cx +dy

(*)的几何变换叫做线性变换,(*)式叫做这个线性变换的坐

标变换公式,P ′(x ′,y ′)是P (x ,y )在这个线性变换作用下的像.

(2)对同一个直角坐标平面内的两个线性变换σ、ρ,如果对平面内任意一点P ,都有σ(P )=ρ(P ),则称这两个线性变换相等,简记为σ=ρ,设σ,ρ所对应的二阶矩阵分别为A ,B ,则A =B .

4.几种常见的线性变换 (1)由矩阵M =??

??

??1 00

1确定的变换T M 称为恒等变换,

这时称矩阵M 为恒等变换矩阵或单位矩阵,二阶单位矩阵一般记为E .平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己.

(2)由矩阵M =????

??

a

00

1或M =??

??

??1

00 k (k >0)确定的变换T M 称为(垂直)伸压变换,这时称矩

阵M =??

??

??

k

00

1或M =??

??

??1

00 k 伸压变换矩阵.

当M =??

??

??k 00

1时确定的变换将平面图形作沿x 轴方向伸长或压缩,当k >1时伸长,当

0

当M =??

??

??1 00 k 时确定的变换将平面图形作沿y 轴方向伸长或压缩,当k >1时伸长,当

0

在伸压变换之下,直线仍然变为直线,线段仍然变为线段. (3)反射变换是轴对称变换、中心对称变换的总称.由矩阵M 1=??

??

??

1 00 -1确定的变换是

关于x 轴的轴反射变换,由矩阵M 2=????

??

-1 0 0 1确定的变换是关于y 轴的轴反射变换,由矩

阵M 3=??????-1 0 0 -1确定的变换是关于原点的中心反射变换.由矩阵M 4=????

??0 11 0确定的变换

是关于直线y =x 的轴反射变换.

(4)将一个平面图形绕一个定点旋转角α,得到另一个平面图形的变换称为旋转变换,其中的角α叫做旋转角,定点称为旋转中心.当旋转中心为原点且逆时针旋转角α时,旋转变

换的变换矩阵为????

??

cos α -sin αsin α cos α.旋转变换只会改变几何图形的位置,不会改变几何图形的

形状和大小,旋转中心在旋转过程中保持不变,图形的旋转由旋转中心和旋转角所确定.绕定点旋转180°的变换相当于关于定点作中心反射变换.

(5)将一个平面图投影到某条直线(或某个点)的变换称为投影变换,变换对应的矩阵称为投影变换矩阵,本节中主要研究的是由矩阵M 1=??

??

??

1

00

0,M 2=??

??

??

1

01 0,M 3=??

??

??0

00 1确定的

投影变换.需要注意的是投影变换是映射,但不是一一映射.

(6)由矩阵M =??

????1 k 0 1或??????

1 0k

1确定的变换称为切变变换,对应的矩阵称为切变变换矩

阵.以????

??

1 k 0

1为例,矩阵??

?

?

??1 k 0 1把平面上的点(x ,y )沿x 轴方向平移|ky |个单位,当ky >0时沿

x 轴正方向移动,当ky <0时沿x 轴负方向移动,当ky =0时原地不动.

1.点A (3,-6)在矩阵????????

1 -10 12对应的变换作用下得到的点的坐标是________.

解析:∵?????

???1 -10 12?????? 3

-6=????

??

9-3.

∴变换作用下得到的点的坐标是(9,-3). 答案:(+9,-3)

2.设??????4 -20 3??????x y =??????

0-1,则它表示的方程组为________.

解析:∵??????4 -20 3??????x y =??????4x -2y 0+3y =????

??

0-1.

∴?

????

4x -2y =0,3y =-1.

答案:?

????

4x -2y =0,3y =-1

3.设矩阵A =??????1 -9x 2 0,B =??

??

??

-2x -5 a 9

b ,若A =B ,则x =________,a =________,b =________.

解析:∵A =B , ∴?????

1=-2x -5,

-9=a ,x 2

=9,0=b ,

解得????

?

x =-3,a =-9,

b =0,

∴x =-3,a =-9,b =0. 答案:-3 -9 0

4.在矩阵????

??

3 21 -3对应的变换作用下得到点(2,

-4)的平面上的点P 的坐标是________. 解析:设P (x ,y ),

由矩阵????

??3 21 -3得坐标变换公式为

????? x ′=3x +2y ,y ′=x -3y ,,∴?????

2=3x +2y ,-4=x -3y ,

解得???

x =-211

y =14

11,

∴所求点P ????-211,1411. 答案:???

?-211,1411 5.若曲线y =x 2(x ≥0)在矩阵M 对应的反射变换作用下得到的曲线为y =x 2(x ≤0),则矩阵M =________.

解析:由图象可知,此变换为以y 轴为对称轴的反射变换, ∴M =??

??

??-1 00 1. 答案:????

??-1 00

1

例1 已知A =??????

a 3d 2

b +

c ,B =????

??5 b +c 4 a +2d ,若A =B ,求a ,b ,c ,d .

【解析】 由矩阵相等的定义知

?????

a =5,

3=b +c ,

d =4,2b +c =a +2d ,

解得a =5,b =10,c =-7,d =4.

【点评】 矩阵相等,即两矩阵对应元素相等,这是寻找等式关系的关键.

1.已知矩阵M =?

??

??1 a b

1,N =?

?

???

c 20

d ,且MN =? ??

??

2

0-2 0. 求实数a ,b ,c ,d 的值. 解析:由题设得?????

c +0=2,2+a

d =0,

bc +0=-2,

2b +d =0,

解得?????

a =-1,

b =-1,

c =2,

d =2.

例2 在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在矩阵A =????

??2

00

1对应的变换下

得到曲线F ,求F 的方程.

【解析】 设P (x ,y )是椭圆4x 2+y 2=1上的任意一点,点P (x ,y )在矩阵A 对应的变换

下变为点P ′(x ′,y ′),则有??????x ′y ′=??

????2

00

1??????

x y ,即???

??

x ′=2x ,y ′=y ,所以??

???

x =x ′

2y =y ′

.

又因为点P (x ,y )在椭圆4x 2+y 2=1上, 所以4(x ′

2)2+y ′2=1,

即x ′2+y ′2=1.

故曲线F 的方程为x 2+y 2=1.

【点评】 线性变换是基本变换,解这类问题关键是由??????x ′y ′=A ????

??

x y 得到点P ′(x ′,y ′)

与点P (x ,y )的坐标关系.

2.求直线x -2y +1=0经二阶矩阵??

??

??3 11

0变换后的图形的方程.

解析:设变换后的图形上的任一点为(x ,y ).与之对应的原直线上的点为(x ′,y ′), 则??????3 11

0 ??????x ′y ′=??????3x ′+y ′ x ′=????

??x y . ∴?????

3x ′+y ′=x ,x ′=y , ∴?

????

x ′=y ,y ′=x -3y , 又∵(x ′,y ′)在直线x -2y +1=0上. ∴y -2(x -3y )+1=0,即:2x -7y -1=0 ∴变换后的图形的方程为2x -7y -1=0.

例3 求曲线x 2+y 2=1,依次经过矩阵A =????

??0 -11 0,B =??

??

??2

00 1变换作用下得到的曲

线方程.

【解析】 ∵BA =??

????2 00

1 ??????0 -11 0=????

??0 -21 0. 任取x 2+y 2=1上一点P (x 0,y 0),它在矩阵BA 对应的变换作用下变为P ′(x ,y ),则有

??????0 -21 0 ??????x 0y 0=????

??

x y . ∴?????

x 0

=y y 0=-x 2

∵P (x 0,y 0)在曲线x 2+y 2

=1上.

∴y 2

+x 24=1.即所求曲线方程为y 2+x 2

4=1. 【点评】 (1)要注意矩阵乘法不满足交换律,所以要分清AB 还是BA . (2)注意原曲线上的点P 与变换后曲线上的点P ′的对应关系,不要弄错.

3.求出曲线x 2+y 2=1依次经过矩阵A =??????

2 00

1,B =????

??0 -11 0作用下变换得到的曲线方程.

解析:由已知AB =??

????2 00

1??????0 -11 0=????

??0 -21 0. 任取曲线x 2+y 2=1上一点P (x 0,y 0),它在矩阵AB 对应的变换作用下变为P ′(x ,y ),

则有??????0 -21 0 ??????x 0y 0=??????

x y ,故?

??

??

-2y 0=x ,x 0=y . ∵P 在曲线x 2+y 2=1上,

∴x 20+y 20=1.

因此y 2

+x 24=1,从而曲线x 2+y 2

=1在矩阵AB 作用下变成椭圆x 24

+y 2=1.

一、填空题

1.直线2x +y -1=0经矩阵M =????

??

-1 0 0 -1的变换后得到的直线方程为________.

解析:由变换矩阵M 知坐标变换公式为

????? x ′=-x y ′=-y ,即?

????

x =-x ′y =-y ′ 代入直线方程2x +y -1=0得2x ′+y ′+1=0,即2x +y +1=0. 答案:2x +y +1=0

2.在某个旋转变换中,顺时针旋转π

3所对应的变换矩阵为________.

解析:顺时针旋转π3即逆时针旋转5

3

π,变换矩阵为

??????cos

5π3 -sin 53πsin 5π3 cos 5π3=????

?

? cos π3 sin

π

3

-sin π3 cos π3

=?????? 12 32-32 12.

答案:??????

12 32-32 1

2 3.在矩阵????

??1 20

1变换下,点A (2,1)将转换为________,这是一种________变换.

解析:∵??

????1 20

1??????

21=????

??

41,即点A (2,1)经过变换后变为A ′(4,1),所以该变换为平行于x 轴的切变变换.

答案:(4,1) 切变 4.已知B =??

???? 1 -1-2 3,C =??

????

11 0,并且(AB )C =????

??

2 -1

3 -2,则矩阵A =________. 解析:∵(AB )C =A (BC ), 又BC =??

??

??

-1 13 -2,

所以A =??????-1 1 3 -2??????

2 -1

3 -2,

∴A =??????2 -13 -2??????-1 1 3 -2-1

=??????2 -13 -2??????2 13

1=????

??1 10

1.

答案:????

??1 10

1

5.有一矩阵对应的变换把图中△ABO 变成△A ′B ′O ,其中点A 的象点为

A ′,点

B 的象点为B ′,则该矩阵为________.

解析:设所求矩阵为??

????

a b c

d ,则由??

?

???a b c d ??????12=??????13,??????a

b c

d ??????21=????

??-1 3可得 a +2b =1 ①,c +2d =3 ②, 2a +b =-1 ③,2c +d =3 ④,

由①、②、③、④解得a =-1,b =1,c =1,d =1,

故所求矩阵为??

??

??-1

1 1

1. 答案:??

??

??-1 1 1

1

6.设a ,b ∈R ,若矩阵A =????

??a 10

b 将直线l :x +y -1=0变为直线m :x -y -2=0,则

a ,

b 的值为________.

解析:在直线l 上任取一点P (x ,y ),经矩阵变换后为点P ′(x ′,y ′).

则由??????x ′y ′=??

????a 10 b ??????x y =????

??ax +y by , 得?

????

x ′=ax +y ,y ′=by . 所以ax +y -by -2=0,即ax +(1-b )y -2=0,于是由a 1=1-b 1=-2-1,解得a =2,b =

-1.

答案:2,-1

7.在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (-1,2),C (0,3),则△ABC 在

矩阵????

??

0 -11 0 作用下变换所得到的图形的面积为________.

解析:设A ,B ,C 在矩阵??????

0 -11 0的作用下的点为A ′,B ′,C ′,

∵??????0 -11 0??????00=??????00,??????0 -11 0??????-1 2=??????-2-1,??????0 -11 0??????03=????

??-3 0, ∴A ′(0,0),B ′(-2,-1),C ′(-3,0), ∴S △A ′B ′C ′=12|A ′C ′|·|y B ′|=12×3×1=3

2.

答案:3

2

8.设△OAB 的三个点坐标为O (0,0),A (A 1,A 2),B (B 1,B 2),在矩阵M =????

??1 k 0 1对应的

变换下作用后形成△OA ′B ′,则△OAB 与△OA ′B ′的面积之比为________.

解析:由题意知T M 为切变换,故变换前后的图形面积大小不变. 答案:1∶1 二、解答题

9.(2011年江苏)正如矩阵A =????

??

1 12

1,向量β=???

???12.

求向量α,使得A 2α=β. 解析:∵A 2=??

????1 12

1??????

1 1

2 1=????

??

3

24

3设α=??????x y ,由A 2α=β,得??

????3

24 3??????

x y =????

??

12 ∴????? 3x +2y =1,4x +3y =2,解得?

????

x =-1,y =2. ∴α=????

??-12.

10.设圆F :x 2+y 2=1在(x ,y )→(x ′,y ′)=(x +2y ,y )对应的变换下变换成另一图形F ′,试求变换矩阵M 及图形F ′的方程.

解析:∵??????x ′y ′=??????x +2y y =??????1

20

1????

??x y ,

∴M =????

??1 20

1.

∵圆上任意一点(x ,y )变换为(x ′,y ′)=(x +2y ,y ),

∴????? x ′=x +2y y ′=y ,即?????

x =x ′-2y ′y =y ′

. ∵x 2+y 2=1,

∴(x ′-2y ′)2+(y ′)2=1. 即F ′的方程为(x -2y )2+y 2=1.

11.已知矩阵M =??????12 -3232 12和N =????

??2

2

22

-2

2 22, 求证:MN =NM .

证明:MN =??????12 -3232 1

2????

??22

22

-2

2

22 =?

????

???2+6

4 2-646-2

4

6+24, NM =??

????22 22

-22 2

2??????12 -3

232 12

=?

????

???2+6

4 2-646-2

4

6+24

. 故MN =NM .

12.已知梯形ABCD ,其中A (0,0),B (3,0),C (2,2),D (1,2),先将梯形作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转90°.

(1)求连续两次变换所对应的变换矩阵M .

(2)求点A ,B ,C ,D 在T M 作用下所得到的结果.

解析:(1)关于x 轴的反射变换矩阵为M 1=????

??

1 00 -1,

逆时针旋转90°的变换矩阵为 M 2=??????cos 90° -sin 90°sin 90° cos 90°

=??????0 -11 0

故M =M 2M 1=??????0 -11 0????

??1 00 -1

=??

??

??0 11

0. (2)A ′:??????0 11

0??????00=????

??

00,即A ′(0,0). B ′:??????0 11 0??????

30=???

???03,即B ′(0,3). C ′:??????0 11 0??????

22=???

???22,即C ′(2,2). D ′:??????0 11 0??????

12=???

?

??21,即D ′(2,1).

【苏教版】高中数学选修4-2《矩阵与变换》.2.4 旋转变换

选修4-2矩阵与变换 2.2.4 旋转变换 编写人: 编号:005 学习目标 1、 理解可以用矩阵来表示平面中常见的几何变换。 2、 掌握旋转变换的几何意义及其矩阵表示。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转 变换作用下的象。其结果为''x x y y ?=-?=-?,也可以表示为''00x x y y x y ?=-+??=?-?,即''x y ??????= 1001-????-????????y x =x y -????-??怎么算出来的? 归纳: 问题2:P (x,y )绕原点逆时针旋转300得到P ’(x ’,y ’),试完成以下任务①写出象P ’; ②写出这个旋转变换的方程组形式;③写出矩阵形式. 问题3:把问题2中的旋转300改为旋转α角,其结果又如何? 练习

1、在直角坐标系下,将每个点绕原点逆时针旋转120o 的旋转变换对应的二阶矩阵是 2、如果一种旋转变换对应的矩阵为二阶单位矩阵,则该旋转变换是 二、课堂训练: 例1.已知A(0,0),B(2,0),C(2,1),D(0,1),求矩形ABCD 绕原点逆时针旋转900后所得到的图形,并求出其顶点坐标,画出示意图. 例2、若△ABC 在矩阵M 对应的旋转变换作用下得到△A ′B ′C ′,其中A (0,0),B (1,3),C (0,2),A ′(0,0), C ′(-3,1),试求矩阵M 并求B ′的坐标. 练习: 1. 将向量?? ????=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为=______________. 2. 在某个旋转变换中,顺时针旋转 3 π所对应的变换矩阵为 ______. 三、课后巩固: 1. 曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是_____,变换对应的矩阵 是____.

2020高考矩阵与变换知识点基础与提高(含答案)

2020高考矩阵与变换知识点基础与提高(含答案) 主要考查二阶矩阵的基本运算,选修内容考的题目大都不难,同学们注意基本概念。 1求逆矩阵,注意2*2矩阵的乘法。 2利用矩阵求坐标式的方程。 (10上海 4)行列式6πcos 3πsin 6πsin 3π cos 的值是____________. 考点:行列式的运算法则 解析:考查行列式运算法则6πcos 3 πsin 6π sin 3πcos 02πcos 6πsin 3πsin 6πcos 3πcos ==-= 答案:0. (10福建 21)选修4-2:矩阵与变换 已知矩阵M =???? ??11b a ,??? ? ??=d c N 02,且???? ??-=0202MN , (Ⅰ)求实数a ,b ,c ,d 的值;(Ⅱ)求直线x y 3=在矩阵M 所对应的线性变换下的像的方程. 考点:矩阵的基本运算和线形变换 解析:(1)?? ????-=??????++=????????????=020*******d b bc ad c d c b a MN , 对应系数有???????-==-==????????=+-==+=1 212022022a d b c d b bc ad c ; (2)取x y 3=上一点()y x ,,设经过变换后对应点为()','y x ,则??????--=??????1111''y x ?? ????--=??????x y y x y x ,从而''x y =,所以经过变换后的图像方程为x y -=. 注意:本题相对基础,要求同学们对矩阵的基本运算方法,尤其是乘法 (09江苏 21)选修4-2:矩阵与变换 求矩阵?? ????=1223A 的逆矩阵. 考点:逆矩阵的求法,考查运算求解能力

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

高考数学压轴专题人教版备战高考《矩阵与变换》知识点总复习附解析

【最新】单元《矩阵与变换》专题解析 一、15 1.已知函数cos 2()sin 2m x f x n x = 的图象过点( 12 π 和点2( ,2)3 π -. (1)求函数()f x 的最大值与最小值; (2)将函数()y f x =的图象向左平移(0)??π<<个单位后,得到函数()y g x =的图象;已知点(0,5)P ,若函数()y g x =的图象上存在点Q ,使得||3PQ =,求函数 ()y g x =图象的对称中心. 【答案】(1)()f x 的最大值为2,最小值为2-;(2)(,0)()24 k k Z ππ +∈. 【解析】 【分析】 (1)由行列式运算求出()f x ,由函数图象过两点,求出,m n ,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值; (2)由图象变换写出()g x 表达式,它的最大值是2,因此要满足条件,只有(0,2)Q 在 ()g x 图象上,由此可求得?,结合余弦函数的性质可求得对称中心. 【详解】 (1)易知()sin 2cos 2f x m x n x =- ,则由条件,得sin cos 66 44sin cos 233m n m n ππππ?-=????-=-?? , 解得 1.m n = =- 故()2cos22sin(2)6 f x x x x π =+=+ . 故函数()f x 的最大值为2,最小值为 2.- (2)由(1)可知: ()()2sin(22)6 g x f x x π ??=+=++ . 于是,当且仅当(0,2)Q 在()y g x =的图象上时满足条件. (0)2sin(2)26g π?∴=+=. 由0?π<<,得.6 π ?= 故()2sin(2)2cos 22 g x x x π =+ =. 由22 x k =+ π π,得().24 k x k Z ππ = +∈ 于是,函数()y g x =图象的对称中心为:(,0)()24 k k Z ππ +∈. 【点睛】 本题考查行列式计算,考查两角和的正弦公式,图象平移变换,考查三角函数的性质,如最值、对称性等等.本题主要是考查知识点较多,但不难,本题属于中档题.

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵 及其乘法 1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵???? ?? 1 00-2对应的变换作用下得到 的点的坐标. 解:矩阵?? ?? ?? 1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸 压变换,故点A(2,0)变为点A′(2,0) 2. 点(-1,k)在伸压变换矩阵???? ?? m 001之下的对应点的坐标为(-2,-4),求m 、k 的 值. 解:??????m 001??????-1 k =??????-2-4,??? ?? -m =-2,k =-4. 解得? ????m =2, k =-4. 3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用 变换为(x ,2x),则有??????a 0b 0??????x y =?????? x 2x ,解得? ?? ??a =1,b =2, ∴ T =?? ?? ??10 20 .

4. 求曲线y =x 在矩阵???? ?? 0110作用下变换所得的图形对应的曲线方程. 解:设点(x ,y)是曲线y =x 上任意一点,在矩阵?? ?? ?? 01 10 的作用下点变换成(x′, y ′),则??????0110???? ??x y =?????? x′y′,所以? ????x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y. 5. 求直线x +y =5在矩阵?? ?? ?? 0011 对应的变换作用下得到的图形. 解:设点(x ,y)是直线x +y =5上任意一点,在矩阵???? ?? 0011的作用下点变换成(x′, y ′),则?? ????0011???? ?? x y =?????? x′y′,所以? ????x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得 到的图形是点(0,5). 1. 变换 一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的 一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :???? ? ? x y →?? ?? ?? x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :??????x y →??????x′y′=???? ?? ax +by cx +dy ,那么根 据二阶矩阵与列向量的乘法规则,可以改写为??????x y →??????x′y′=??????a b c d ???? ?? x y (a 、b 、c 、d∈R )的 矩阵形式,反之亦然. 2. 几种常见的平面变换

高考数学压轴专题最新备战高考《矩阵与变换》知识点总复习有解析

【高中数学】数学《矩阵与变换》高考知识点 一、15 1.已知矩阵2101M ?? =? ??? (1)求矩阵M 的特征值及特征向量; (2)若21α??=? ?-?? r ,求3M αv . 【答案】(1)特征值为2;对应的特征向量为210α?? =???? u u r (2)91????-?? 【解析】 【分析】 (1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出 方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r 可得333 12M M M ααα=+u u r u u r r ,求解即 可. 【详解】 (1)矩阵M 的特征多项式为2 1 ()0 1 f λλλ--= -(2)(1)λλ=--, 令()0f λ=,得矩阵M 的特征值为1或2, 当1λ=,时由二元一次方程0 000x y x y --=?? +=? . 得0x y +=,令1x =,则1y =-, 所以特征值1λ=对应的特征向量为111α?-? =? ??? ; 当2λ=时,由二元一次方程00 00 x y x y -=?? +=?. 得0y =,令1x =, 所以特征值2λ=对应的特征向量为210α?? =???? u u r ; (2)1221ααα??==+??-??u u r u u r r Q , 333 12M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210????=+????-????91??=??-?? . 【点睛】 本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.

线性变换与矩阵地关系

线性变换与矩阵的关系 学院:数学与计算机科学学院 班级:2011级数学与应用数学 : 学号:

线性变换与矩阵的关系 (西北民族大学数学与应用数学专业, 730124) 指导教师 一、线性变换 定义1 设有两个非空集合V,U,若对于V中任一元素α,按照一定规则总有U中一个确定的元素β和它对应,则这个对应规则被称为从集合V到集合U的变换(或映射),记作β=T(α)或β=T α,( α∈V)。 设α∈V,T(α)= β,则说变换T把元素α变为β,β称为α在变换T下的象,α称为β在变换T下的源,V称为变换T的源集,象的全体所构成的集合称为象集,记作T(V)。即 T(V)={ β=T(α)|α∈V}, 显然T(V) ?U 注:变换的概念实际上是函数概念的推广。 定义2 设V n,U m分别是实数域R上的n维和m维线性空间,T是一个从V n到U m得变换,如果变换满足 (1)任给α1 ,α2∈V n,有T(α1+α2)=T(α1)+T(α2); (2)任给α∈V n,k∈R,都有 T(kα)=kT(α)。 那么,就称T为从V n到U m的线性变换。 说明:

○1线性变换就是保持线性组合的对应的变换。 ○2一般用黑体大写字母T,A,B,…代表现象变换,T(α)或Tα代表元 α在变换下的象。 ○3若U m=V n,则T是一个从线性空间V n到其自身的线性变换,称为线性空 V n中的线性变换。下面主要讨论线性空间V n中的线性变换。 二、线性变换的性质 设T是V n中的线性变换,则 (1)T(0)=0,T(-α)=-T(α); (2)若β=k1α1+k2α2+…+k mαm,则Tβ=k1Tα1+k2Tα2+…+k m Tα m; (3)若α1,…αm线性相关,则Tα1…Tαm亦线性相关; 注:讨论对线性无关的情形不一定成立。 (4)线性变换T的象集T(V n)是一个线性空间V n的子空间。 记S T={α|α∈V n,T α=0}称为线性变换T的核,S T是V n的子空间。 设V和W是数域F上的向量空间,而σ:V→W是一个线性映射。那么 (i)σ是满射Im(σ)=W; (ii)σ是单射Ker(σ)={0}

选修4-2 矩阵与变换 第一节 线性变换与二阶矩阵

第一节 线性变换与二阶矩阵 1.矩阵的相关概念 (1)由4个数a ,b ,c ,d 排成的正方形数表?????? a b c d 称为二阶矩阵,数a ,b ,c ,d 称为矩 阵的元素.在二阶矩阵中,横的叫行,从上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次称为矩阵的第一列、第二列.矩阵通常用大写的英文字母A ,B ,C ,…表示. (2)二阶矩阵?? ?? ?? 00 0称为零矩阵,简记为0,矩阵?? ?? ??1 00 1称为二阶单位矩阵,记作E 2. 2.矩阵的乘法 (1)行矩阵[]a 11a 12与列矩阵?? ?? ?? b 11b 21的乘法规则:为[]a 11a 12?? ? ? ?? b 11b 21=[]a 11×b 11+a 12×b 21. (2)二阶矩阵??????a 11 a 12a 21 a 22与列向量??????x 0y 0和乘法规则:??????a 11 a 12a 21 a 22??????x 0y 0=??????a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:

??????a 11 a 12a 21 a 22??????b 11 b 12b 21 b 22=???? ??a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB )C =A (BC ), AB ≠BA , 由AB =AC 不一定能推出B =C . 一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 3.线性变换的相关概念 (1)我们把形如???? ? x ′=ax +by y ′=cx +dy (*)的几何变换叫做线性变换,(*)式叫做这个线性变换的坐 标变换公式,P ′(x ′,y ′)是P (x ,y )在这个线性变换作用下的像. (2)对同一个直角坐标平面内的两个线性变换σ、ρ,如果对平面内任意一点P ,都有σ(P )=ρ(P ),则称这两个线性变换相等,简记为σ=ρ,设σ,ρ所对应的二阶矩阵分别为A ,B ,则A =B . 4.几种常见的线性变换 (1)由矩阵M =?? ?? ??1 00 1确定的变换T M 称为恒等变换, 这时称矩阵M 为恒等变换矩阵或单位矩阵,二阶单位矩阵一般记为E .平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (2)由矩阵M =???? ?? a 00 1或M =?? ?? ??1 00 k (k >0)确定的变换T M 称为(垂直)伸压变换,这时称矩 阵M =?? ?? ?? k 00 1或M =?? ?? ??1 00 k 伸压变换矩阵. 当M =?? ?? ??k 00 1时确定的变换将平面图形作沿x 轴方向伸长或压缩,当k >1时伸长,当 01时伸长,当 0

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

【高考精品复习】选修4-2 矩阵与变换 矩阵与变换

【高考会这样考】 1.本部分高考命题的一个热点是矩阵变换与二阶矩阵的乘法运算,考题中多考查求平面图形在矩阵的对应变换作用下得到的新图形,进而研究新图形的性质. 2.本部分高考命题的另一个热点是逆矩阵,主要考查行列式的计算、逆矩阵的性质与求法以及借助矩阵解决二元一次方程组的求解问题. 【复习指导】 1.认真理解矩阵相等的概念,知道矩阵与矩阵的乘法的意义,并能熟练进行矩阵的乘法运算. 2.掌握几种常见的变换,了解其特点及矩阵表示,注意结合图形去理解和把握矩阵的几种变换. 3.熟练进行行列式的求值运算,会求矩阵的逆矩阵,并能利用逆矩阵解二元一次方程组. 基础梳理 1.乘法规则 (1)行矩阵[a 11 a 12]与列矩阵????b 11b 21 的乘法规则: [a 11 a 12]????b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵????a 11a 21 a 12a 22与列向量??? ?x 0y 0的乘法规则: ????a 11a 21 a 12a 22 ????x 0y 0=??? ?a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ????a 11a 21 a 12a 22 ??? ?b 11b 21 b 12b 22= ????a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律.即(AB )C =

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ??? ? x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称 为线性变换.由四个数a ,b ,c ,d 排成的正方形数表???? ? ?a b c d 称为二阶矩阵,其中a ,b ,c , d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]???? ??b 11b 21=[a 11b 11+a 12b 21],二阶矩阵??????a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =??????ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ? ?1 00 1; (2)旋转变换R θ对应的矩阵是M =???? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ??k 1 00 k 2,表示将每个点的横坐标变为原来的k 1 倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =??????1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ? ?1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ??1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ??x 2y 2,规定向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λMα,②M (α+β)=Mα+Mβ. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

线性变换和矩阵.

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与 矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ 的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上 的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个 向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个 线性变换.基向量的像可以被基线性表出: ???????+++=+++=+++=. ,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ?????? ? ??=nn n n n n a a a a a a a a a A 2122221 11211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它 扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ???+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

高中数学选修4-2矩阵与变换知识点复习课课件_苏教版

2.1.1 矩阵的概念 1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 2.1.2 二阶矩阵与平面列向量的乘法1.二阶矩阵与平面向量的乘法规则; 2.理解矩阵对应着向量集合到向量集合的映射; 3.待定系数法是由原象和象确定矩阵的常用方法. 2.1 2.1 二阶矩阵与平面向量 二阶矩阵与平面向量

1,3形如??????8090,6085??????23324m ???????的矩形数字(或字母)阵列称为矩阵.通常用大写黑体的拉丁字母A 、B 、C …表示,或者用(a ij )表示,其中i,j i,j 分别表示元素a ij ij 所在的行与列. 同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一行数(或字母)叫做矩阵的列. 组成矩阵的每一个数(或字母)称为矩阵的元素。

13?????? 80906085??????23324m ???????21矩阵×22×矩阵23矩阵×0所有元素均为的矩阵叫做0矩阵. ,. 对于两个矩阵、的行数与列数分别相等,且对应位置上的元素也分别相和时,记等才相等作A B B A A B =

[][][]111112211111121111122121,规定: 行矩阵与列矩阵的乘法法则为 =b a a b b a a a b a b b ?????? ??×+×???? 01112212200110120111221220210220.x a a b b y x a x a y a a b b y b x b y ???????????? ×+×????????????×+×?????? 二阶矩阵与列向量的乘法规则为=

高考数学压轴专题(易错题)备战高考《矩阵与变换》经典测试题

【高中数学】高中数学《矩阵与变换》期末考知识点 一、15 1.已知,R a b ∈,矩阵 a b c d A ?=? ? ??? ,若矩阵A 属于特征值5的一个特征向量为11??????,点()2,1P -在A 对应的变换作用下得到点()1,2P '-,求矩阵A . 【答案】2314A ?? =???? 【解析】 【分析】 根据矩阵的特征值和特征向量的定义建立等量关系,列方程组求解即可. 【详解】 由题意可知,1155115a b c d ????????==? ???????????????,且2112a b c d --?????? =???? ???????? , 所以552122a b c d a b c d +=??+=??-+=-??-+=?,解得2 314 a b c d =??=??=??=?, 即矩阵2314A ??=????. 【点睛】 此题考查矩阵特征值和特征向量的辨析理解,根据题中所给条件建立等量关系解方程组得解. 2.a ,b 满足什么条件时,关于x ,y ,z 的方程组4424ax y z x by z x by z ++=?? ++=??++=? 有唯一解. 【答案】当0b ≠且1a ≠时 【解析】 【分析】 计算对应行列式为()11 1 110121 a D b b a b ==-≠,计算得到答案. 【详解】 4 424ax y z x by z x by z ++=?? ++=??++=? 有唯一解,则()1111212110121a D b ab b b ab b a b ==++---=-≠

所以当0b ≠且1a ≠时有唯一解 【点睛】 本题考查了方程组的唯一解问题,意在考查学生的计算能力. 3.解方程组32 321 x my m mx y m +=+?? +=-?. 【答案】详见解析. 【解析】 【分析】 求出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,利用方程组解与行列式之间的关系求出方程组的解,或者将参数的值代入方程组进行求解,由此得出方程组的解. 【详解】 由题意可得()()2 933D m m m =-=--+, ()()3(2)(21)231x D m m m m m =+--=--+,()()31y D m m =---. ①当0D ≠时,即当3m ≠±时,()213 13x y m D x D m D m y D m ?+==??+?-?==?+? ; ②当3m =时,方程组335335335x y x y x y +=??+=? +=? ,令()x t t R =∈,得533t y -=, 此时,该方程组的解有无数多个,为, ()533x t t R t y =?? ∈-?=?? ; ③当3m =-时,该方程组为331 337x y x y -=-??-+=-? 17?-=,所以该方程组无解. 【点睛】 本题考查二元一次方程组的求解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题. 4.已知关于x 、y 的二元一次方程组()4360 260x y kx k y +=??++=? 的解满足0x y >>,求实数k 的取值范围. 【答案】5,42?? ??? 【解析】

线性变换与二阶矩阵

线性变换与二阶矩阵 学习目标 1.理解线性变换、矩阵、单位矩阵、零矩阵的概念; 2.掌握旋转变换的矩阵表示和其几何意义。 教学重点: 旋转变换的矩阵表示和其几何意义。 教学过程 1.旋转变换 P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。 其结果为''x x y y ?=-?=-?,也可以表示为''00x x y y x y ?=-+??=?-?。 问题1. P (x,y )绕原点逆时针旋转30o 得到),(///y x p ,试完成以下任务①写出象/p ; ②写出这个旋转变换的方程组形式;③写出矩阵形式. 事实上,在平面直角坐标XOY 内,很多几何变换都具有下列形式: dy cx y by ax x +=+=// ,其中d c b a ,,,均为常数。我们把形如上式的几何变换叫做线性变换。该式叫做这

),(///y x p 是P (x,y )在这个线性变换作用下的像。 我们引进正方形数表a b c d ??? ???,那么上述线性变换可由a b c d ??????唯一确定,反之,a b c d ??????也可以由上述线性变换唯一确定。 像这样,由4个数d c b a ,,,排成的正方形数表a b c d ?????? 称为二阶矩阵,数d c b a ,,,称为矩阵的元素。 元素全为0的二阶矩阵?? ????0000称为零矩阵,简记作0. 矩阵?? ????1001称为二阶单位矩阵,记为2E 。 问题2.把问题2中的旋转30o 改为旋转α角,其结果又如何? 四、简单应用

1.设矩阵A=1001-??????,求点P(2,2)在A 所对应的线性变换下的象。 练习: P 13 1.2.3.4.5

高考数学压轴专题最新备战高考《矩阵与变换》知识点

《矩阵与变换》知识点汇总(1) 一、15 1.设,,a b c 分别是ABC ?的三边,行列式b a c c b a a c b . (1)求字母b 的代数余子式的展开式; (2)若(1)的值为0,判断直线sin 0B x ay b ?+-=与sin 0C x by c ?+-=的位置关系. 【答案】(1)233b ac -;(2)重合. 【解析】 【分析】 (1)根据字母b 的代数余子式的展开式() () () 2 4 6 111b a b c b a c b a b c b -+-+-即可求解; (2)根据(1)的值为0,得出边长的关系,即可判断直线位置关系. 【详解】 (1),,a b c 分别是ABC ?的三边,行列式b a c c b a a c b , 所以字母b 的代数余子式的展开式为: () () () 2 4 6 111b a b c b a c b a b c b -+-+- 222b ac b ac b ac =-+-+- 233b ac =- (2)若(1)的值为0,即2330b ac -=,2b ac =,b c a b =, 由正弦定理:sin sin c C b B = 所以 sin sin c C b c b B a b -===- 所以直线sin 0B x ay b ?+-=与sin 0C x by c ?+-=的位置关系是重合. 【点睛】 此题考查求代数余子式的展开式,得出三角形边长关系,结合正弦定理判断两直线的位置关系,跨章节综合性比较强. 2.用行列式解方程组231231x y z x y az ay z +-=-?? -+=-??-=? ,并加以讨论.

高三数学(理)《选修4-2_矩阵与变换》专题练习答案

高二数学(理)《矩阵与变换》 1、已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD 在矩阵?? ????100a 变换作用下变成正方形,则a = 2、在直角坐标系xOy 内,将每个点的横坐标与纵坐标都变为原来的3倍,则该变换的矩阵是 3、已知矩阵A =1111?? ?-??,B =2111-?? ?-?? ,则AB 等于 4、已知矩阵A =1111-?? ??? ,则矩阵A 的逆矩阵A -1等于 5、点(-1,k )在伸压变换矩阵?? ????100m 之下的对应点的坐标为(-2, -4 ),则m 、k 的值分别为 6、计算:??????-???? ??321110=__________ 7、点A (1,2)在矩阵?? ????-1022对应的变换作用下得到的点的坐标是___________ 8、若点A 在矩阵1222-????-?? 对应的变换作用下下得到的点为(2,4),则点A 的坐标为_________ 9、将向量?? ????=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为___________ 10、在某个旋转变换中,顺时针旋转3 π所对应的变换矩阵为______ 11、曲线y x =在矩阵0110?????? 作用下变换所得的图形对应的曲线方程为______ 12、曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是 ,变换对应的矩阵是__ 13、若曲线x 3cos 2 1y =经过伸压变换T 作用后变为新的曲线cos y x =,试求变换T 对应的矩阵M =____. 14、矩阵3221A ??=???? 的逆矩阵

考点34 矩阵与变换(解析版)

考点 34、矩阵与变换 【知识框图】 【自主热身,归纳总结】 1、(2018扬州期末)下得到点N (3,5),求矩阵A 的逆矩阵A - 1. 规范解答 因为A ??????11=??????35,即??????2x 3y ??????11=??????35,即?????2+x =3,3+y =5,解得?????x =1,y =2, 所以A =?? ?? ??2132.(5分) 解法1(定义法) 设A - 1=?? ????a b c d ,则AA -1=??????2132??????a b c d =?????? 1 00 1,即?????2a +c =1, 3a +2c =0,2b +d =0, 3b +2d =1, (7分) 解得?????a =2, b =-1, c =-3, d =2, 所以A -1 =?? ?? ?? 2-1-32.(10分) 2、(2017南京学情调研)已知矩阵A =???? ??2-21-3,B =?????? 1 00-1,设M =AB . (1) 求矩阵M ; (2) 求矩阵M 的特征值. 规范解答 (1) M =AB =??????2-21-3??????1 00-1=???? ?? 2213.(5分) (2) 矩阵M 的特征多项式为 f (λ)=???? ??λ-2-2-1λ-3=(λ-2)(λ-3)-2=λ2-5λ+4, 令f (λ)=0,解得λ1=1,λ2=4, 所以矩阵M 的特征值为1和4.(10分) 3、已知变换T 把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T 对应的矩阵M . .规范解答 设M =?? ????a b c d ,由题意,得??????a b c d ??????3-4=??????2-1,??????a b c d ??????50=???? ??-12,(3分)

相关主题
文本预览
相关文档 最新文档