当前位置:文档之家› 第10讲 磁场和复合场

第10讲 磁场和复合场

第10讲  磁场和复合场
第10讲  磁场和复合场

学科: 物理年级:高三

本周教学内容:第10讲磁场和复合场

考纲要求

1.掌握直线电流、环形电流、通电螺线管、条形磁铁、蹄形磁铁等所产生的磁场分布情况,能灵活应用安培定则解答有关问题。

2.深刻理解磁感应强度、磁感线、磁通量的物理含义。

3.灵活应用左手定则和安培力计算公式定量解决有关磁场对电流作用力的问题(限B

I平行和垂直两类)。

4.熟练掌握洛仑兹力及其变化规律,灵活解决各类带电粒子在磁场及其它复合场中的运

动类问题(即B与v平行和垂直两类)。

知识结构

热点导析

1.磁场的主要内容

磁场的主要内容可概括成一个工具(磁感线)、两个物理量(磁感强度和磁通量)、两个定则(安培定则和左手定则),两个力(安培力、洛仑兹力)。其中带电粒子在有边界和无边界磁场区域中的运动及其规律、带电粒子在复合场中的运动及其规律是本单元内容的重点和

难点。

2.磁场和电场都是客观存在的一种特殊物质,它们之间更多地存在着比较和区别

磁场存在于运动电荷周围,电场存在于电荷周围;磁场只对运动电荷(含电流和磁铁)有作用,电场对电荷有作用;用磁极受力定义方向、电流无受力定义大小,用检验电

荷+q受力来定义大小和方向;磁感线闭合,电场线不闭合。电磁场可共存于同一空间。

3.有关方向定则

通电直导线、圆形电流和螺线管用周围磁场分布情况均用安培定则来判定,通电直导线、圆形电流和螺线管等受力方向用左手定则来判定。不能简单理解为来和安培定则,求力

F、V各量间因果关系辩清晰,I为原因,为产生的结果用左手定则,而应把、、

B

的用安培定则;、为原因,F B(或受力后运动)为结果的,用左手定则,运动为原因、感应电流为结果的用右手定则。

判定由和I(或运动电荷)而导致的F B(f B)方向时,可用左手定则,且B(f B)的方向在空间立体上一定垂直和I两线(与两线)决定的平面,在此基础上再用左手定则判定确切方向更易正确解答。

4.磁通量和磁力矩

单匝线圈和n匝线圈放在垂直线圈平面的匀强磁场中,磁通量场为B·S(B为磁感强度、S为线圈所围面积)。若在线圈中通有电流I,则在磁场中转过90°后所受磁力矩分别为BIS 和nBIS。

5.带电粒子在复合场中受力及运动

首先带电粒子在复合场中运动规律广泛应用于近代物理的许多实验装置中,如回旋加速器、质谱仪、磁流体发电机、电磁流量计、速度选择器等。

其次,应明确:研究复合场中带电粒子的运动规律首先要分析初速度和运动过程中加速度(受力)情况。在受力分析的过程中应将重力(是否考虑)、电场力、洛仑兹力等作为力学中按性质来命名的力首先进行讨论。

再次,应明确:不管带电粒子做的是圆周运动还是一般曲线运动,洛仑兹力永远不做功,但洛仑兹力的变化与否可间接影响到重力、电场力等力的做功情况。

最后,因为电磁学物理量及单位比较复杂,而且数值往往相差悬殊,因此计算有关结果时,应先进行字母运算,简化后最后再代入数据。也可这样讲,力学问题的基本思路和求解方法在本单元中广泛适用。

典型例析

【例1】如图5-10-1所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直于纸面向外运动,可以()

A.将a、c端接在电源正极,b、d端接在电源负极

B.将b、d端接在电源正极,a、c端接在电源负极

C.将a、d端接在电源正极,b、c端在电源负极

D.将a、c端接在交流电源的一端,b、d接在交流电源的另一端

【解析】 本题为1997年上海高考试题

将a 接正极b 接负极,电流方向为M →N ,c 接正极d 接负极,由右手螺旋定则可知,线圈上端为N 极。由左手定则判定MN 向外运动,A 正确。

b 接在正极时电流方向为N →M ,d 接正极由右手螺旋定则可知线圈下端为N 极,因此由左手定则可判断MN 向外运动,B 正确。

a 接正极电流方向为M →N ,d 接正极可知线圈下端为N 极,由左手定则可判定MN 向里运动,C 错误。

MN 中与线圈中虽然通的都是交流电,但由于ab 与cd 是并联接在电源上,当电流为M →N 时,线圈中电流为c →d ,而当电流为N →M 时,线圈中电流为d →c ,由以上判定A 、B 的方法可判定D 正确。

【说明】 该题属于右手螺旋定则与左手定则结合应用的题,这在一些题中经常出现,先由右手螺旋定则判定磁场方向,再由左手定则判定受力方向。

【例2】 一劲度系数为k 的轻质弹簧,下端挂有一匝数为n 的矩形线框abcd 。bc 边长为l 。线框的下半部处在匀强磁场中,磁感强度大小为B ,方向与线框平面垂直,在图5-10-2中,垂直于纸面向里,线框中通以电流I ,方向如图所示。开始时线框处于平衡状态,令磁场反向,磁感强度的大小仍为B ,线框达到新的平衡。在此过程中线框位移的大小Δx ,方向 。

【解析】 本题为1999年广东高考试题

设线圈的质量为m ,当通以图示电流时,弹簧的伸长量为x 1,线框处于平衡状态,所以kx 1=mg-nBIl 。当电流反向时,线框达到新的平衡,弹簧的伸长量为x 2,由平衡条件可知kx 2=mg+nBIl 。

∴k(x 2-x 1)=k Δx=2nBIl ∴Δx=k

nBIl 2 电流反向后,弹簧的伸长是x 2>x 1,位移的方向应向下。

【说明】 本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。

【例3】 如图5-10-3所示,一平行板电容器间的水平匀强电场中,用丝线在固定O 点悬挂一个质量为1g 的带电小球,静止在竖直偏左30°角的OA 位置,现把小球提到B 点使线水平伸直,然后放开,让小球绕D 点摆动,求

(1)小球摆到最低点时线上的拉力。

(2)小球摆过最低点时,还能向右摆动的角度(g=10ms -2)?

【解析】 由题可知小球带负电,由小球静止于A 点可知

小球受向下mg ,向左Eq ,沿丝线接力T

由平衡条件可知:Eq=mgtan30°=3

3mg 对小球由B →A →C 过程中应用动能定理 mgl-Eql=2

1mv 2C -0 对小球在C 处在竖直方向应用向心力公式 T-mg=m L

v c 由①②③得:T=(3-

332)mg=1.8×10-2N 设小球还能向右摆α角至D 点

对小球由B →A →C →D 应用动能定理

mglcos α-Eq(1+1sin α)=0

由①④得cos α=3

3(1+sin α) ∴α=30°

【说明】 本题为典型的重力场和匀强电场组成的复合场问题。对该非匀速圆周运动过程,机械能守恒不再适用,动能定理为道选解法。对其中某一位置的法线方向,可使用动力学向心力公式解答。如本题所示的复合场仍为匀强场,也可直接采用合场的办法来求解第(2)问。OA 即为合场方向,B 与D 对OA 左右对称。所以∠AOD=60°,∠COD=30°。若本题修改后∠AOB >90°,则丝线还会有松驰过程,还需考虑丝线张紧瞬间法向速度的损失问题。

【例4】 如图5-10-4所示,在xOy 平面上,a 点坐标为(0,l ),平面内一边界通过a 点和坐标原点O 的圆形匀强磁场区域,磁场方向垂直纸面向里,有一电子(质量为m ,电量为e )从a 点以初速度v 0平行x 轴正方向射入磁场区域,在磁场中运动,恰好在x 轴上的b 点(未标出)射出磁场区域,此时速度方向与x 轴正方向头角为60°,求

(1)磁场的磁感应强度。

(2)磁场区域圆心O 1的坐标。

(3)电子在磁场中运动的时间。

【解析】 带电粒子在磁场中做匀速圆周运动,从a 点射入从b 点射出O 、a 、b 均在圆形磁场区域的半界,粒子运动轨道圆心为O 2,令b O a O 22==R

由题意可知,∠aO 2b=60°,且ΔaO 2b 为正三角形

在ΔOO 2b 中,R 2=(R-l )2+(Rsin60°)2

① 而R=Be mv 0

② 由①②得R=2l ∴B=el

mv 20 而粒子在磁场中飞行时间 t=0

0322326136060v l v l Be m T πππ=?== 由于∠aOb=90°又∠aOb 为磁场图形区域的圆周角

∴ab 即为磁场区域直径

2

11=aO R=l O 1的x 坐标:x=aO 1sin60°=23l y=l-aO 1cos60°=2

l ∴O 1坐标为(23l ,2

1) 【说明】 本题为带电粒子在有边界磁场区域中的圆周运动,解题的关键一步是找圆心,根据运动电荷在有界磁场的出入点速度方向垂线的交点,确定圆心的位置,然后作出轨迹和半径,根据几何关系找出等量关系。求解飞行时间从找轨迹所对应的圆心角的方面着手。

当然带电粒子在有界磁场中做部分圆周运动,除了要运用圆周运动的规律外,还要注意

各种因素的制约而形成不是惟一的解,这就要求必须深刻理解题意,挖掘隐含条件,分析不确定因素,力求解答准确、完整。

【例5】 如图5-10-5(a )为一种获得高能粒子的装置,环形区域内存在垂直纸面向外,大小可调节的均匀磁场,质量为m ,电量为+q 的粒子在环中做半径为R 的圆周运动。A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为+U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变。

(1)设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n 。

(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n 。

(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R )。

(4)在5-10-5(b )图中,画出A 板电势u 与时间t 的关系(从t=0起画到粒子第四次离开B 板时即可)。

(5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?

【解析】 (1)E m =nqU

(2)∵nqU=2

1mv 2n ,∴v n =m nqU 2 R

mv n 2=qu n B n ,B n =qR mv n 以U n 结果代入,B n =q

nmU R m nqU qR m 212= (3)绕行第n 圈需时

n qU m R r R n 1222?=ππ ∴t n =2πR qU m 2(1+++3121…+n

1) (4)如图5-10-6所示(对图的要求:间隔越来越近的等幅脉冲)

(5)不可以。因为这样粒子在A 、B 之间飞行时电场对其做功+qU 使之加速,在A 、B

之外飞行时电场又对其做功-qU 使之减速,粒子绕行一周,电场对其做的总功为零,能量不会增大。

【说明】 在(4)中由于绕第n 圈的周期T n =n

qB m π2,由B n 越来越大,因而T n 也越来越小,这样在图中t 1,t 2,t 3的相互间距要越来越小。粒子每次通过AB 板间的时间也要随着粒子不断加速而越来越短,因而图中等幅脉冲要越来越窄。

在(5)中若粒子穿过AB 板间后A 板电势不消失,正离子继续从B 向A 做圆周运动时,是从低电势向高电势运动,电场力做负功,从B →A ,做功为-qU ,这样粒子绕行一周,电场对其做的功为零,能量也就不会变大。

【例6】 如图5-10-7所示,在某装置中有一匀强磁场,磁感应强度为B ,方向垂直于Oxy 所在的纸面向外。某时刻在x=l 0,y=0处,一质子沿y 轴的负方向进入磁场;同一时刻,在x=-l 0,y=0处,一个α粒子进入磁场,速度方向与磁场垂直。不考虑质子与α粒子的相互作用。设质子的质量为m ,电量为e 。

(1)如果质子经过坐标原点O ,它的速度为多大?

(2)如果α粒子与质子在坐标原点相遇,α粒子的速度应为何值?方向如何?

【解析】 本题为1999年广东高考试题

(1)根据质子进入磁场的位置和进入磁场时速度的方向,可知其圆周轨道的圆心必在x 轴上,又因质子经过原点O ,故其轨道半径r p =2

1l 0。设质子的速度为v p ,由牛顿定律得 p

p r mv 2=eBv p ① 解得v p =m

eBl 20 ② (2)质子做圆周运动的周期为 T p =eB m π2 ③

由于α粒子电荷为q o =2e,质量为m a =4m ,故α粒子做圆周运动的周期

T α=eB m π4 ④ 质子在做圆周运动的过程中,在t=

21T p ,23T p ,2

5T p …各时刻通过O 点。α粒子如与质子在O 点相遇,必在同一时刻到达O 点,这些时刻分别对应t=41T a ,4

3T a ,…。如果α粒子在t=41T a 到达O 点,它运行了41周期。如在t=4

3T a 到达O 点,它运行了43周期。由此可知,α粒子进入磁场处与O 点之间的连线必为4

1圆周或43圆周所对的弦,如图5-10-8所示(实际上t=45T a 等情形不必再考虑)。进而得出,α粒子的轨道半径 r a =22l 0 ⑤

设α粒子的速度为v α,则由牛顿定律得

αααr v m 2=q αBv α

注意到m α=4m,q α=2ε ⑥

但方向可有两个,用α粒子速度方向与x 轴正方向夹角θ表示

θ1=4

π ⑦ θ2=π43 ⑧

【说明】 解题时要正确理解题目所描述的物理情景,并以此为依据构建出正确的物理模型是解决该类问题的前提。

本题属带电粒子在磁场中运动类问题,正确画出运动轨迹及对应的圆心和半径是解题的基础。

【例7】 何为速度选择器,其工作原理如何,并列举几个物理模型与速度选择器相似的应用实例。

【解析】 如图5-10-9所示,带电粒子垂直射入正交的匀强电场和匀强磁场的复合场空间,所受电场力和洛仑兹力方向相反,大小相等。

即Eq=Bqu ∴u=B E ①

凡是符号①式的粒子顺利通过场区从O 2孔射出,凡是不符合①式的粒子均不能从O 2射出,即将速度v=B

E 的粒子选中。

类似的还有质谱仪:如图5-10-10所示,经速度选择器选中的速度相等、质量不等的粒子经180°磁场偏后由于半径的不等而区分开。

磁流体发电机:如图5-10-11所示,等离子喷入磁场区域,磁场区域中有两块金属板A 和B ,正、负离子在洛仑兹力作用下发生上、下偏转而聚集到A 、B 板产生电势差,最大电势差可达Bdv (B 为磁感强度,d 为两板间距,v 为喷射速度)。

霍尔效应:如图5-10-12所示,厚度为h 、宽度为d 的导体板放在垂直于磁感强度为B 的匀强磁场中,当电流通过导体极时,在导体上下侧面间会产生电势差,这种现象中霍尔效应U=k d

IB (k 为霍尔系数)。

电磁流量计:如图5-10-13所示电磁流量计是用来测定导电液体在导管中流动时流量的仪器,设导管直径为d ,用非磁性材料组成,磁感应强度为B ,a 、b 间测出电势差为U

则流量Q=Sv=B

dU Bd U d 442

ππ=? 【说明】 上述几个应用实例,表面形式各不相同,但本质上均利用了磁场力和电场力两力平衡的知识来解,物理模型基本相似,应归类总结、复习。

本周强化练习:

能力测试

一、选择题(至少有一个选择符合题意)

1.下述说法中正确的是( )

A.磁通量是反映磁场强弱和方向的物理量

B.自由小磁针仅在磁场力作用下运动,其轨迹一定与磁感线重合

C.洛仑兹力只能改变运动电荷的动量而不能改变动能

D.分子电流实际上是不存在的,是人为引进的

2.一带电质点在匀强磁场中做圆周运动,现给定了磁场的磁感强度、带电质点的质量和电量,若有v 表示带电质点的运动速率,R 表示其轨道半径,则带电质点的运动周期( )

A.与v 有关,与R 有关

B.与v 无关,与C 无关

C.与v 有关,与R 无关

D.与v 无关,与R 有关

3.以下情况中能比较正确反映奥斯特实验结果的是( )

A.电流由南向北时,其下方的小磁针N 极偏向东边

B.电流由东向西时,其下方的小磁针N 极偏向南边

C.电流由南向北时,其下方的小磁针N 极偏向西边

D.电流由东向西时,其下方的小磁针N 极偏向北边

4.如图5-10-14匀强电场水平向右,匀强磁场垂直纸面向里,带正电的小球在场中静止释放,最后落到地面上。关于该过程,下述说法正确的是( )

A.小球减少的电势能等于增加的动能

B.小球做匀变速运动

C.电场力和重力做的功等于小球增加的动能

D.若保持其他条件不变,只减小磁感强度,小球着地时动能不变

5.在水平匀强磁场中,有一通电线圈绕垂直磁感线的OO ′轴转动,设转动中穿过线圈平面的磁通量为Ф,线圈所受安培力的合力为F ,线圈受到的安培力矩为M 。则线圈转至一定位置时,必有( )

A.Ф=0的位置时,F 最大,M=0

B.Ф=0的位置时,F=0,M 最大

C.Ф最大的位置时,F 最大,M=0

D.Ф最大的位置时,F=0,M=0

6.将内壁光滑的绝缘细管制成半径为R 的半圆环,垂直放入磁感应强度为B 的匀强磁场中,如图5-10-15所示,磁区宽度h <R 。另有一场强为E 的匀强电场与环面平行水平向右。现将一个电量为+q 、质量为m 的金属球,从圆环的A 端由静止释放,那么这个小球( )

A.在圆环的最低点D 所受洛仑兹力最大

B.有可能从圆环的另一端管口C 跳出

C.最大动能应小于22)()(mg Eq R (1+cosarctan Eq

mg )

D.如小球未从C 跳出,则最终将在磁区中的某部分往返运动

7.在如图5-10-16所示的装置中,M 、N 是一对相距为d 的水平金属板,在它们上方另有一水平金属板Q ,其上有一小孔S 正对着板M 上的小孔O 。MN 间有一垂直向里的磁感应强度为B (T )的均强磁场。在板Q 的S 孔处有质量为m(Kg)、电荷量为q(C)的负离子,其重力和初速不计,电源的电动势为ε(V ),内阻为r(Ω),R AB 总阻为2r ,滑动触头C 在AB 的中点,离子从MN 的中点飞出,在 这个运动过程中,则( )

A.负离子的运动轨迹是圆弧

B.飞出磁场时速度为m q 3/5ε

C.飞出磁场时速度为m q /2ε

D.飞出磁场时速度为m q /ε

二、填空题

8.如图5-10-17,在方向都垂直纸面向里的匀强电场和匀强磁场中,竖直放置一根很长

的绝缘直棒,棒上套有一质量为1.0×10-4Kg ,电量q=+4.0×10-4C 的小球,若小球与棒间摩

擦因数μ=0.2,E=10V/m,B=0.5T ,则小球从静止开始释放,下落过程中的最大速度为 m/s 2,最大速度为 m/s 。

9.如图5-10-18,磁感强度为B 的匀强磁场,在坚直平面内匀速平移时,质量为m ,带电-q 的小球,用线悬挂着,静止在悬线与竖直方向成30°的角位置,则磁场的最小移动速度为 。

10.如图5-10-19,质量为m ,带电量为e 的电子以速度v 0从O 点沿Y 轴正方向垂直射

入磁感强度为B的匀强磁场中,如在运动过程中突然取消匀强磁场,要使电子在原来轨道上保持同速率继续运动,则可在坐标x= ,y= 处放一个带电量为

的正电荷即可。

11.如图5-10-20,以虚线为界限的两匀强磁场中,磁感强度为B1=2B,B2=B,方向均垂直于纸面向里,现有一质量为m、带电量为+q的粒子,从O点沿图示方向射入B1中,试在图5-10-20中画出该粒子的运动轨迹。该粒子重新回到O点所用的时间t= 。

三、论述与计算题。

12.磁场对通电导线的作用力是磁场对导体中运动电荷作用力的宏观表现。试根据导线垂直匀强磁场的情形,推导出洛仑兹力的表达式f=Bqv(q为导体中自由电荷的电量,v为自由电荷的定向移动速度)。

13.如图5-10-21,质量为0.06Kg的裸铜棒,长10cm,两头与软导线相连,吊在B=0.5T 方向竖直向下的匀强磁场中,通以电流I后,铜棒的最大偏角为37°,偏转方向从右向左看为逆时针,求电流的大小和方向(取g=10m/s2)。

14.在匀强磁场和匀强电场中,水平放置一绝缘直棒,棒上套着一个带正电小球,如图5-10-22,小球与棒间滑动摩擦因数μ=0.2,小球质量m=1×10-4kg,电量q=2×10-4C。匀强电场水平向右,E=5N/C,磁场垂直纸面向里,B=2T,取g=10m/s2,求:(1)小球的加速度最大时,它的速度多大?最大加速度多大?(2)如果棒足够长,小球的最大速度多大?(3)说明小球达到最大速度后能量转化关系。

15.如图5-10-23,一质量为m 、带电量为q 的粒子,以速度v 0从坐标原点O 沿y 轴正方向射入磁感强度为B 的圆形匀强磁场区域,磁场方向垂直纸面,粒子飞出磁场区域后,从b 处穿x 轴,速度方向与x 轴正方向夹角30°,粒子重力不计。求(1)圆形磁场区域的最小面积。(2)粒子从O 点进入场区到达b 点的时间及b 点的坐标。

参考答案

1.C

2.B

3.C

4.C

5.B 、D

6.B 、C 、D

7.D

8.2,15

9.Bq mg 2 10.Be

mV 0,0,2

032KBe v m 11.Bq m 2 12.[证明] 如图右所示,设通电导线内电流强度为I ,导线长为l ,磁感强度为B

则I=nqSv

安培力大小F=BIl=BlnqSv

而nlS=N 为运动电荷总数

所以每个电荷所受洛仑兹力f B =N F =Bqv [说明] 有一个典型的错误证明方法。即:I=t q v=t l ∴f=BIl=B t

q ·vt=Bqv 。错误的原因把洛仑兹力的受力者———单独的运动电荷混淆成 时间t 秒内穿过导线横截面积的总电量,属概念不清。

13.[解析] 对棒从最低点运动到最大偏角37°过程中应用动能定理

BIl OM sin37°-mg OM (1-cos37°)=0

代入数据得

0.5×I ×0.6-0.06×10(1-0.8)=0 ∴I=4A

据左手定则,MN 中电流方向为M →N 。

[说明] 若将MN 所能偏转的最大偏角37°错误地理解成为37°可静止。则会有tan37°=mg l I B ',I ′=9A 的错误答案。事实上原题中能偏最大37°角,则应在2

37?即18.5°处可静止,反之若通9A 电流,则最大可偏至74°处。

14.[解析] (1)小球水平方向加速度由电场力和摩擦力决定,当f μ=0时,a 取最大即Bqv=mg

v=Bq

mg =2.5ms -1 此时最大加速度a m =m

Eq =10ms -2 (2)小球向右一开始做加速度增加的加速运动,后做加速度减小的加速度F ′动,当a 减为零时,小球速度最大,设最大速度为v m

Eq=f ′μ=μN=μ(Bqv m -mg)

代入数据:v m =15ms -1

(3)小球达最大速度v m 后,受力图如右图所示,电场力做正功,消耗电场能用于克服摩擦力做功产生焦耳势(内能)。

[说明] 由小球的初始条件和受力情况及其变化规律分析小球的运动情况。速度最大往往是加速度为零的时候。

15.[解析] 如右图所示,粒子在磁场中运动的轨道半径R=Bq mv 最小磁场区域或半径为r ,则r=Rcos30° 磁场最小面积

S=πr 2

=2202243q B v m π 粒子在磁场中沿圆弧Oa (如右图)运动,由a 到b 为匀速运动

t oa =Bq

m T 323π= t ab =0

030tan v Rc v ab ?= ∴t=t 0a +t ab =)33

2(+πBq m b 的横坐标为R+

?30R =3R=Bq mv 03 纵坐标为0。

[说明] 带电粒子在磁场中运动类问题,首先要作出运动轨迹并标出对应圆心和各特殊点对应的半径,然后再根据各阶段曲线的特点求出有关坐标点和时间,几何关系、三角函数是这类问题常用的数学知识。

专题8磁场、带电粒子在磁场和复合场中的运动Word版

专题8 磁场、带电粒子在磁场及复合场中 的运动 核心检索

(多选)(2014·浙江高考)如图8-1甲所示,两根光滑平行导轨水平放置,间距为L,其间有竖直向下的匀强磁场,磁感应强度为B.垂直于导轨水平对称放置一根均匀金属棒.从t=0时刻起,棒上有如图8-1乙所示的持续交变电流I,周期为T,最大值为I m,图1中I所示方向为电流正方向.则金属棒( ) 图8-1 A.一直向右移动 B.速度随时间周期性变化 C.受到的安培力随时间周期性变化 D.受到的安培力在一个周期内做正功 【关键信息】 1.光滑平行导轨水平放置…竖直向下的匀强磁场…垂直于导轨水平对称放置一根均匀金属棒. 2.从t=0时刻起,棒上有…持续交变电流I,图甲中I所示方向为电流正方向.

【尝试解答】根据左手定则知金属棒在0~T 2 内所受安培力向右,大小恒 定,故金属棒向右做匀加速运动,在T 2 ~T内金属棒所受安培力与前半个周期大 小相等,方向相反,金属棒向右做匀减速运动,一个周期结束时金属棒速度恰好 为零,以后始终向右重复上述运动,选项A、B、C正确;在0~T 2 时间内,安培 力方向与运动方向相同,安培力做正功,在T 2 ~T时间内,安培力方向与运动方 向相反,安培力做负功,在一个周期内,安培力所做总功为零,选项D错误.【答案】ABC 关于磁场性质问题的注意点 1.要熟记地磁场,通电导线和线圈磁场、条形或蹄形磁铁、磁场的特点,知道指南针的N极代表磁场方向. 2.磁场的基本性质是对放入磁场的直线电流或带电粒子有磁场力作用,会判断磁场力的方向,会表示安培力和洛伦兹力的大小. 发散1 磁场的方向及其判断 1.(多选)(2015·全国卷Ⅱ)指南针是我国古代四大发明之一.关于指南针,下列说法正确的是( ) A.指南针可以仅具有一个磁极 B.指南针能够指向南北,说明地球具有磁场 C.指南针的指向会受到附近铁块的干扰

高考物理磁场精讲精练组合场复合场叠加场典型习题

组合场复合场叠加场典型习题 1.如图所示,匀强电场方向水平向右,匀强磁场方向垂直纸面向里,将带正电的小球在场中静止释放,最后落到地面上.关于该过程,下述说法正确的是( ) A.小球做匀变速曲线运动 B.小球减少的电势能等于增加的动能 C.电场力和重力做的功等于小球增加的动能 D.若保持其他条件不变,只减小磁感应强度,小球着地时动能不变 解析:选C.重力和电场力是恒力,但洛伦兹力是变力,因此合外力是变化的,由牛顿第二定律知其加速度也是变化的,选项A错误;由动能定理和功能关系知,选项B错误,选项C正确;磁感应强度减小时,小球落地时的水平位移会发生变化,则电场力所做的功也会随之发生变化,选项D错误. 2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( ) A.可能做直线运动 B.可能做匀减速运动 C.一定做曲线运动 D.可能做匀速圆周运动 解析:选C.带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确. 3.(多选)质量为m、电荷量为q的微粒以速度v与水平方向成θ角从O点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A,下列说法中正确的是( ) A.该微粒一定带负电荷

B .微粒从O 到A 的运动可能是匀变速运动 C .该磁场的磁感应强度大小为mg qv cos θ D .该电场的场强为Bv cos θ 解析:选AC.若微粒带正电荷,它受竖直向下的重力mg 、水平向左的电场力qE 和斜向右下方的洛伦兹力qvB ,知微粒不能做直线运动,据此可知微粒应带负电荷,它受竖直向下的重力mg 、水平向右的电场力qE 和斜向左上方的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有:qvB cos θ=mg ,qvB sin θ=qE ,得磁场的磁感应强度B =mg qv cos θ ,电场的场强E =Bv sin θ,故选 项C 正确,D 错误. 4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( ) A .小球可能带正电 B .小球做匀速圆周运动的半径为r =1 B 2UE g C .小球做匀速圆周运动的周期为T =2πE Bg D .若电压U 增大,则小球做匀速圆周运动的周期增加 解析:选BC.小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿 第二定律和动能定理可得:Bqv =mv 2r ,Uq =12 mv 2 ,联立两式可得:小球做匀速圆周运动的半 径r =1 B 2UE g ,由T =2πr v 可以得出T =2πE Bg ,与电压U 无关,所以B 、C 正确,D 错误. 5.(多选)如图所示,在第二象限中有水平向右的匀强电场,在第一象限内存在垂直纸面向外的匀强磁场.有一重力不计的带电粒子(电荷量为q ,质量为m )以垂直于x 轴的速度 v 0从x 轴上的P 点进入匀强电场,恰好与y 轴正方向成45°角射出电场,再经过一段时间 又恰好垂直于x 轴进入第四象限.已知OP 之间的距离为d ,则( )

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场 一 选择题 1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( ) A. l I μπ420 B. l I μπ20 C . l I μπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由 )cos (cos π4210θθμ-= d I B ,可得 l I l I B B C π82)2πcos 4π(cos π400μμ=-= ,方向垂直纸面向里 l I l I B CD π82)2π cos 4π(cos π400μμ=-=,方向垂直纸面向里 合磁感应强度 l I B B B CD B C π420μ=+= 所以选(A ) 2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的 地方是:( ) A. x =2的直线上 B. 在x >2的区域 C. 在x <1的区域 D. 不在x 、y 平面上 解:本题选(A ) 3. 图中,六根无限长导线互相绝缘,通过电流均为I , 区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向 纸内的磁通量最大?( ) A. Ⅰ区域 B. Ⅱ区域 C .Ⅲ区域 D .Ⅳ区域 E .最大不止一个 解:本题选(B ) 选择题2图 Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图 选择题1图

4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( ) A. ∮L B ·d l =0,且环路上任意一点B =0 B. ∮L B ·d l =0,且环路上任意一点B ≠0 C. ∮L B ·d l ≠0,且环路上任意一点B ≠0 D. ∮L B ·d l ≠0,且环路上任意一点B =常量 解:本题选(B ) 5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r R )的磁感应强度为B e ,则有:( ) A. B t 、B e 均与r 成正比 B. B i 、B e 均与r 成反比 C. B i 与r 成反比,B e 与r 成正比 D. B i 与r 成正比,B e 与r 成反比 解:导体横截面上的电流密度2 πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r E a =E c D. E b >E c >E a 解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c 所以选(C ) 7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( ) A. Oa B. Ob C. Oc D . Od 解:根据B F ?=v q ,从图示位置出发,带负选择题7图 c d b a B O ? B × × × × × × E a b c 选择题6 图 选择题4图

(十二)电场,磁场,重力场的复合场,组合场问答

电场,磁场,重力场的复合场、组合场问题 一、复合场 1.一个质量m=0.1 g的小滑块,带有q=5×10-4 C的电荷量,放置在倾角α=30°的光滑斜面上(斜面绝缘),斜面置于B=0.5 T的匀强磁场中,磁场方向垂直纸 面向里,如图8-2-29所示,小滑块由静止开始沿斜面滑下,其斜面足 够长,小滑块滑至某一位置时,要离开斜面.求: (1)小滑块带何种电荷? (2)小滑块离开斜面的瞬时速度多大? (3)该斜面的长度至少多长?图8-2-29 2.如图8-3-6所示的平行板之间,存在着相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.20 T,方向垂直纸面向里,电场强度E1=1.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有一边界线AO,与y轴的夹角∠AOy=45°,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B2=0.25 T,边界线的下方有水平向右的匀强电场,电场强度E2=5.0×105V/m,在x轴上固定一水平的荧光屏.一束带电荷量q=8.0×10-19 C、质量m=8.0×10-26 kg的正离子从P点射入平行板间,沿中线PQ 做直线运动,穿出平行板后从y轴上坐标为(0,0.4 m)的Q点垂直y轴射入磁场区,最后打到水平的荧光屏上的位置C.求: 图8-3-6 (1)离子在平行板间运动的速度大小; (2)离子打到荧光屏上的位置C的坐标;

(3)现只改变AOy 区域内磁场的磁感应强度大小,使离子都不能打到x 轴上,磁感应强度大小B 2′应满足什么条件? 3.(2012·重庆卷,24)有人设计了一种带电颗粒的速率分选装置,其原理如图8-3-7所示.两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外 的匀强磁场.一束比荷(电荷量与质量之比)均为1k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板.重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间相互作用.求:(1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的 距离. 图8-3-7 4.在如图8-3-9所示的空间里,存在垂直纸面向里的匀强磁场,磁感应强度为B =2πm q .在竖直方向存在交替变化的匀强电场如图(竖直向上为正),电场大小为E 0=mg q .一倾角为θ长 度足够长的光滑绝缘斜面放置在此空间.斜面上有一质量为m ,带电量为-q 的小球,从t =0时刻由静止开始沿斜面下滑,设第5秒内小球不会离开斜面,重力加速度为g .求: (1)第6秒内小球离开斜面的最大距离. (2)第19秒内小球未离开斜面,θ角的正切值应满足什么条件? 图8-3-9 总结:

磁体与磁场_教案

磁体与磁场 【教学目标】 1.通过观察铁屑在磁体周围的分布情况,知道常见磁体周围的磁场分布。 2.通过活动,知道磁感线可以形象地描述磁场,知道磁感线的方向是怎样规定的。 3.会画常见磁体的磁感线。 4.知道地球周围有磁场,知道地磁场的N、S极所处的位置。 【教学重难点】 1.探究磁体周围的磁场。 2.学会从铁屑在磁体周围的分布抽象出磁感线来描述磁场的方法。 【教学过程】 活动一:认识磁体 磁体有什么性质?如何鉴别一个物体是否是磁体? 1.磁体的什么部位磁性最强?磁极间的作用规律是什么? 2.一根原来没有磁性的钢针与磁体摩擦后具有了磁性,这种现象叫做什么? 3.磁体间是通过什么发生作用的?磁场有方向吗?如果有,磁场中某一点的磁场方向是如何规定的? 活动二:用小磁针探究磁体周围的磁场 【观察】 1.将玻璃板平分别放在不同磁体上,再将铁屑均匀地撒在玻璃板上,轻敲玻璃,观察铁屑的分布情况,把你所看到的铁屑分布形状在下面对应的磁体上画出。 2.在玻璃板上放些小磁针,观察小磁针的指向分布情况,比较铁屑与小磁针的指向分布情况可知:小磁针的指向分布与所在位置铁屑分布的切线方向是(一致/不一致)的。

【思考交流】 1.铁屑在磁场中的分布为何很有规律? 铁屑在磁体周围分布很有规律说明磁体周围的磁场具有一定的规律性,铁屑在磁场中被成一个个小磁针,从而在磁场中地排列起来。 2.铁屑在不同磁体周围分布形状不同,说明了什么? 铁屑在不同磁体周围分布形状不同,说明不同磁体的磁场分布(是/不是)相同的。 【自我完善】从铁屑有磁场中的排列情况可以看出,铁屑的分布好似许多条曲线,从你画出的曲线可以形象地反映磁场的分布情况,如果还能从你的曲线上反映出小磁针受磁场作用时其N极所指的方向,那就更好了,你认为在你的图上作怎样的补充和完善就可以呢? 信息快递:我们可以在根据铁屑分布情况画出的曲线上,再按小磁针N极所指的方向,在该处曲线标上箭头,就可以形象地描述磁场了,这样的曲线物理学上叫做磁感线。但应当注意,磁感线是用来描述磁场的一些假想的曲线,实际上并不存在。 【理论应用】根据条形磁体、蹄形磁体周围的铁屑分布情况,在下面画出他们周围的磁感线,再跟课本图对照。 【深入观察】 1.认真观察条形磁体、蹄形磁体周围的铁屑分布情况,可以发现:磁场越强的地方(两极),磁感线分布越(密/疏);磁场越弱的地方,磁感线分布越(密/疏)。 2.磁体外面磁感线的方向总是从磁体的极出发回到磁体的极。磁感线上某点的切线方向表示该点的磁场方向。 活动三:读一读课本的“地球的磁场”并完成填空。 1.水平放置、能自由转动的小磁针之所以在地表面指向南北,是因为它受到作用的缘故。 2.叫做地磁场,地磁场的北极在地理极附近,地磁场的南极在地理极附近。 3.地磁场的两极和地理两极(是/不是)重合的,我国宋代学者是最早发现这一事实(磁偏角)的人。

1.2磁场典型例题.

磁场典型例题 类型题■ 分析求解磁感强度 磁感强度B 是磁场中的重要概念,求解磁感强度的方法一般有:定义式法、矢量叠加法等。 【例题1】如图中所示,电流从 A 点分两路通过对称的环形分路汇合于 B 点,在环形分路的中心 0处的 磁感强度( ) A. 垂直环形分路所在平面,且指向“纸内”。 B. 垂直环形分路所在平面,且指向“纸外”。 C. 在环形分路所在平面内指向 B 。 D. 磁感强度为零。 【例题2】电视机显象管的偏转线圈示意图如图所示,某时刻电流方向如图所示。则环心 向为( ) A .向下 B .向上 C.垂直纸面向里 D .垂直纸面向外 【例题3】安培秤如图所示,它的一臂下面挂有一个矩形线圈,线圈共有 N 匝,它的下部悬在均匀磁场 B 内,下边一段长为 L ,它与B 垂直。当线圈的导线中通有电流 I 时,调节砝码使两臂达到平衡;然后使电 流反向,这时需要在一臂上加质量为 m 的砝码,才能使两臂再达到平衡。求磁感强度 B 的大小。 专业、专心、成就学生梦想 个性化辅导学案 0处的磁场方

判别物体在安培力作用下的运动方向,常用方法有以下四种: 1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安 培力方向,从而判出整段电流所受合力方向,最后确定运动方向。 2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置 从而确定运动方向。 3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成 很多的环形电流来分析。 4、推论分析法: ⑴ 两电流相互平行时无转动趋势,方向相同相互吸引,方向相反相互排斥; (2)两 电 流不平行时有转动到相互平行且方向相同的趋势。 【例题1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可 以自由移动,当导线通过电流 I 时,导线的运动情况是( )(从上往下看) (如转过90° )后再判所受安培力方向 , A .顺时针方向转动,同时下降 B ?顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D .逆时针方向转动,同时上升 【例题2】如图所示,两平行光滑导轨相距为 L=20cm 金属棒MN 的质量为m=10g, 电阻R=8Q ,匀强磁场磁感应强度 B 方向竖直向下,大小为 B=0.8T ,电源电动势为 E=10V,内阻r=1 Q 。当电键S 闭合时,MN 处于平衡,求变阻器 R1的取值为多少?(设 0 =45°) 【例题3】长L=60cm 质量为m=6.0X 10-2 kg ,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁 感强度为B=0.4T ,方向垂直纸面向里的匀强磁场中, 如图8所示,若不计弹簧重力,问⑴ 要使弹簧不伸长, 金属棒中电流的大小和方向如何 ?(2)如在金属中通入自左向右、 大小为I=0.2A 的电流,金属棒下降X 1=1cm 若通入金属棒中的电流仍为 0.2A ,但方向相反,这时金属棒下降了多少 XS 分析导体在安培力作用下的运动 | N l S B

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

带电粒子在磁场与复合场中的运动

带电粒子在磁场以及复合场中的运动专题复习 第一部分 带电粒子在磁场中运动 一、在磁场中运动的类型: (1)进入有一半无边界磁场 (2)进入圆形边界磁场 (3)进入矩形边界磁场 (4)带电粒子在正方形磁场中的运动 (5)在环形磁场中的运动 (6)带电粒子在有“圆孔”的磁场中运动 (1)垂直进入 (2)有角度进入 O B S V θ P 图1 M N O , L A O 图2 P B A B d V V 300 O 图3 l l r 1 O V +q V 图4 a b c d S o 图6 图5

例1.如图(参见上表格右边图)所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面向里,磁感强度为B .一带负电的粒子(质量为m 、电荷量为q )以速度v 0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.求: (1)该粒子射出磁场的位置 (2)该粒子在磁场中运动的时间.(粒子所受重力不计) 解题关键:画出运动轨迹右图所示 答案: 带电粒子的半无界磁场中的运动问题在高考试题中多次出现:如99年全国高考物理试题第24题、2001年全国高考理科综合试题第30题等。 三、带电粒子在圆形磁场中的运动 例2.如图所示,在半径为R 的圆形区域内,存在磁感应强为B ,方向垂直纸面向里的匀强磁场。a 、b 、c 三点将圆周等分,三对间距为d 的平行金属板通过三点分别与圆相切,切点处有小孔与磁场相通,板间电压均为U 。一个质量为m ,电量为+q 的粒子从s 点由静止开始运动,经过一段时间又回到s 点。不计重力,试求: (1)电压U 和磁感应强度B 应满足什么关系? (2)粒子从s 点出发后,第一次回到s 点所经历的时间。 答案: qB m T t qB mv ) (2222)2() 0,sin 2)(1(0θππθπθ -=?-=-qB m qU m d t m R qB U π+ ==26)2.....(..........23)1(2 2O B S

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

中考物理试题分类汇编专题29磁体与磁场含解析(附2套中考模拟卷)

专题29 磁体与磁场 一.选择题(共14小题) 1.(2018?湘西州)下列物体能被磁铁吸引的是() A.橡皮擦B.塑料三角板C.木炭 D.铁钉 【分析】具有吸引铁、钴、镍等物质的性质的物体叫磁体。 【解答】解:磁铁是具有磁性的物体,只能吸引铁、钴、镍等金属材料,不能吸引其它金属及橡皮、塑料和木材。 故选:D。 2.(2018?桂林)小关在探究磁现象的活动中能够实现的是() A.用小磁针吸起铜块或铝块 B.用放大镜能看到磁铁周围的磁感线 C.用磁铁吸起铜导线制成的通有电流的轻质螺线管 D.把小磁针放在磁铁周围的任何位置,静止后小磁针的北极都指向地理北极 【分析】①物体能够吸引铁、钴、镍的性质叫磁性,具有磁性的物体叫做磁体。磁体周围存在着磁场,磁场对放入磁场中的磁体有力的作用,为了描述磁场的性质而引入了有方向的曲线,称为磁感线; ②通电导体周围存在磁场。 【解答】解:A、小磁针具有磁性,只能吸引铁、钴、镍等金属,不能吸引铜或铝。故A不可能实现; B、磁感线实际不存在,所以用放大镜也不能看到磁铁周围的磁感线。故B不可能实现; C、铜导线制成的轻质螺线管通过电流时,周围会产生磁场。所以用磁铁能够吸起铜导线制成的通有电流的轻质螺线管。故C可能实现; D、磁体周围存在磁场,把小磁针放在磁铁周围的任何位置,静止后小磁针的北极都指向此磁铁的S极。故D不可能实现。 故选:C。 3.(2018?自贡)自贡一学生利用手中的条形磁体做了以下实验,其中结论正确的是() A.同名磁极互吸引 B.条形磁体能够吸引小铁钉 C.将条形磁体用细线悬挂起来,当它在水平面静止时北极会指向地理南方 D.条形磁体与小磁针之间隔了一层薄玻璃后就没有相互作用了 【分析】(1)根据磁极间的相互作用规律;

【推荐】2019年高考物理试题分项解析专题10磁场第01期.doc

专题10 磁场 一.选择题 1.【2019武汉联考】如图所示,PQ 、MN 是放置在水平面内的光滑导轨,GH 是长度为L 、电阻为r 的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k 。导体棒处在方向向下、磁感应强度为B 的匀强磁场中。图中E 是电动势为E 、内阻不计的直流电源,电容器的电容为C 。闭合开关,待电路稳定后,下列说法正确的是( ) A .导体棒中电流为12E R R r ++ B .轻弹簧的长度增加1() BLE k R r + C .轻弹簧的长度减少 2()BLE k R r + D .电容器带电量为 1() ECr k R r + 【参考答案】D 2.(2019黑龙江齐齐哈尔五校联考)如图所示,长方形ABCD 内有垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,边长,E 、F 分别为AD 、BC 边的中点,在A 处有一粒子源,可以沿AB 方向射出不同速率的带正电的同种粒子,粒子的质量为m ,电量为q ,不计粒子的重力,对于粒子在磁场中的偏转,下列说法正确的是

A. 粒子可能从C点射出磁场 B. 粒子在磁场中的运动时间可能为 C. 从D点射出的粒子在磁场中运动的时间是从E点射出粒子在磁场中运动时间的2倍 D. 从E点射出的粒子在磁场中运动的时间是从F点射出粒子在磁场中运动时间的2倍 【参考答案】D 粒子在磁场中做圆周运动的周期:,粒子从AD边离开磁场时在磁场中的运动时间: ,粒子恰好从BC中点离开磁场时的运动时间:,粒子从BF间离开磁场时的运动时间:,由此可知,粒子在磁场在的运动时间为:、或、或,由于,粒子在磁场中的运动时间不可能为,故B错误; 从D点射出的粒子在磁场中运动的时间与从E点射出粒子在磁场中运动时间相等,都为,故C错误; 从E点射出的粒子在磁场中运动的时间为,F点是BC的中点,从F点射出粒子在磁场中运动时间是,故从E点射出的粒子在磁场中运动的时间一定是从F点射出粒子在磁场中运动时间的2倍,故D正确。

高考专题磁场和复合场

高考专题:磁场和复合场 【考纲要求】 1.掌握直线电流、环形电流、通电螺线管、条形磁铁、蹄形磁铁等所产生的磁场分布情况,能灵活应用安培定则解答有关问题。 2.深刻理解磁感应强度、磁感线、磁通量的物理含义。 3.灵活应用左手定则和安培力计算公式定量解决有关磁场对电流作用力的问题(限B 和I平行和垂直两类)。 4.熟练掌握洛仑兹力及其变化规律,灵活解决各类带电粒子在磁场及其它复合场中的运动类问题(即与平行和垂直两类)。 【知识结构】 【热点导析】 1.磁场的主要内容 磁场的主要内容可概括成一个工具(磁感线)、两个物理量(磁感强度和磁通量)、两个定则(安培定则和左手定则),两个力(安培力、洛仑兹力)。其中带电粒子在有边界和无边界磁场区域中的运动及其规律、带电粒子在复合场中的运动及其规律是本单元内容的重点和难点。 2.磁场和电场都是客观存在的一种特殊物质,它们之间更多地存在着比较和区别 磁场存在于运动电荷周围,电场存在于电荷周围;磁场只对运动电荷(含电流和磁铁)有作用,电场对电荷有作用;用磁极受力定义方向、电流无受力定义大小,用检验电 荷+q受力来定义大小和方向;磁感线闭合,电场线不闭合。电磁场可共存于同一空间。 3.有关方向定则 通电直导线、圆形电流和螺线管用周围磁场分布情况均用安培定则来判定,通电直导线、

圆形电流和螺线管等受力方向用左手定则来判定。不能简单理解为B和安培定则,求力用 F、V各量间因果关系辩清晰,I为原因,为产生的结果的左手定则,而应把、、 B 用安培定则;、为原因,F B(或受力后运动)为结果的,用左手定则,运动为原因、感应电流为结果的用右手定则。 判定由和I(或运动电荷)而导致的F B(f B)方向时,可用左手定则,且B(f B)的方向在空间立体上一定垂直和I两线(与两线)决定的平面,在此基础上再用左手定则判定确切方向更易正确解答。 4.磁通量和磁力矩 单匝线圈和n匝线圈放在垂直线圈平面的匀强磁场中,磁通量场为B·S(B为磁感强度、S为线圈所围面积)。若在线圈中通有电流I,则在磁场中转过90°后所受磁力矩分别为BIS 和nBIS。 5.带电粒子在复合场中受力及运动 首先带电粒子在复合场中运动规律广泛应用于近代物理的许多实验装置中,如回旋加速器、质谱仪、磁流体发电机、电磁流量计、速度选择器等。 其次,应明确:研究复合场中带电粒子的运动规律首先要分析初速度和运动过程中加速度(受力)情况。在受力分析的过程中应将重力(是否考虑)、电场力、洛仑兹力等作为力学中按性质来命名的力首先进行讨论。 再次,应明确:不管带电粒子做的是圆周运动还是一般曲线运动,洛仑兹力永远不做功,但洛仑兹力的变化与否可间接影响到重力、电场力等力的做功情况。 最后,因为电磁学物理量及单位比较复杂,而且数值往往相差悬殊,因此计算有关结果时,应先进行字母运算,简化后最后再代入数据。也可这样讲,力学问题的基本思路和求解方法在本单元中广泛适用。 【典型例析】 例1 如图5-10-1所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直于纸面向外运动,可以() A.将a、c端接在电源正极,b、d端接在电源负极 B.将b、d端接在电源正极,a、c端接在电源负极 C.将a、d端接在电源正极,b、c端在电源负极 D.将a、c端接在交流电源的一端,b、d接在交流电源的另一端

《磁体与磁场》典型习题

一、磁体与磁场 选择题: 1、实验表明:磁体能吸引一元硬币,对这种现象解释正确的是() A、硬币一定是铁做的,因为磁体能吸引铁 B、硬币一定是铝做的,因为磁体能吸引铝 C、磁体的磁性越强,能吸引的物质种类越多 D、硬币中含有磁性材料,磁化后能被吸引 2、把铁棒甲的一端靠近铁棒乙的中部,发现两者吸引,而把乙的一端靠近甲的中部时,两者互不吸引,则() A、甲有磁性,乙无磁性 B、甲无磁性,乙有磁性 C、甲、乙都有磁性 D、甲、乙都无磁性 3、判断两根钢条甲和乙是否有磁性时,可将它们的一端靠近小磁针的N极或S 极.当钢条甲靠近时,小磁针自动远离;当钢条乙靠近时,小磁针自动接近.由此可知() A、两根钢条均有磁性 B、两根钢条均无磁性 C、钢条甲一定有磁性,钢条乙一定无磁性 D、钢条甲一定有磁性,钢条乙可能有磁性 4、甲、乙是两根外形完全相同的钢棒,乙棒能吸引甲棒的中间,由此可知() A、甲、乙一定都有磁性 B、甲、乙一定都没有磁性 C、甲一定没有磁性,乙一定有磁性 D、乙一定有磁性,甲可能有磁性,也可能没有磁性 5、一位科学家在野外考查时,发现随身携带的能自由转动的小磁针静止在竖直方向,且N极朝下,则他所处的位置是() A、赤道附近 B、地理南极附近

C、地理北极附近 D、一座山顶上 6、下列关于磁场和磁感线的说法正确的是() A、磁感线是磁场中客观存在的线,无磁感线的区域不存在磁场 B、地磁场的磁感线是从地球的地理北极出发到地理南极 C、在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向 D、磁铁周围的磁感线都是从磁铁的南极出来,回到磁铁的北极

参考答案与解析 1、D 2、A 3、D 4、D 5、C 6、C 解析 1、分析:一元硬币为钢芯镀镍,钢和镍都是磁性材料,放在磁体的周围能够被磁化而获得磁性,能够和磁体相互吸引。选项D正确。 2、分析:磁体具有磁性,能够吸引钢铁一类的物质.磁体各个部分的磁性强弱不同—,条形磁体两端的磁性最强,叫做磁极,中间的磁性最弱,几乎没有.当铁棒甲的一端靠近铁棒乙的中部,两者互相吸引,说明甲是磁体,具有磁性;把铁棒乙的一端靠近铁棒甲的中部,两者不能相互吸引,说明乙不是磁体,没有磁性.由以上分析可知,选项A正确. 3、分析:磁体具有磁性,能够吸引钢铁一类的物质,异名磁极也可以相互吸引,只有同名磁极之间相互排斥.把钢条甲的一端靠近小磁针的N极或S极,小磁针自动远离,说明钢条甲和小磁针相互靠近的一端是同名磁极,钢条甲一定具有磁性;当钢条乙靠近小磁针的N极或S极时,小磁针自动接近,说明钢条乙和小磁针相互靠近的一端互相吸引,钢条乙可能没有磁性,也可能具有磁性,若有磁性,钢条乙和小磁针相互靠近的一端是异名磁极。根据上述分析可知,选项D 正确. 4、分析:磁体有磁性,且在磁极处磁性最强,所以乙一定具有磁性,它的磁极对正甲的中间,不论甲是不是磁铁,都会被乙的磁极吸引,所以正确答案选D。 5、分析:根据地磁场的特点,小磁针静止时应该是S极指向地磁的北极,N极指向地磁的南极,而现在小磁针的N极向下,说明所处的位置正好是地磁的S 极,而地磁的S极在地理的北极附近,所以应选C。 6、分析:磁感线是假想的,是为了研究方便而引入的。答案:C

高中物理专题:电场磁场与复合场

电场、磁场及复合场 【典型例题】 1.空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示.一带电粒子+q 以初速度v 0垂直 于电场和磁场射入,则粒子在场中的运动情况可能是 ( ) A .沿初速度方向做匀速运动 B .在纸平面内沿逆时针方向做匀速圆周运动 C .在纸平面内做轨迹向下弯曲的匀变速曲线运动 D .初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动 2.如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是 ( ) A .液滴带负电 B .滴在C 点动能最大 C .若液滴所受空气阻力不计,则机械能守恒 D .液滴在C 点机械能最大 3.如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是 ( ) A .始终作匀速运动 B .先作加速运动,后作匀速运动 C .先作减速运动,后作匀速运动 D .先作减速运动,最后静止在杆上 4.如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀 强磁场B 中,从P 点离开该区域,此时侧向位移为s (重力不计),则 ( ) A .粒子在P 点所受的磁场力可能比电场力大 B .粒子的加速度为(qE – qv 0B )/m C .粒子在P 点的速率为m qsE v 220 D .粒子在P 点的动能为mv 02 /2 – qsE 5.如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂 直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则 ( ) A .物体的运动由v 减小到零所用的时间等于mv /μ(mg+qvB ) B .物体的运动由v 减小到零所用的时间小于mv /μ(mg+qvB ) C .若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动 D .若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动 6.如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电– q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 . 7.如图所示,质量为1g 的小环带4×10-4 C 正电,套在长直的绝缘杆上,两者间的动摩擦 因数μ = 0.2,将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在的竖 直平面与磁场垂直,杆与电场夹角为37°,若E = 10N/C ,B = 0.5T ,小环从静止释放,求: ⑴ 当小环加速度最大时,环的速度和加速度; ⑵ 当小环速度最大时,环的速度和加速度. 8.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中,已知小球所受的电场力与重力的大小相等.磁场的磁感强度为B ,求: ⑴ 在环顶端处无初速释放小球,小球运动过程中所受的最大磁场力; ⑵ 若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件? 9.如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B =1T ,匀强电场方向水平向右,场强E = 103N/C .一带正电的微粒质量m = 2×10-6kg ,电量q = 2×10-6 C ,在此空间恰好作直线运动,问: ⑴ 带电微粒运动速度的大小和方向怎样? ⑵ 若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点?(设PQ 连线与电场方向平行) 10.如图所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里 的匀强磁场.一电子从两板左侧以速度v 0沿金属板方向射入,当两板间磁场的磁感强度为B 1时,电子从a 点射出两板,射出时的速度为2v 0.当两板间磁场的磁感强度为B 2时,电子从b 点射出时的侧移量仅为从a 点射出时侧移量的1/4,求电子从b 点射出的速率. 11.如图所示,在一个同时存在匀强磁场和匀强电场的空间,有一个质量为m 的带电微粒,系于长为 l 的细丝线的一端,细丝线另一端固定于O 点.带电微粒以角速度ω在水平面内作匀速圆周运动,此时细线与竖直方向成30°角,且细线中张力为零,电场强度为E ,方向竖直向上. ⑴ 求微粒所带电荷的种类和电量; ⑵ 问空间的磁场方向和磁感强度B 的大小多大? ⑶ 如突然撤去磁场,则带电粒子将作怎样的运动?线中的张力是多大?

高二物理 磁场 磁感线 典型例题解析

磁场磁感线典型例题解析 【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针 B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针 C.可能是小磁针正上方有电子流自南向北通过 D.可能是小磁针正上方有电子流自北向南水平通过 解答:正确的应选C. 点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键. 【例2】下列关于磁感线的说法正确的是 [ ] A.磁感线上各点的切线方向就是该点的磁场方向 B.磁场中任意两条磁感线均不可相交 C.铁屑在磁场中的分布所形成的曲线就是磁感线 D.磁感线总是从磁体的N极出发指向磁体的S极 解答:正确的应选AB. 点拨:对磁感线概念的理解和磁感线特点的掌握是关键. 【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向. 点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.

点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向. 跟踪反馈 1.下列说法正确的是 [ ] A.磁感线从磁体的N极出发,终止于磁体的S极 B.磁感线可以表示磁场的方向和强弱 C.磁铁能产生磁场,电流也能产生磁场 D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极 2.首先发现电流磁效应的科学家是 [ ] A.安培 B.奥斯特 C.库仑 D.麦克斯韦 3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A 的磁场方向应是 [ ] A.沿x轴的正向 B.沿x轴的负向 C.沿z轴的正向

相关主题
文本预览
相关文档 最新文档