当前位置:文档之家› 汽车荷载与轮压

汽车荷载与轮压

汽车荷载与轮压
汽车荷载与轮压

对荷载规范第4.1.1条的理解与应用(建筑结构.技术通讯2006.5) (2007-08-01 19:41:13)

对荷载规范第4.1.1条的理解与应用

(注意:本文上传过程图及符号丢失,请核查原文)

一规范的规定

见建筑结构荷载规范GB 50009-2001(以下简称荷载规范)第4.1.1条

二对规范规定的理解

荷载规范表4.1.1可从以下三方面理解:

1.表4.1.1中的均布活荷载为作用在楼面上的荷载,需要说明的是:表4.1.1中的所有荷载均为直接作用在楼面上的荷载,仅可用于楼面板设计计算,用于楼面梁柱墙及基础计算时的荷载需按荷载规范第4.1.2条要求折减

2.符合表4.1.1注3规定时,按表中数值取用

3.不符合表4.1.1注3规定(如汽车总重量大于300kN等)时,按结构效应等效原则,将车轮的局部荷载换算为等效均布荷载

三结构设计的相关问题

1.车辆荷载尤其是消防车对楼面的荷载作用,主要应考虑车辆满载重量及汽车轮压的动荷载效应,动力系数与楼面覆土厚度等因素有关,见表4.1.1-1

表4.1.1-1 汽车轮压荷载传至楼板和梁的动力系数

覆土厚度(m)0.250.300.350.400.450.500.550.600.65≥0.7动力系数 1.30 1.27 1.24 1.20 1.17 1.14 1.10 1.07 1.04 1.0

注:覆土厚度不为表中数值时,其动力系数可按线性内插法确定

2.表4.1.1中第8项实际上是汽车轮压直接作用在楼板上的等效均布活荷载,对于跨度较大的楼板还应考虑多辆汽车的共同作用

1)对客车荷载,不能将客车车库的楼面等效荷载(表4.1.1中第8项数值)与其楼面实际荷载混为一谈,当楼板的形式及支承情况不同时楼面等效荷载的计算数值也不相同等效荷载数值的不同不是楼面实际荷载的不同,而是在相同楼面荷载(客车荷载)下,不同形式楼板按跨中弯矩相等折算出的等效荷载数值不同,因此,结构设计中将客车荷载按规范的等效荷载数值限制是不恰当的,且容易得出同一客车停车库(场)有两种不同荷载限值的错误结论;对客车车库的荷载应以限定客车的种类为宜,如限定停放载人少于9人的客车(每一车位最小范围2.5m×4.5m)等;

2)对消防车荷载,若不考虑板顶的覆土厚度对消防车轮压的影响而统一取用表中数值,当地下室顶板顶面覆土厚度较厚时,显然是不合适的,现举例说明之

例如:某工程纯地下室(顶板为板跨小于2m的单向板)顶面为覆土厚度3m的绿化地面,消防车(30t级)道贯穿其中,覆土已将消防车轮压局部荷载基本扩散为均布荷载,由表4.1.1-3可知:30t消防车在车身平面内的平均荷载仅为11.25kN/m2,显然消防车的任何排列方式均不可能达到表4.1.1中35 kN/m2的荷载数值

3.荷载规范条文说明中指出,对20~30t的消防车,可按最大轮压为60kN作用在0.6m×0.2m 的局部面积上的条件确定,为此,应按全国民用建筑工程设计技术措施(结构)(以下简称结构技术措施)图2.3.2和图2.3.3确定汽车纵横方向的排列间距

表4.1.1-2 各级汽车荷载的主要技术指标

汽车-10级汽车-超10级汽车-20级汽车-超20级主要指标单位

主车重车主车重车主车重车主车重车

一辆汽车总重力kN100150200300550

一行汽车车队中重

辆—1111车数量

前轴重力kN3050706030

中轴重力kN————2×120

后轴重力kN701001302×1202×140

轴距m 4.0 4.0 4.0 4.0+1.43+1.4+7+1.4轮距m 1.8 1.8 1.8 1.8 1.8

前轮着地宽度及长

m0.25×0.200.25×0.200.3×0.20.3×0.20.3×0.2度

中、后轮着地宽度及

m0.5×0.20.5×0.20.6×0.20.6×0.20.6×0.2长度

车辆外形尺寸(长×

m7.0×2.57.0×2.57.0×2.58.0×2.515.0×2.5宽)

车身投影范围的平

kN/m2 5.728.5711.4315.0014.67均重量

4.各类汽车在其投影面积范围(考虑汽车之间的纵向及横向最小间距均为600mm)内的平均荷重见表4.1.1-3

表4.1.1-3 覆土厚度足够时消防车的荷载

汽车类型100kN汽车150kN汽车200kN汽车300kN汽车550kN汽车

荷载(kN/m2) 4.25 6.348.5011.2511.38

5.目前结构设计计算中,出于对结构抗震设计的考虑,地下室承受的土压力一般均按静止土压力计算,土压力系数值一般取0.5

四设计建议

1.对于直接承受消防车荷载的结构楼面(屋面)板,当符合荷载规范要求时,可进行简化计算,即直接采用表4.1.1中均布活荷载数值;当不符合时,应计算汽车轮压的局部荷载效应

2.楼板和梁的设计计算中,应考虑汽车轮压的动力系数,可按表4.1.1-1考虑顶板板顶以上覆土对汽车轮压动力系数的降低作用

3.考虑汽车轮压压力扩散的计算方法

1)在汽车荷载作用下,管沟壁或地下室外墙的侧向压力如图4.1.1-1;

图4.1.1-1管沟壁或地下室外墙的侧向土压力

图4.1.1-2 不考虑轮压扩散时的土压力图 4.1.1-3考虑轮压扩散时的土压力

(= )(<)

当上端自由下端固定时,在宽度范围内,墙底总弯矩:

(4.1.1-1)

当上端简支下端固定时,在宽度范围内,墙底总弯矩:

(4.1.1-2)

式中汽车荷载在深度为及处的水平侧压力;

汽车荷载在深度为及处的水平侧压力分布宽度,其值=轮宽+两侧各按300角向下扩散的宽度

表4.1.1-4 主动土压力系数

土的内摩擦角150200250300350400450

0.588 0.490 0.406 0.333 0.270 0.217 0.171

2)依据城市供热管网结构设计规范CJJ 105-2005的规定,轮压在混凝土结构中的扩散按单边1:1考虑,即相当于取图4.1.1-1中扩散角=450;轮压在土中的扩散按深度每增加1m,单边扩散宽度增加0.7m考虑,即相当于取图4.1.1-1中扩散角=350

(4)主动土压力系数见表4.1.1-5;静止土压力系数取0.5

(5)静止土压力系数随土体密实度固结程度的增加而增加,对正常固结土取值见表4.1.4-5

表4.1.1-5 静止土压力系数

土类坚硬土硬—可塑粘性土粉质粘土、砂

可—软塑粘性土软塑粘性土流塑粘性土

0.2~0.40.4~0.50.5~0.60.6~0.750.75~0.8

自然状态下的土体内水平向有效应力,可以认为与静止土压力相等,土体侧向变形会改变其水平应力状态,最终的水平应力,随着变形的大小和方向而呈现出主动极限平衡和被动极限平衡两种极限状态事实上,地下室的施工工艺决定了其周围的土只能是回填土,应取用相应的主动土压力系数,而静止土压力一般可用在不允许有位移的支护结构,并不适合用于地下室外墙或挡土墙的设计计算中

现阶段地下室外墙或挡土墙的设计计算,可结合设计现状进行适当的调整,即考虑地震往复作用对接近地表之地下室土压力的增大作用,建议地下室顶部土压力可按静止土压力系数计算,而地下室底部土压力系数可按主动土压力系数计算(见图4.1.1-3)而在挡土墙的裂缝宽度计算中,则地下室的土压力均宜按表4.1.1-5取用主动土压力系数(见图4.1.1-4)

图4.1.1-3 承载能力极限状态计算时的土压力取值图4.1.1-4 正常使用极限状态计算时的土压力取值

汽车荷载等级教学文案

汽车荷载等级

6 汽车及人群荷载 6.0.1 《标准》(97)中的车辆荷载在形式上为四个等级,即汽车—超20级、挂车— 120;汽车—20级、挂车—100;汽车—15级、挂车—80;汽车—10级、履带— 50。同时规定,新建公路桥涵的设计不采用汽车—15级、挂车—80荷载,只是为便于国家统计工作的连续性而保留这一级荷载。 《标准》(97)所规定的以车队为计算荷载图式的车辆荷载标准,是设计公路 桥梁及其它构造物所规定的计算荷载。为了保证桥梁的安全储备和使用寿命, 对桥上实际行驶的车辆轴重和总重必须予以严格限制,一般情况下,不允许采 用设计的极限值。因此,设计轴荷载多大,桥上实际行驶车辆的轴荷载也允许 多大,这是不对的,车辆设计荷载与车辆轴载、总载限制是两个不同的概念, 不可混为一谈。世界上有一些国家制定了车辆轴载限值标准。他们在制定设计 车辆荷载标准及车辆轴重限值时,除了考虑本国的国民经济发展水平外,同时 考虑了采用重型汽车提高轴重限值而获得的运输经济效益与相应增加的公路基 本建设投资及原有公路网的补强改造费用之间的合理平衡。由于提高轴重对公 路投资的影响十分惊人,长期以来,各国政府都采用了极其慎重的态度。表 6.0.1-1列出了几个经济较发达国家车辆荷载设计值和允许轴载值,表6.0.1-2列 举了一些国家和地区的轴载限值。

现行公路桥涵结构设计用车辆荷载标准模式是根据我国建国以后公路上交通荷载的实际情况,经过相当长时期的分析、研究和修正确定的。经过几十年的修订、完善,其分级逐步完善、科学、合理,基本适应了我国公路桥涵结构发展的需求。

1972年,在修订《标准》时,对原车辆荷载标准进行了一次检查,一方面向用车单位作调查,另一方面对按标准设计的桥梁通过一些重型卡车的能力作了计算比较。调查及计算分析的结果是:公路上最常行驶的车辆,解放牌一级总重不超过100kN,改装后的黄河牌和一些越野车总重不超过300kN,这些都不超过或略超过标准车加重车,对较重的车要加以验算。 鉴于车辆总重和轴重日趋增大,轴数也日渐增多,特别是发展大型集装箱运输后,通往集装箱港口码头的公路桥涵需考虑集装箱半挂车能否正常通行,而从一些计算资料可以看出,有些较重的卡车、自卸车、吊车和半挂、全挂车,在按汽车—20级、挂车—100设计的桥梁上还不能自由通行,因此,有必要在原有的车辆荷载标准中,增加一个较高的等级。 《标准》(81)确定,增加荷载等级汽车—超20级时,考虑了1978年京塘高速公路初步设计提出的两重车列形式,一是200kN车队或300kN车队插入一辆550kN半挂车;二是原汽车—20级乘1.5倍,间距不变。后者虽然便于记忆和计算使用,但实际上并无300kN双轴车和450kN三轴车的车型,因此选定用200kN 车队插入一辆550kN半挂车,车辆间距仍取15m,加重车前后的间距取10 m。在缺乏更多资料和科研成果的情况下,标准推荐暂用550kN半挂车插入200kN 车队的形式作为新增加的车辆荷载等级标准即汽车—超20级。 为了保证桥涵的安全,对按荷载标准设计的桥梁的极限通过能力进行了计算。在制方《标准》(72)时曾对三个等级的荷载标准作过验算;制订《标准》(81)时,又检查了各级桥梁的极限通过能力,所用车辆除我国自己生产的车型外,也考虑了进口的车型。各国生产的普通载重卡车较重的是三轴车,而各国法定的车辆总重及轴重的限制,最大车重300kN左右,极个别超过300kN。载重更大的车辆则向半挂车发展。普通卡车有四轴的,其作用不比三轴大。同吨位卡车大多有长短车身之分,其轴距亦不同。验算通过能力时,选用了总重超过300kN或轴重超过120kN或重吨位轴距较短的车型。另外还选用了日渐增多的吊车,其重型四轴车可代表我国生产的双轴转向的四轴卡车。自卸车选用了载重120kN到320kN的各种车型。半挂车和全挂车取用载重150kN到500kN的各种车型。从验算结果看,上述车型通过汽车—15级桥梁的情况大体上比通过汽车—20级桥梁降低一级,即可以与标准车同时以单辆车慢行通过的只能单独通过、可以单独通过的只能单车慢车通过。 同时,又将在按汽车—20级荷载设计的桥梁上不易通过的重型车如Coles(柯尔斯)100t吊车、上海380(320kN自卸车)、汉阳960(500kN半挂车)及汉阳881全挂车等,与550kN半挂插入200kN车队作了比较,如以弯矩控制,跨径30m以下可与550kN半挂车队混行通过,跨径30m以上可单车通过,且都比汽车—20级通过情况为好。但是它与汽车—20集相比,级差不大,如跨径50m以下单向宽11.7m的简支梁桥、汽车—超20级的弯矩只比汽车—20级增大12%,剪力平均增大17%;对净-7(m)的双车道桥,则分别增大3.4%和5.9%,似乎不足以形成一级,整个车辆荷载标准如何分级有待于进一步的研究。

汽车等效均布荷载的简化计算(可编辑)

汽车等效均布荷载的简化计算 Building Structure 设计交流 汽车等效均布荷载的简化计算 朱炳寅/中国建筑设计研究院 汽车(消防车)轮压以其荷载数值大、作用位置不确定够厚,轮压扩散足够充分时,汽车轮压荷载可按均布荷载考 及一般作用时间较短而倍受结构设计者关注。结构设计的关虑。当覆土层厚度足够时,可按汽车在合理投影面积范围内 键问题在于汽车轮压等效均布荷载数值的确定。轮压荷载作的平均荷重计算汽车的轮压荷载,见表2。 用位置的不确定性,给等效均布荷载的确定带来了一定难覆土厚度足够时消防车的荷载表2 度,一般情况下,要精确计算轮压的等效均布荷载是比较困汽车类型 100kN 150kN 200kN 300kN 550kN 2 难的,且从工程设计角度看,也没有必要。“等效”和“折荷载/kN/m 4.3 6.3 8.5 11.3 11.4 覆土厚度最小值hmin/m 2.5 2.4 2.4 2.3 2.6 减”的本质都是“近似”,且其次数越多,误差就越大。本 文推荐满足工程设计精度需要的汽车轮压等效均布荷载的

足够的覆土厚度指:汽车轮压通过土层的扩散、交替和 简化计算方法,供读者参考。重叠,达到在某一平面近似均匀分布时的覆土层厚度。足够 1 影响等效均布荷载的主要因素的覆土厚度数值应根据工程经验确定,当无可靠设计经验 1.1跨度时,可按后轴轮压的扩散面积不小于按荷重比例划分的汽车 等效均布荷载的数值与构件的跨度有直接的关系,在相投影面积(图 1)确定相应的覆土厚度为 hmin ,当实际覆土 同等级的汽车轮压作用下,板的跨度越小,则等效均布荷载厚度 h≥hmin 时,可认为覆土厚度足够。 的数值越大;而板的跨度越大,则等效均布荷载数值越小。以300kN级汽车为例(图1): 结构设计中应注意“等效均布荷载”及“效应相等”的特点,考虑汽车合理间距(每侧600mm)后汽车的投影面积为 (8+0.6 )×(2.5+0.6 )=26.66m2 汽车轮压荷载具有荷载作用位置变化的特性,是移动的活荷 载,其最大效应把握困难,且效应类型(弯矩、剪力等)不后轴轮压占全车重量的比例为 240/300=0.8 同,等效均布荷载的数值也不相同,等效的过程就是一次近取后轴轮压的扩散面积为 0.8×26.66=21.33m2 似的过程。根据后轴轮压的扩散面积不小于按荷重比例划分的汽 1.2 动力系数车投影面积有:

汽车荷载等级

6 汽车及人群荷载 6.0.1 《标准》(97)中的车辆荷载在形式上为四个等级,即汽车—超20级、挂车—120; 汽车—20级、挂车—100;汽车—15级、挂车—80;汽车—10级、履带—50。 同时规定,新建公路桥涵的设计不采用汽车—15级、挂车—80荷载,只是为便 于国家统计工作的连续性而保留这一级荷载。 《标准》(97)所规定的以车队为计算荷载图式的车辆荷载标准,是设计公路桥 梁及其它构造物所规定的计算荷载。为了保证桥梁的安全储备和使用寿命,对 桥上实际行驶的车辆轴重和总重必须予以严格限制,一般情况下,不允许采用 设计的极限值。因此,设计轴荷载多大,桥上实际行驶车辆的轴荷载也允许多 大,这是不对的,车辆设计荷载与车辆轴载、总载限制是两个不同的概念,不 可混为一谈。世界上有一些国家制定了车辆轴载限值标准。他们在制定设计车 辆荷载标准及车辆轴重限值时,除了考虑本国的国民经济发展水平外,同时考 虑了采用重型汽车提高轴重限值而获得的运输经济效益与相应增加的公路基本 建设投资及原有公路网的补强改造费用之间的合理平衡。由于提高轴重对公路 投资的影响十分惊人,长期以来,各国政府都采用了极其慎重的态度。表6.0.1-1 列出了几个经济较发达国家车辆荷载设计值和允许轴载值,表6.0.1-2列举了 一些国家和地区的轴载限值。

现行公路桥涵结构设计用车辆荷载标准模式是根据我国建国以后公路上交通荷载的实际情况,经过相当长时期的分析、研究和修正确定的。经过几十年的修订、完善,其分级逐步完善、科学、合理,基本适应了我国公路桥涵结构发展的需求。

1972年,在修订《标准》时,对原车辆荷载标准进行了一次检查,一方面向用车单位作调查,另一方面对按标准设计的桥梁通过一些重型卡车的能力作了计算比较。调查及计算分析的结果是:公路上最常行驶的车辆,解放牌一级总重不超过100kN,改装后的黄河牌和一些越野车总重不超过300kN,这些都不超过或略超过标准车加重车,对较重的车要加以验算。 鉴于车辆总重和轴重日趋增大,轴数也日渐增多,特别是发展大型集装箱运输后,通往集装箱港口码头的公路桥涵需考虑集装箱半挂车能否正常通行,而从一些计算资料可以看出,有些较重的卡车、自卸车、吊车和半挂、全挂车,在按汽车—20级、挂车—100设计的桥梁上还不能自由通行,因此,有必要在原有的车辆荷载标准中,增加一个较高的等级。 《标准》(81)确定,增加荷载等级汽车—超20级时,考虑了1978年京塘高速公路初步设计提出的两重车列形式,一是200kN车队或300kN车队插入一辆550kN 半挂车;二是原汽车—20级乘1.5倍,间距不变。后者虽然便于记忆和计算使用,但实际上并无300kN双轴车和450kN三轴车的车型,因此选定用200kN车队插入一辆550kN半挂车,车辆间距仍取15m,加重车前后的间距取10 m。在缺乏更多资料和科研成果的情况下,标准推荐暂用550kN半挂车插入200kN车队的形式作为新增加的车辆荷载等级标准即汽车—超20级。 为了保证桥涵的安全,对按荷载标准设计的桥梁的极限通过能力进行了计算。在制方《标准》(72)时曾对三个等级的荷载标准作过验算;制订《标准》(81)时,又检查了各级桥梁的极限通过能力,所用车辆除我国自己生产的车型外,也考虑了进口的车型。各国生产的普通载重卡车较重的是三轴车,而各国法定的车辆总重及轴重的限制,最大车重300kN左右,极个别超过300kN。载重更大的车辆则向半挂车发展。普通卡车有四轴的,其作用不比三轴大。同吨位卡车大多有长短车身之分,其轴距亦不同。验算通过能力时,选用了总重超过300kN或轴重超过120kN或重吨位轴距较短的车型。另外还选用了日渐增多的吊车,其重型四轴车可代表我国生产的双轴转向的四轴卡车。自卸车选用了载重120kN到320kN的各种车型。半挂车和全挂车取用载重150kN到500kN的各种车型。从验算结果看,上述车型通过汽车—15级桥梁的情况大体上比通过汽车—20级桥梁降低一级,即可以与标准车同时以单辆车慢行通过的只能单独通过、可以单独通过的只能单车慢车通过。 同时,又将在按汽车—20级荷载设计的桥梁上不易通过的重型车如Coles(柯尔斯)100t吊车、上海380(320kN自卸车)、汉阳960(500kN半挂车)及汉阳881全挂车等,与550kN半挂插入200kN车队作了比较,如以弯矩控制,跨径30m以下可与550kN半挂车队混行通过,跨径30m以上可单车通过,且都比汽车—20级通过情况为好。但是它与汽车—20集相比,级差不大,如跨径50m以下单向宽11.7m的简支梁桥、汽车—超20级的弯矩只比汽车—20级增大12%,剪力平均增大17%;对净-7(m)的双车道桥,则分别增大3.4%和5.9%,似乎不足以形成一级,整个车辆荷载标准如何分级有待于进一步的研究。

汽车通道(及停车库)的楼面活荷载标准值取值

汽车通道(及停车库)的楼面活荷载标准值取值 汽车通道的楼面活荷载取值与楼盖结构布置有关。 一、单向板楼盖(板跨不小于2m,即单向布置次梁,板的长边与短边之比》2.0), 计算板、次梁、主梁及墙、柱基础时,楼面活荷载应分别乘以不同的折减系数分 别计算。 1)计算板时,客车取4.0KN加;消防车取35.0KN/讥 2)计算次梁时,折减系数取0.8 ,即客车取0.8 X 4.0 = 3.2KN/ m2;消防车取0.8 X 35= 28KN/m 3)计算主梁时,折减系数取0.6,即客车取2.4KN/ m,消防车取21KN/m。 4)计算墙、柱和基础时,折减系数取0.5,即客车取2.0KN/ m,消防车取17.5KN/ m20 二、双向板楼盖(板跨不小于6m X 6m),此时通常无次梁。主梁和设计墙、柱、基础时,楼面活荷载应乘以折减系数0.8 o 1)计算板时,客车荷载取2.5KN/ m,消防车取20.0KN/ m。 2)计算主梁和设计墙、柱、基础时,客车荷载取 2.5 X 0.8 = 2.0KN/ m,消防车荷载取20.0 X 0.8 = 16.0KN/ m . 计算不同构件内力时汽车荷载标准值取值汇总表 三、应注意的几个问题 1 ?从上表可以看出,计算不同构件内力时,其楼面活载取值是不同的,应分别进行计算。 2. 按上表的汽车荷载标准值作为输入的楼面活荷载时,仅适合单层楼盖的计算, 不应再按程序默认的折减系数进行活荷载折减(与上部结构一起整体计算时应注

楼面活载与汽车载重量的关系 1 ?单向板楼盖活荷载(板)取4.0KN/川或双向板楼盖活载(板)取2.5KN/川时,楼面仅容许通行或停放载人数少于9人的小型客车。 单向板楼盖活荷载(板)取6.0KN/卅时,楼面容许通行总重量2.5 X 6X 6.0 X 0.43 = 38.7KN的汽车,约相当于载重量为1.25t?1.5t的小型货车。 单向板楼盖活荷载(板)取8.0KN/卅时,楼面容许通行总重量2.5 X 7X 8.0 X 0.43 = 60.2KN的汽车,约相当于载重量为2.5t的货车。 单向板楼盖活荷载(板)取10.0KN/卅时,板面容许通行总重量2.5 X 7X 10.0 X 0.43 = 75.25KN的汽车,约相当于载重量为3.0t的汽车。 单向板楼盖活荷载(板)取35.0KN/卅时,板面容许通行总重量2.5 X 8X 35 X 0.43 = 301KN的汽车,规范中消防车即是按总质量300KN计算的。 2?双向板楼盖活荷载(板)取4.0KN/卅时,楼面容许通行总重量 2.5 X 6 X 4.0 X 0.7 = 42KN的汽车,约相当于载重量1.5t的小型货车。 双向板楼盖活荷载(板)取6.0KN/卅时,楼面容许通行总重量2.5 X 7X 6.0 X 0.7 = 73.5KN的汽车,约相当于载重量2.5t?3.0t的货车。 双向板楼盖活荷载(板)取10.0 KN/卅时,楼面容许通行总重量2.5 X 7X 10X 0.7 = 122.5KN的汽车,约相当于载重量为5.0t的货车。 双向板楼盖活载(板)取20.0KN/卅时,楼面容许通行总重量 2.5 X 8X20 X 0.7 = 280KN的汽车,接近消防车总重量300KN 3. 上述单、双向板楼面活载与通行汽车总重量的关系是按规范中的小型客车和消防车相对应的楼面活载内插取得,仅作为甲方要求设计提供可通行汽车的最大吨位时参考,载货量按总质量的40%|定。 4 ?当汽车直接在楼面行走时,应考虑轮压对楼板的局部冲切,对小型客车,局 部荷载取4.5KN,分布在0.2m X 0.2m的局部面积上;对于20?30t的消防车,可按最大轮压60KN作用在0.6m X 0.2m的局部面积上验算冲切。 当楼板面上有砼面层或覆土时,对砼面层可按45°角扩大局部受荷面积, 对覆土层,可按30°角扩大局部受荷面积。

桥梁汽车及人群荷载

汽车及人群荷载 6.0.1 汽车荷载分为公路—Ⅰ级和公路—Ⅱ级两个等级。 汽车荷载由车道荷载和车辆荷载组成。车道荷载由均布荷载和集中荷载组成。 桥梁结构整体计算应采用车道荷载;桥梁局部加载及涵洞、桥台台后汽车引起的土压力和挡土墙上汽车引起的土压力等的计算应采用车辆荷载。车辆荷载与车道荷载的作用不得叠加。 6.0.2 汽车荷载等级应符合表6.0.2规定。 表6.0.2 汽车荷载等级 汽车荷载等级的选用应根据公路等级和远景发展需求确定。一条公路上的桥涵宜采用同一汽车荷载等级。 6.0.3 公路—Ⅰ级汽车荷载的车道荷载的计算图式如图6.0.3。 图6.0.3车道荷载 1 均布荷载标准值为kN/m。 2 集中荷载标准值按以下规定选取: 桥梁计算跨径≤5m时,180kN; 桥梁计算跨径50m时,360kN; 桥梁计算跨径5<<50时,值采用直线内插求得。

计算剪力效应时,上述均布荷载和集中荷载的标准值应乘以1.2的系数。 3 桥梁设计时,应根据本标准第6.0.4条确定的设计车道数布置车道荷载。每条设计车道上均应布置车道荷载: 纵向:均布荷载标准值沿桥梁纵向可任意截取,并满布于使结构产生最不利荷载效应的同号影响线上;集中荷载标准值则作用于相应影响线中一个影响线峰值处。 横向:均布荷载和集中荷载都均匀分布在设计车道3.5m宽度内。 6.0.4 公路—Ⅰ级汽车荷载的车辆荷载以一辆标准车表示,其主要技术指标应符合表6.0.4-1规定。 表6.0.4-1 车辆荷载主要技术指标 车辆荷载在每条设计车道上布置一辆单车。车辆荷载的横向布置应符合图6.0.4的规定,并应按本标准第6.0.6条和第6.0.8条的规定计算横向折减。

新旧规范中的汽车荷载比较精选文档

新旧规范中的汽车荷载 比较精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

新旧规范中的汽车荷载比较 前言: 我国公路桥梁结构设计采用的汽车荷载标准长期以来采用汽车车队的形式,计算荷载和验算荷载相结合的模式。原规范将汽车荷载划分为汽车—超20级、汽车—20级、汽车—15级、汽车—10级共四个等级,并且每个等级规定了验算荷载——挂车和履带车荷载;而新规范只将汽车荷载分为公路—I级和公路—II 级两个等级,取消了原规范规定的汽车—15级和汽车—10级汽车荷载,并且不考虑验算荷载。公路—I级相当于原规范的汽车—超20,公路—II级相当于原规范的汽车—20级。两者对简支梁的内力有什么区别,我们接下来就来分析这个问题。 正文: 新旧规范汽车荷载对简支梁产生的内力主要体现在两个方面: ? 1.汽车荷载的计算图式不同。 原规范汽车荷载的计算图式是以一辆加重车和具有规定间距的若干辆标准车组成的车队表示的。新规范采用车道荷载即由均布荷载和集中荷载组成的图式。 2.冲击系数不同。 旧规范近似地认为冲击力与计算跨径成反比,并与桥梁的结构形式有关。而新规范采用了结构基频来计算桥梁结构的冲击系数。 ? 一.跨径20米的简支梁的内力分析。 下面以混凝土简支梁为研究对象,分析新旧规范标准汽车荷载效应的差别。

该桥标准跨径20m,主梁全长,计算跨径,桥面净空为净—7m+2×。主梁结构尺寸如下图示。 设计荷载分别采用《公路桥涵设计通用规范》(JTG D60-2004)采用的公路—I 级、公路—II级与《公路桥涵设计通用规范》(JTJ 021-85)采用的汽车—超20级、汽车—20级进行对比分析。 (一).新桥规计算的荷载效应 根据上节中主梁结构纵、横截面的布置,取用其的一根主梁计算其各控制截面的汽车荷载效应。 汽车荷载效应计算 按《公路桥涵通用设计规范》(JTG D60-2004)条规定,简支梁结构的冲击系数由下式计算: 介于和14HZ之间,冲击系数按下式计算: 汽车荷载效应计算结果见下表: ? 汽车一级荷载: 汽车二级荷载: ? (二).按照旧桥规计算的荷载效应

汽车等效均布荷载的计算

汽车等效均布荷载的计算 本工程最小板跨为2.4m×2.5m,板厚180mm,汽车最大轮压为100KN (根据《城市桥梁设计荷载标准》第4.1.3条城—A级车辆荷载),汽车轮压着地面积为0.6m×0.2m(参考《建筑结构荷载规范》规范说明中4.1.1条“对于20~30T的消防车,可按最大轮压为60kN作用在0.6m ×0.2m的局部面积上的条件决定;”),动力系数为1.3,板顶填土S=0.9m。平面简图详见附图一。 计算过程如下: 一、X方向计算 1.填土中扩散角取30°,tan30°=0.5 2.a x=0.6+2×0.5×0.9=1.5m a y=0.2+2×0.5×0.9=1.1m a x/l x=1.5/2.4=0.625 a y/l x=1.1/2.4=0.458 l y/l x=2.5/2.4=1.042 考虑动力系数后q=1.3P/(a x a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0843×157.57×1.5×1.1=10.96Kn×m My max=0.0962×157.57×1.5×1.1=12.51Kn×m Me max=0.0368×qe×l2 qe=Me max/0.212=59Kn/m2 二、Y方向计算 1.填土中扩散角取30°,tan30°=0.5

2. a×=0.2+2×0.5×0.9=1.1m a y=0.6+2×0.5×0.9=1.5m a×/l×=1.5/2.4=0.458 a y/l×=1.1/2.4=0.625 l y/l×=2.4/2.5=0.96 考虑动力系数后q=1.3P/(a×a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0962×157.57×1.5×1.1=12.50Kn×m My max=0.0843×157.57×1.5×1.1=10.96Kn×m Me max=0.0368×qe×l2 qe=Me max/0.23=54.37Kn/m2 附图一

2.4 车辆重力、公路汽车荷载(车辆、车道荷载)

2.4 汽车(列车)荷载标准: ①车辆荷载——考虑车列形式的荷载,以集中荷载形式作用于车轴位置; ②车道荷载——将车辆重力等效为均布荷载和一个可作用于任意位置的集中荷载。 一、公路桥涵汽车荷载等级(JTGD60-2015) 公路等级高速公路一级公路二级公路三级公路四级公路 汽车荷载等级公路-I级公路-I级公路-I级公路-II级公路-II级 ?我国现行公路桥涵汽车荷载(JTGD60-2015)不同于原公路桥涵车辆设计荷载(JTJ 021-89),汽车荷载由车道荷载和车辆荷载组成。 ?对于桥梁结构的整体计算---采用车道荷载; ?对于桥梁的局部加载、涵洞、桥台和挡土墙压力等的计算---采用车辆荷载。

?公路桥涵车辆设计荷载(JTJ 021-89) 各级车辆荷载纵向排列 : 相当于公路-I 级相当于公路-II 级

1 、车辆荷载 车辆荷载横向布置(尺寸单位:m)车辆荷载立面、平面尺寸

?车辆荷载的主要技术指标

2、车道荷载 注:计算跨径为:设支座的为相邻两支座中心的水平距离; 不设支座的为上、下部结构相交面中心间的水平距离。 公路-I级:q K=10.5kN/m;当桥涵计算跨径小于或等于5m时,P K=270kN;当桥涵计算跨径大于或等于50m时,P K=360kN;桥涵计算跨径大于5m、小于50m时,P K按直线内插求得。上述计算得到的剪力效应值应乘以1.2的系数。 公路-II级:车道荷载的q K和P k,为公路-I级车道荷载的0.75倍。

?我国城市桥梁设计荷载标准规定的城—A级(跨度2-20m) ?求弯矩时q M=22.5kN/m,求剪力矩时q Q=37.5k/m

汽车荷载等级

6 汽车及人群荷载 6.0.1《标准》(97)中的车辆荷载在形式上为四个等级,即汽车—超20级、挂车—120; 汽车—20级、挂车—100;汽车—15级、挂车—80;汽车—10级、履带—50。 同时规定,新建公路桥涵的设计不采用汽车—15级、挂车—80荷载,只是为便 于国家统计工作的连续性而保留这一级荷载。 《标准》(97)所规定的以车队为计算荷载图式的车辆荷载标准,是设计公路桥 梁及其它构造物所规定的计算荷载。为了保证桥梁的安全储备和使用寿命,对 桥上实际行驶的车辆轴重和总重必须予以严格限制,一般情况下,不允许采用 设计的极限值。因此,设计轴荷载多大,桥上实际行驶车辆的轴荷载也允许多 大,这是不对的,车辆设计荷载与车辆轴载、总载限制是两个不同的概念,不 可混为一谈。世界上有一些国家制定了车辆轴载限值标准。他们在制定设计车 辆荷载标准及车辆轴重限值时,除了考虑本国的国民经济发展水平外,同时考 虑了采用重型汽车提高轴重限值而获得的运输经济效益与相应增加的公路基本 建设投资及原有公路网的补强改造费用之间的合理平衡。由于提高轴重对公路 投资的影响十分惊人,长期以来,各国政府都采用了极其慎重的态度。表6.0.1-1 列出了几个经济较发达国家车辆荷载设计值和允许轴载值,表6.0.1-2列举了 一些国家和地区的轴载限值。

现行公路桥涵结构设计用车辆荷载标准模式是根据我国建国以后公路上交通荷载的实际情况,经过相当长时期的分析、研究和修正确定的。经过几十年的修订、完善,其分级逐步完善、科学、合理,基本适应了我国公路桥涵结构发展的需求。

1972年,在修订《标准》时,对原车辆荷载标准进行了一次检查,一方面向用车单位作调查,另一方面对按标准设计的桥梁通过一些重型卡车的能力作了计算比较。调查及计算分析的结果是:公路上最常行驶的车辆,解放牌一级总重不超过100kN,改装后的黄河牌和一些越野车总重不超过300kN,这些都不超过或略超过标准车加重车,对较重的车要加以验算。 鉴于车辆总重和轴重日趋增大,轴数也日渐增多,特别是发展大型集装箱运输后,通往集装箱港口码头的公路桥涵需考虑集装箱半挂车能否正常通行,而从一些计算资料可以看出,有些较重的卡车、自卸车、吊车和半挂、全挂车,在按汽车—20级、挂车—100设计的桥梁上还不能自由通行,因此,有必要在原有的车辆荷载标准中,增加一个较高的等级。 《标准》(81)确定,增加荷载等级汽车—超20级时,考虑了1978年京塘高速公路初步设计提出的两重车列形式,一是200kN车队或300kN车队插入一辆550kN 半挂车;二是原汽车—20级乘1.5倍,间距不变。后者虽然便于记忆和计算使用,但实际上并无300kN双轴车和450kN三轴车的车型,因此选定用200kN车队插入一辆550kN半挂车,车辆间距仍取15m,加重车前后的间距取10 m。在缺乏更多资料和科研成果的情况下,标准推荐暂用550kN半挂车插入200kN车队的形式作为新增加的车辆荷载等级标准即汽车—超20级。 为了保证桥涵的安全,对按荷载标准设计的桥梁的极限通过能力进行了计算。在制方《标准》(72)时曾对三个等级的荷载标准作过验算;制订《标准》(81)时,又检查了各级桥梁的极限通过能力,所用车辆除我国自己生产的车型外,也考虑了进口的车型。各国生产的普通载重卡车较重的是三轴车,而各国法定的车辆总重及轴重的限制,最大车重300kN左右,极个别超过300kN。载重更大的车辆则向半挂车发展。普通卡车有四轴的,其作用不比三轴大。同吨位卡车大多有长短车身之分,其轴距亦不同。验算通过能力时,选用了总重超过300kN或轴重超过120kN或重吨位轴距较短的车型。另外还选用了日渐增多的吊车,其重型四轴车可代表我国生产的双轴转向的四轴卡车。自卸车选用了载重120kN到320kN的各种车型。半挂车和全挂车取用载重150kN到500kN的各种车型。从验算结果看,上述车型通过汽车—15级桥梁的情况大体上比通过汽车—20级桥梁降低一级,即可以与标准车同时以单辆车慢行通过的只能单独通过、可以单独通过的只能单车慢车通过。 同时,又将在按汽车—20级荷载设计的桥梁上不易通过的重型车如Coles(柯尔斯)100t吊车、380(320kN自卸车)、汉阳960(500kN半挂车)及汉阳881全挂车等,与550kN半挂插入200kN车队作了比较,如以弯矩控制,跨径30m以下可与550kN半挂车队混行通过,跨径30m以上可单车通过,且都比汽车—20级通过情况为好。但是它与汽车—20集相比,级差不大,如跨径50m以下单向宽11.7m 的简支梁桥、汽车—超20级的弯矩只比汽车—20级增大12%,剪力平均增大17%;对净-7(m)的双车道桥,则分别增大3.4%和5.9%,似乎不足以形成一级,整个车辆荷载标准如何分级有待于进一步的研究。

汽车荷载与轮压

汽车荷载与轮压 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

注:覆土厚度不为表中数值时,其动力系数可按线性内插法确定

4.各类汽车在其投影面积范围(考虑汽车之间的纵向及横向最小间距均为600mm)内 5.目前结构设计计算中,出于对结构抗震设计的考虑,地下室承受的土压力一般均按静止土压力计算,土压力系数值一般取 四设计建议 1.对于直接承受消防车荷载的结构楼面(屋面)板,当符合荷载规范要求时,可进行简化计算,即直接采用表4.1.1中均布活荷载数值;当不符合时,应计算汽车轮压的局部荷载效应

2)依据城市供热管网结构设计规范CJJ 105-2005的规定,轮压在混凝土结构中的扩散按单边1:1考虑,即相当于取图4.1.1-1中扩散角 =450;轮压在土中的扩散按深度每增加1m,单边扩散宽度增加0.7m

自然状态下的土体内水平向有效应力,可以认为与静止土压力相等,土体侧向变形会改变其水平应力状态,最终的水平应力,随着变形的大小和方向而呈现出主动极限平衡和被动极限平衡两种极限状态事实上,地下室的施工工艺决定了其周围的土只能是回填土,应取用相应的主动土压力系数,而静止土压力一般可用在不允许有位移的支护结构,并不适合用于地下室外墙或挡土墙的设计计算中 现阶段地下室外墙或挡土墙的设计计算,可结合设计现状进行适当的调整,即考虑地震往复作用对接近地表之地下室土压力的增大作用,建议地下室顶部土压力可按静止土压力系数计算,而地下室底部土压力系数可按主动土压力系数计算(见图4.1.1 图4.1.1

MIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人

MIDAS中关于移动荷载车道的定义 MIDAS中关于移动荷载车道的定义很多人都不是很清楚原理,MIDAS自己也讲的不是很清楚,事实上很多累死软件对横向荷载的分布处理也不是很完善,下面我就我个人理解,参考其他前辈的理解,说说我的看法,希望大家积极跟帖,多多讨论,把这个问题搞清楚。 定义一般车道时,应该就是选择距离设计车道中心线最近的一根纵梁作为车道单元,然后定义偏心来按规范规定的等效车道荷载加载。 偏心距离是车道中心距离就近梁单元中心的距离。结构尺寸确定后,车道中心和每个纵梁的中心(如果是单梁那就是结构的中心)都是已知的,这时就很容易确定车道的偏心距离了。横向联系梁车道定义时和一般车道定义方法是一样的,要选择就近的一根纵梁作为车道单元,定义偏心、定义跨度、定义车道分配单元,唯一不同的就是横向联系梁要选择横向联系梁结构组而已。 MIDAS官方的说法是:车道单元是定义车道位置的参考单元,civil中目前横向车道位置需由用户定义。车道偏心量为车辆中心线距参考单元距离。 我理解的具体加载情况是:一根单梁,车道中心布置,如果定义车道时不考虑车辆宽度,则荷载加载在梁单元中心线上;而如果定义车道时考虑车辆宽度(貌似2006版才有了这个功能)1.8m,则荷载为偏心梁单元荷载,分别加载在梁单元中心两侧0.9m的位置上,因此换算成梁单元荷载就是集中载和换算扭矩。对于单梁分析,是否考虑车辆宽度对结构没有影响,但如果是梁格模型,是否考虑车辆宽度对结果的影响还是很大的。 规范规定的等效车道荷载是没有考虑车辆宽度的(但是,我在邵旭东的《桥梁工程》中看到了一句大实话:车道荷载的单向布载宽度为3.0m,这个才更接近实际情况)。 具体的,根据规范进行双车道中载和偏载加载时,一个是把车道荷载分别加载在两个车道设计中心线上,一个就是以最小间距3m来在一侧布置2个车道加载。如具体偏载情况: 第一个车道中心位置: 人行道边缘+0.5+0.9 第二个车道中心位置: 人行道边缘+0.5+0.9+3.1 ,用梁中心线计算出偏心距离输入即可。 希望能抛砖引玉,大家多多发言和讨论来一起把这个问题弄清楚。更深一层的也希望能以此为开始给我们板块注入新的活力和增添新的风气,希望除了资料和图纸的分享以外能更多一些经验和技术的交流,多一些答疑和解惑,也多一些朋友和老师,在使得板块更有活力也更人性化的同时也能让大家工作和学习更进一步,有道是“它山之石,可以攻玉,如切如磋,如琢如磨”啊! 谢谢大家!

消防车等效均布荷载的计算

消防车等效均布荷载的计算 【摘要】消防车荷载的取值,一直比较混乱,为使消防车荷载有一个较为合理的取 值,笔者对消防车等效荷载进行了常见的几种情况的计算,供设计界同仁参考。 【关键词】消防车等效荷载轮压扩散角动力系数 消防车荷载的取值,就目前来说,一直比较混乱, 有按《建筑结构荷载规范》(下面简称《荷载规范》)要求单向板(板跨度≥2m)取35kN/㎡、双向板(板跨度≥6m)取20kN/㎡的,也有取等效均布荷载为26kN/㎡的, 还有主梁取0.8X20=16kN/㎡次梁为0.95X20=19kN/㎡的,如此等等,各种取法都有。而消防车荷载的取值又属“强条”。《荷载规范》表4.1.1注第3条:“……;当不符合本表的要求的时候,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。”即消防车荷载的取值大小应按等效均布荷载计算。这些对每一个设计人员来说,都是清楚的。但是在实际工程中,由于等效均布荷载计算过程较为繁琐, 设计周期又短等各种原因,大都未进行等效均布荷载的计算。一般来说,凡取等效均布荷载的,都没有相应的计算资料, 大都采取“估算”的办法。 就目前成都建筑市场而言,基本上都采用大底盘地下室,其上部修建若干栋多、高层建筑,这样必然出现小区内的消防通道置于地下室的顶板上。而地下室的顶板设计,一般采用井字梁楼盖或十字梁楼盖,板跨大都小于6.0mX6.0m,故消防车荷载是不能取20kN/㎡。而应按规范要求进行等效均布荷载计算(单向板或密肋楼盖较少采用,所以此处仅就双向板进行分析)。为使消防车荷载有一个较为合理的取值,笔者对消防车等效均布荷载进行了常见的几种情况的计算,供设计界同仁参考,以飨读者。 1.荷载计算 消防车荷载均沿消防车道布置。小区道路通常不是很宽,一般在5m左右,所以消防车按单列布置(当小区消防通道宽度≥6 m时,应按并列两辆消防车的布置进行等效均布荷载计算。此种情况,不在本文叙述范围)。为求最不利情况,按两车车尾对车尾的排列,两车尾间净距按500㎜计,消防车总重量按《荷载规范》要求,以300 kN计算。消防车荷载前、后桥轮压及车列布置见图1~图3, 轮压面积按200㎜X600㎜计。

新旧规范中的汽车荷载比较

新旧规范中的汽车荷载比较 前言: 我国公路桥梁结构设计采用的汽车荷载标准长期以来采用汽车车队的形式, 计算荷载和验算荷载相结合的模式。原规范将汽车荷载划分为汽车—超20级、汽车—20级、汽车—15级、汽车—10级共四个等级,并且每个等级规定了验算荷载——挂车和履带车荷载;而新规范只将汽车荷载分为公路—I级和公路—II 级两个等级,取消了原规范规定的汽车—15级和汽车—10级汽车荷载,并且不考虑验算荷载。公路—I级相当于原规范的汽车—超20,公路—II级相当于原规范的汽车—20级。两者对简支梁的内力有什么区别,我们接下来就来分析这个问题。 正文: 新旧规范汽车荷载对简支梁产生的内力主要体现在两个方面: 1.汽车荷载的计算图式不同。 原规范汽车荷载的计算图式是以一辆加重车和具有规定间距的若干辆标准车组成的车队表示的。新规范采用车道荷载即由均布荷载和集中荷载组成的图式。 2.冲击系数不同。 旧规范近似地认为冲击力与计算跨径成反比,并与桥梁的结构形式有关。而新规范采用了结构基频来计算桥梁结构的冲击系数。 一.跨径20米的简支梁的内力分析。 下面以混凝土简支梁为研究对象,分析新旧规范标准汽车荷载效应的差别。 该桥标准跨径20m,主梁全长19.96m,计算跨径19.50m,桥面净空为净—7m+2×1.75m。主梁结构尺寸如下图示。 设计荷载分别采用《公路桥涵设计通用规范》(JTG D60-2004)采用的公路—I级、公路—II级与《公路桥涵设计通用规范》(JTJ 021-85)采用的汽车—超20级、汽车—20级进行对比分析。 (一).新桥规计算的荷载效应 根据上节中主梁结构纵、横截面的布置,取用其的一根主梁计算其各控制截面的汽车荷载效应。 汽车荷载效应计算 按《公路桥涵通用设计规范》(JTG D60-2004)4.3.2条规定,简支梁结构的冲击系数由下式计算: 介于1.5HZ和14HZ之间,冲击系数按下式计算:

车辆载荷对管道作用的计算方法

车辆载荷对管道作用的计算方法 1 地面车辆载荷对管道的作用,包括地面行驶的各种车辆,其载重等级、规格形式应根据地面运行要求确定。 .2 地面车辆载荷传递到埋地管道顶部的竖向压力标准值,可按下列方法确定: 2.1 单个轮压传递到管道顶部的竖向压力标准值可按下式计算(图 C.0.2-1): (2.1-1) 式中q vk—轮压传递到管顶处的竖向压力标准值(kN/m); Q vi,k—车辆的i个车轮承担的单个轮压标准值(kN); a i—i个车轮的着地分布长度(m); b i—i个车轮的着地分布宽度(m); H—自车行地面自管顶的深度(m); μd—动力系数,可按表(C.0.2)采用。

图C.0.2-1 单个轮压的传递分布图 (a) 顺轮胎着地宽度的分布;(b)顺轮胎着地长度的分布 图C.0.2-2 两个以上单排轮压综合影响的传递分布图 (a)顺轮胎着地宽度的分布;(b)顺轮胎着地长度的分布 2.2 两个以上单排轮压综合影响传递到管道顶部的竖向压力标准值,可按下式计算(图C.0.2-2): (2.2-1)

式中:n—车轮的总数量; d bj—沿车轮着地分布宽度方向,相邻两个车轮间的净距(m)。 表C.0.2 动力系数μd 0.250.300.400.500.600.70地面在管 顶(m) 动力系数 1.30 1.25 1.20 1.15 1.05 1.00 μd 2.3 多排轮压综合影响传递到管道顶部的竖向压力标准值,可按下式计算: (2.3-2) 式中m a—沿车轮着地分布宽度方向的车轮排数; m b—沿车轮着地分布长度方向的车轮排数; d aj—沿车轮着地分布长度方向,相邻两个车轮间的净距(m); 3 当刚性管为整体式结构时,地面车辆荷载的影响应考虑结构的整体作 : 用,此时作用在管道上的竖向压力标准值可按下式计算(图C.0.3)

关于桥梁荷载与限载的说明

关于桥梁荷载与限载的说明 我国公路、城市桥梁设计用标准车辆荷载的基本演变 目前运行的桥梁大多数采用三套设计规范设计建造:《公路桥涵设计通用规范》(JTJ 021-89)、《城市桥梁设计荷载标准》(CJJ77-98)(2008年建设部废除)、《公路桥涵设计通用规范》(JTGD60-2004)。对于89年以前的,其荷载规定类似公路89规范。 1、对于按照《公路桥涵设计通用规范》(JTJ 021-89)及以前规范设计的桥梁,均为车队荷载,所以可按照车队中最重的车辆进行限载,如汽车-10级,应限载15T;汽车-15级,应限载20T;汽车-20级,应限载30T;汽车-超20级,应限载55T。 2、对于按照《城市桥梁设计荷载标准》(CJJ77-98)设计的桥梁,由于其分车道荷载和车辆荷载,车道荷载为均载加集中荷载,是整桥计算荷载,车辆荷载为标准车荷载,是构件及局部计算荷载,城A为70T,城B为30T。由此,可以进行限载,城A限载70T,城B限载30T。 3、对于按照《公路桥涵设计通用规范》(JTGD60-2004)设计的桥梁,荷载总分公路一级和公路二级,并再分车道荷载和车辆荷载,车道荷载为均布荷载+集中荷载,是整桥计算荷载,车辆荷载为标准车荷载,是构件及局部计算荷载,公路一级和公路二级标准车均为55T。由此,不论公路一级还是公路二级,均可限载55T。 综上所述,汽车-10级,应限载15T;汽车-15级,应限载20T;汽车-20级,应限载30T;汽车-超20级,应限载55T。车辆荷载标准汽-20、城B级与公路二级产生的荷载效应相当,应限载30T;汽-超20、城A与公路一级产生的荷载效应相当,应限载55T。

基坑支护设计汽车等效均布荷载计算方法

基坑支护设计汽车等效均布荷载计算方法 题,该如何施加,施加多少,现行《建筑基坑支护设计规程》(JGJ120-2012)中并有说明,导致实际基坑支护设计时,汽车超载施加无指导性方法可循。现笔者仅对自己实际工作中的一些想法,提出自己认为切实可行的做法。 基坑开挖过程中需要土方外运,土方外运一般采用前四后八自卸车外运,所前四后八自卸车就是说前面是双桥4个轮,,后面是双桥8个轮子。汽车荷载属于动力荷载,当汽车荷载距离基坑坡顶线超过一定距离时,岩土对汽车荷载起缓冲和扩散作用,当汽车荷载距离超过1.0m时,轮压荷载的动力影响已不明显,可取动力系数为1.0。 前四后八荷载主要在后面双桥上,后面双桥轴距1.4m,轮距1.8m,后轮双桥总轴重600kN,前四后八后桥平面尺寸见下图: 假设汽车外侧轮距离基坑坡顶线 1.0m,计算汽车等效分布荷载作用大小时,车轮扩散压力扩散角取30°。 后轮双桥轮压的扩散面积为(2.4+2) ×(1.6+2)=15.84m2。 则汽车等效分布荷载P=600kN/15.84 m2=37.88 kPa。 计算车轮荷载等效分布深度时,取车轮扩散压力扩散角取45°,则d=1.0m。 假设汽车外侧轮距离基坑坡顶线 2.0m,计算汽车等效分布荷载作用大

小时,车轮扩散压力扩散角取30°。 后轮双桥的轮压的扩散面积为(2.4+4)×(1.6+4)=35.84m2。 则汽车等效分布荷载P=600kN/35.84 m2=16.74kPa。 计算车轮荷载等效分布深度时,取车轮扩散压力扩散角取45°,则d=2.0m。 假设汽车外侧轮距离基坑坡顶线 3.0m,计算汽车等效分布荷载作用大小时,车轮扩散压力扩散角取30°。 后轮双桥的轮压的扩散面积为(2.4+6)×(1.6+6)=63.84m2。 则汽车等效分布荷载P=600kN/63.84 m2=9.40kPa。 计算车轮荷载等效分布深度时,取车轮扩散压力扩散角取45°,则d=3.0m。 现就汽车等效分布荷载大小及作用深度的车轮压力扩散角取值不同做出说明:计算等效分布荷载大小时,现行《建筑地基处理技术规范》(JGJ79--2012)压力扩散角取30°;计算等效分布荷载作用深度时,现行《建筑基坑支护技术规范》(JGJ120-2012)土压力扩散角取45°;两者取值不同主要是从安全角度考虑,计算等效分布荷载大小时,取30°对工程安全有利,计算等效分布荷载作用深度时,取45°对工程安全有利,这也是两本规范土压力扩散角取值不同的原因所在。 通过计算标明基坑边缘车辆超载,距基坑边线距离为1.0~3.0m时,汽车等效局部荷载为35.84~9.40kPa,等效分布深度为1.0~3.0m。 通过以上计算,现对坡顶汽车荷载等效分布荷载及作用深度表作简化,提供如下表格供设计人员设计时使用。

相关主题
文本预览
相关文档 最新文档