当前位置:文档之家› 盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]
盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结

区间盾构结构为预制钢筋混凝土环形管片,外径6200米米,内径5500米米,厚度 350米米,宽度 1200米米.在盾构施工开工前,应对管片进行预排版,确定管片类型数量.

1)隧道衬砌环类型

为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合.

国内一般采用第③种,项目隧道采用该衬砌环.

直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量.

盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型.由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度 . 2)管片预排版

1、转弯环设计

区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环.即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄.

管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度 ;③标准环数与楔形环数之比u值.还有一个可供参考的因素:楔形量管模的使用地域.楔形量理论公式如下:

△=D(米+n)B/nR ①

(D-管片外径,米:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径)

本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面.按最小水平曲线半径R=300米计算,楔形量△=37.2米米,楔形角β=0.334°.

值得注意的是转弯环设计时,环宽最大和最小处是固定的 ,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求.

2、圆曲线预排版

设需拟合圆曲线半径为450米(南门路到团结桥区间曲线半径值),拟合轴线弧长270米,需用总楔形量计算如下:

β=L/R=0.6 ②

△总=(R+D/2)β-(R-D/2)β=3720米米③

由△总计算出需用楔形环数量:

n1=△总/△=100 ④

标准环数量为:

n2=(L-n1*B)/B=125 ⑤

标准环和楔形环的比值为:

u=n2:n1=5:4 ⑥

即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1.

3)管片实际拼装位置排版

管片拼装采用错缝拼装.

1、管片点位整体排版

由于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变.比如某区间,第325、326环是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置.盾构始发时负环是6环,1环零环.从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点

2、根据盾构姿态选用管片

盾构机是依靠推力油缸顶推在管片上产生的反力向前掘进的 ,推力油缸按上、下、左、右四个方向分成四组,每一个掘进循环这四组油缸的行程的差值反应了盾构机与管片的平面位置之间的空间关系,可以看出下一个掘进循环盾尾间隙的变化趋势.当管片平面不垂直于盾构机轴线时,各组推进油缸的行程就会有差异,当这个差值过大时,推进油缸的推力就会在管片环的径向产生较大的分力,从而影响已拼装好的隧道管片以及掘进姿态.通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过4米米时,就应该拼装转弯环来进行纠编.通过转弯环的调整左右与上下的油缸行程差值就控制在3米米以内,有利于盾构掘进及保护管片不受破坏.

管片是在盾尾内拼装,所以不可避免的受到盾构机姿态的约束.管片要尽量垂直于盾构机轴线,让盾构机的推进油缸能垂直地推在管片上,这样使管片受力均匀,掘进时不会产生管片破损.同时也要兼顾管片与盾尾之间的间隙,避免盾构机与管片发生碰撞而破损管片.当因地质不均、推力不均等原因,使盾构机偏离线路设计轴线时,管片的选型要适应盾构机的姿态.

根据盾构机姿态选管片的计算方法如下:

假定推进油缸行程:上:1850 米米下:1830 米米

左:1820 米米右:1840 米米

铰接油缸行程上:80 米米下:70 米米

左:62 米米右:75 米米

盾尾间隙:上:65 米米下:80 米米左:60 米米右:90 米米

因推进油缸、铰接油缸安装在中盾上,反力支座在同一部位,所以推进油缸的行程差减去铰接油缸的行程差是管片要校正的偏移量.

上下(上减下):(1850-1830)-(80-70)=+10米米

右左(右减左):(1840-1820)-(75-62)=+7米米

盾构机油缸的行程差大于5米米时,需要选楔型环,下一环所选楔型环管片的最大楔形量应处于右上方,管片走向应左向下,即要选左转环10点或右转环4点.

如果盾尾和管片都处于真圆状态,上下盾尾间隙之和、及左右盾

尾间隙之和分别等于150米米.所选管走向应使盾尾间隙趋于均等.

盾尾间隙差:上下(上减下): 65-80=-25米米

右左(右减左): 90-60=+30米米

通过盾尾间隙判断,下一环管片走向应该是右下方,即选右转环11点或10点. 但行程差判断下一环管片走向应是左下方.综合考虑油缸行程差和盾尾间隙,管片应拼向下,或向右下方,那么只能从右转11点和10点两个里面选一个不通缝的点位.

在进行管片选型的时候,只有盾尾间隙接近警戒值(60米米)时,才根据盾尾间隙选择管片.

3、V米T系统选管片

根据V米T系统程序中对各种相关因素的预先设定,程序会给所有后续管片进行评估,其中不利因素最少的一环会被选中.程序会沿已经计算好的纠偏曲线进行下一次模拟计算,预测第二环管片选型,即程序把预测的上一管环作为参考管环,进行下一管环顺序的计算.

以下为V米T系统程序管片选择步骤:

在一环掘进当中,主千顶的行程达到1700米米左右时,手动测量上一环管环的盾尾间隙.当掘进结束,推进油缸未收缩前,按相应格式把测的盾尾间隙输入程序,V米T系统就开始计算管片拼装点位.当计算结果出来后,接着操作人员应当检查上一环管片选型是否正确.如果其前面的操作无误,则此类管片应当是正确的 .

V米T系统会计算的结果显示在屏幕的中央.如果对建议的管

环满意,则可选择按键“Build”,进行管片拼装.

如果对建议的管环类型不满意,或现有管片的类型限制,则可对其进行更换.首先选择屏幕中央要被替换的管环,接着从右栏中选定希望用的管片类型.利用屏幕上的箭头执行替换操作.

如果一个管环是通过这种方式手动改变的 ,则管环类型型号码的两边就会有标识.此时就会对纠偏曲线进行重新计算.如果管片类型选择错误,后续管片就呈现红色警告.

管片选型、拼装是盾构施工关键环节,根据预排版确定曲线上转弯环数量,给施工指导,考虑到标准+楔形环使用时的不确定性,现场一定要备有左、右转弯环,保证盾构连续推进.

.

TBM盾构隧道成型隧道管片错台控制(合并版)

标准化创建说明 TBM 管片拼装错台控制工艺标准 一、标准名称 TBM 管片拼装错台控制工艺标准 二、编号及分类 第××号:实体工程类××号 三、适用范围 适用于TBM隧道成型隧道管片错台控制。 四、创建时间 初创:2017年10月17日定性:2017年11月20日评定:2017年11月9日 五、创建单位 中铁隧道局集团有限公司青岛地铁1号线土建一标项目部01工区 中铁十八局集团有限公司青岛地铁1号线二标项目部二工区 六、问题梳理与分析 问题梳理:管片安装错台质量控制是隧道混凝土结构施工质量控制的关键,但是受设备及人为因素较大,成型管片错台的质量一直未能得到很好的控制,且由错台引起的管片破裂、隧道漏水等问题对施工和运营的影响日益突显。。 问题分析: (1)TBM机械设备调试阶段辅推油缸出现泄压,导致管片未能顶紧,脱出盾尾后不同程度出现错台。 (2)TBM先期施工管片操作司机对管片拼装操作不够熟练,造成管片拼装错台较大及椭圆度偏差较大。 (3)TBM进洞前20-30环,豆砾石填充饱满,但因无法进行水泥浆回填,无法保证管片与开挖岩面完全固结,TBM换步后导致管片不同程度发生位移,螺栓发生形变,引起错台。 (4)隧道处于2.5%长距离下坡盾尾泥浆汇入,无法完全清理干净,导致盾尾间隙偏小管片

错台。 方法对策: (1)采用管片对管片拼装手进行业务培训,增强操作技能,减少管片拼装错台。 (2)对TBM掘进司机及质检工程师进行业务培训,严格控制TBM掘进姿态,合理并有预见性的选择管片类型。防止管片脱出盾尾造成管片破损。 (3)及时与中船沟通,解决相关设备问题,以保证施工质量。 (4)对管片进行二次复紧,有意识的将管片拼装的紧凑一些。并在封顶块两侧的橡胶垫在拼装前涂抹润滑剂,封顶块、邻接块纵缝弹性密封垫内需增设尼龙绳,以限制插入时橡胶条的延伸。 (5)进洞10环后开始进行双液浆固结;保质保量进行水泥浆填充,避免管片再出现质量问题。 (6)拼装管片前用沙袋将头一环管片底部封堵,以防泥浆、渣土继续汇入,并及时清理盾尾,以保证盾尾底部间隙。 七、创建历程及人员分工 7.1 创建历程 经项目部和作业班组反复研究与实践,通过严格控制现场施工等措施解决了管片安装错台偏大的问题。 7.2 人员分工 创建人员:孙郕(提议)、江春明(立项)、周泽民(审核)、王小明(编写)、姚军、孟亚彬(现场组织实施) 试用单位:中铁隧道局集团有限公司青岛地铁1号线土建一标项目部01工区 八、工艺流程 8.1施工工艺流程图

如何进行盾构法施工隧道管片选型排版

进一步减小。通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过40mm时,就应该拼装转弯环进行纠偏,拼装一环转弯环对油缸行程的调整量见表1,也就是拼装1环10点左转弯环,可以使左、右两组的油缸行程差缩小38mm。 德国海瑞克公司的土压平衡式盾构机,如图3所示,10对推进油缸分为A、B、C、D四组,分别代表上、右、下、左四个方向。油缸行程可以通过位移传感器反映在显示屏上,通过计算各组油缸之间的差值,就能进行正确的管片选型。下面举例说明: 现有一组油缸行程的数据如下: B组(右):1980mm C组(下):1964mm D组(左):1934mm A组(上):1943mm 左右行程差为:D-B=1934-1980=-46mm 上下行程差为:A-C=1943-1964=-21mm 图油缸分区图 由上可以看出,盾构机的轴线相对于管片平面向左上方倾斜。在对这环管片进行选型的时候,就应选择一环左转弯环且还要有向上的偏移量。对照表1后得出,此环应选择左转弯环在1点拼装。拼装完管片后掘进之前油缸行程的初始数据理论为:A组(上):454mm B组(右):465mm C组(下):453m D组(左):450mm。这样左右与上下的油缸行程差值基本控制在20mm之内,有利于盾构掘进及保护管片不受破坏。(如果上述数据在左转弯曲线上,下一环管片仍安装一环左转弯环管片,那么盾构姿态基本调整过来)。 4、盾构间隙与油缸行程之间的关系 在进行管片选型的时候,既要考虑盾尾间隙,又要考虑油缸行程的差值。而油缸行程的差值更能反映盾构机与管片平面的空间关系,通常情况下应把油缸行程的差值作为管片选型的主要依据,只有在盾尾间隙接近于警戒值(25mm)时,才根据盾尾间隙进行管片选型。 3、影响管片选型的其他因素 3.1 铰接油缸行程的差值 目前地铁盾构工程中大多采用的是铰接式盾构机,即盾构机不是一个整体,而是在盾构机中体与盾尾之间采用铰接油缸进行连接,铰接油缸可以收放,这样就更加有利于盾构机在曲线段的掘进及盾构机的纠偏。铰接油缸利用位移传感器将上、下、左、右四个方向的行程显示在显示屏上,当铰接油缸的上下或左右的行程差值较大时,盾构机中体与盾尾之间产生一个角度,这将影响到油缸行程差的准确性。这时应当将上下或左右的行程差值减去上下或左右的铰接油缸行程的差值,最后的结果作为管片选型的依据。(海瑞克盾构铰接油缸有三种模式,锁、收和自由放开,当盾构在直线上,盾构姿态很好,可以使用锁定模式,当

盾构隧道管片质量检测技术准则CJJ/T

盾构隧道管片质量检测技术标准(C J J/T164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T164-2011)”的word版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。 1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2术语 2.0.1管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验

对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥砂浆。 拼接面 采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。 环向 盾构隧道管片拼装成环后,环的切线方向。 纵向 盾构隧道管片拼装后,环与环的中心连线方向。 渗漏检验装置 在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺杆、橡胶密封垫等组成。 3基本规定 3.0.1盾构隧道管片检测,应在接受委托后,进行现场和有关资料调查,制定检测方案并确认仪器设备状况后进行现场检测,根据计算分析和结果评价判断是否进行扩大抽检,并应出具检测报告(见图3.0.1)。 图3.0.1盾构隧道管片检测工作程序 初检结果不

盾构管片拼装施工技术

盾构管片拼装施工技术文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、管片拼装工艺流程 盾构管片拼装的施工流程: 二、管片安装施工要点 1、盾构管片现场验收 管片到达施工场地后,进场验收,主要的检验项目有:管片出厂合格证是否齐全有效;管片外表是否清洁;止水条、缓冲垫是否贴牢完好;管片标识(包括管片型号、模具编号、生产日期、生产厂家、合格状态)是否齐全和完整;管片是否有崩角、破损、砂眼或裂缝等;吊装孔螺栓孔是否完好,孔内是否有异物。然后由地面工程师对进场管片负责签收,并对每环管片做好标识,做到有据可查。卸货后由地面工班黏贴止水条。 2、管片拼装施工措施 管片拼装是盾构法施工的重要环节,其拼装质量的好坏不仅直接关系到成洞的质量,而且对盾构机能否继续顺利推进有着直接的影响。因此,管片在拼装前仍要进行一次检查,再次确认管片种类正确、质量完好无缺和密封垫黏结无脱落,管片的吊装孔预埋位置正确,封堵盖完好无损,以及其他主要预埋件和混凝土的握裹牢固,管片接头使用的螺栓、螺母、垫圈、螺栓防水用密封垫等附件准备齐全后,才允许拼装。每环管片拼装结束后要及时拧紧各个方向的螺栓,且在该环脱出盾尾后再次拧紧。 3、管片的堆放运输

管片出厂前逐片进行尺寸、外观的检测,不合格者不允许出厂。外观的检测内容有:管片表面光洁平整,无蜂窝、露筋,无裂痕、缺角,无气、水泡,无水泥浆等杂物;灌浆孔螺栓套管完整。安装位置正确。对于轻微的缺陷进行处理,止水带附近不允许有缺陷。 达到龄期并检验合格的管片有计划地由平板车运到施工现场。管片运输时其间用垫木垫实,以免使管片产生有害裂纹,或棱线部分被碰坏。 管片到达现场后由龙门吊卸到专门的管片堆放区。管片堆放区应选择适当,以免因其自重造成场所不均匀沉降和垫木变形产生异常的应力而破裂。在卸之前对管片进行逐一的外观检测,不符合要求(裂缝、破损、无标志等)的管片立即退回。 4、管片吊放及隧道内运输 管片下井采用龙门吊进行。洞内运输采用电瓶车牵引管片车运输。管片车上的管片堆放有序,堆放次序依据管片安装顺序摆放。 管片运到盾构机附近后,由管片吊装机卸到管片喂片机,然后送到管片安装机工作范围内,按照从下到上依次安装到相应位置上。当最后一块插入块安装紧固后,一环管片即安装完毕,可以进行下一环的掘进。 5、管片拼装 管片拼装时采用错缝拼装方式,先拼装底部标准块,然后按左右对称顺序逐块拼装两侧的标准块和邻接块,最后拼装封顶块。封顶块拼装时先搭接2/3环宽,径向推上,再纵向插入。 管片拼装过程如下: 1)用管片拼装机将管片吊起,沿吊机梁移动到盾尾位置。 2)拼装前彻底清除盾壳安装部位的垃圾和积水,同时必须注意管片的定位精确,尤其第一环要做到居中安放。 3)管片拼装采取自下而上的原则,由下部开始,先装底部标准块(或邻接块),再对称安装标准块和邻接块,最后安装封顶块,封顶块安装时,先径向搭接2/3,径向推上,然后纵向插入

盾构隧道混凝土管片制作施工工法

盾构隧道混凝土管片制作施工工法 中铁十六局集团盾构工程项目经理部 一、前言 目前国内城市地铁建设开始高速发展,而在城市内进行地铁施工,对文明施工、地面沉降控制、建筑物保护等要求都比较高,因此明挖法和传统的矿山法隧道施工已逐渐被造价低、机械化程度高、施工安全系数高的盾构法隧道施工所取代。而管片衬砌的质量最终决定了盾构隧道的施工质量,我局于2001年3月首次承担了深圳地铁盾构隧道的施工,为争创优质工程,首先在管片生产上入手,大力开展科技攻关,不断完善施工工艺,通过采用风动振捣和蒸气养护工艺,在短短的7个月时间里顺利圆满完成了2900环、17400块管片的生产任务,解决了管片外侧浮浆较厚、容易出现大面积气泡、脱模过程中崩角、掉块等一系列难题,在总结这些施工经验的基础上形成本工法。 二、工法特点 (1)采用高精度钢模,低坍落度混凝土,风动振捣,蒸汽养护技术,快速生产高精度、高强度、高质量的管片。 (2)施工作业规范化、程序化、标准化。 三、适用范围 本工法适用于各种盾构隧道管片制作,对于制作精度要求比较高的高强度混凝土预制件也有一定的指导作用。 四、施工工艺 (1)工艺流程见图(一)

(2)操作要点 a.浇注混凝土前的准备工作: ①清洗模具:组模前要对钢模进行彻底清洗,混凝土残渣必须全部铲除,内表 面使用胶片配合清理,并用高压水冲洗干净。 ②喷涂脱模油:使用雾状喷雾器喷涂,然后抹布均匀抹,使模具内表面均布薄 层脱模油,如出现脱模油流淌,用棉纱清理干净。 ③组模:模具的质量,特别是尺寸精度,对生产出合格的管片,拼装成尺寸准 确的衬砌环是极其重要的,因此要严格控制组模质量。 ④模具检查:模具组装完毕后,由专职质检员用内径千分尺在模具指定位置进 行宽度检测,同时对模具的内弧面平整无翘曲。 ⑤钢筋笼骨架入模:钢筋笼在靠模上制作完毕,用龙门吊配合专用吊具按各种

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结 区间盾构结构为预制钢筋混凝土环形管片,外径6200米米,内径5500米米,厚度 350米米,宽度 1200米米.在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合. 国内一般采用第③种,项目隧道采用该衬砌环. 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量. 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型.由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度 . 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环.即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄. 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度 ;③标准环数与楔形环数之比u值.还有一个可供参考的因素:楔形量管模的使用地域.楔形量理论公式如下: △=D(米+n)B/nR ①

(D-管片外径,米:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面.按最小水平曲线半径R=300米计算,楔形量△=37.2米米,楔形角β=0.334°. 值得注意的是转弯环设计时,环宽最大和最小处是固定的 ,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求. 2、圆曲线预排版 设需拟合圆曲线半径为450米(南门路到团结桥区间曲线半径值),拟合轴线弧长270米,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720米米③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1.

盾构隧道管片高质量检测技术实用标准(CJJ/T164-2011).

盾构隧道管片质量检测技术标准(CJJ/T 164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T 164-2011)”的word 版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。

1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2 混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3 钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4 水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验 对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥

盾构隧道转弯环管片在曲线上的排版

盾构隧道转弯环管片在曲线上的排版【东莞地铁R2线盾构前言】:盾构施工在缓和曲线上的管片选型排版直接关系 到在圆曲线上盾构机的姿态控制,现以某区间缓和曲线段管片的选型排版为例,对管片在缓和区线段的选型排版方法进行总结介绍,以便在今后盾构施工进行借鉴和指导。一般排版设计的管环宽是1.5米就考虑1.502米-1.503米我考虑的是1.503米排版情况很好。 一、引言 目前盾构工程在地下铁路施工中应用越来越多,由于曲线的存在就要用标准环与转弯环配合使用,以适应线路的走势。曲线是由一条圆曲线和两条缓和曲线组成。对于圆曲线的管片排版已有了相对较为成熟的理论。而缓和曲线上的管片排版以往通常是根据盾构机VMT来选择,没有成型的理论支持,为此,结合测量理论和弯环管片的实际探索出在缓和曲线上准确选择弯环管片理论排版的方法,介绍给大家,供参考和借鉴。 二、缓和曲线理论 按线路的前进方向,直线与缓和曲线的连接点称为直缓点,依次类推其余各点分别为缓圆点、圆缓点、缓直点,分别记为ZH、HY、YH、HZ。其相对关系见图1及图2。 图1 曲线要素示意图

图2 缓和曲线图 由可得 β――为缓和曲线上任一点P处的切线角; ――任一点P所对应的切线长 L S =L时,即可得出β=L/2R (rad) 。 当L S 2.1.弯环管片偏转角计算 依照曲线的圆心角与转弯环产生的偏转角关系可知: 图3 标准环、转弯环关系图 θ=2γ=2arctgδ/D 式中: θ—转弯环的偏转角δ—转弯环的最大楔形量的一半D—管片直径 将数据代入得出θ=0.3629o

三、缓和曲线上转弯环管片用量计算 在缓和曲线段内,缓和曲线切线角β与一环转弯环的偏转角θ的比值即为曲线上所需管片的数量。现以某区间右线JD8为例进行计算。 某区间管片技术参数如下: 管片长度:1500mm;管片内径:5400mm; 管片厚度:300mm;管片外径:6000mm; 转弯环楔形量:38mm; N=β/θ=10.53(环) N——单条缓和曲线需加设的弯环管片用量 由此可以看出在JD8的单条缓和曲线上需放10.53环转弯环管片,但是管片都要成环拼装,0.5环就要和圆曲线组合综合考虑了,整条曲线的弯环数按取整数进行取舍,如果有不足一环的管片存在,就可以多拼出一个转弯环,而不能少拼,即拼11环。 四、缓和曲线上转弯环管片位置确定 考虑切线角β累计超过转弯环偏转角θ的一半时即应该放置一个转弯环管片,可以计算出当β=0.5θ、1.5θ、2.5θ、3.5θ……时所对应曲线长,即将每一个弯环所对应的曲线长度逐个计算出来。再通过曲线位置计算出转弯环在线路上的具体里程。从表中可以清楚的看出每个转弯环管片准确的位置。

盾构掘进管片拼装等施工方案作业方案

盾构掘进管片拼装等施工方案作业方案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

盾构掘进、管片拼装、壁后注浆、成型隧道施工方案施工方案 盾构掘进 掘进流程见图2-1-1。 用于本合同段掘进施工的土压平衡盾构的开挖土仓由刀盘、切口环、隔板、土压传感器及膨润土添加、泡沫注入系统组成。根据本合同段隧道地层条件,需选择土压平衡模式进行本合同段区间隧道的掘进。土压平衡掘进模式中土仓压力 的保持首先需选定土仓压力,掘进过程中通过调整推进力实现推进速度控制、通过调整螺旋输送机转速实现出碴量控制。具体方法如下: (1)土仓压力值P的选定 P值应能与地层土压力和静水压力相平衡,设刀盘中心地层静水压力、土压力之和为P0,则P=KP0,K一般取~。掘进施工过程中土仓压力根据试掘进时取得的经验参数并结合盾构所在位置的埋深、土层状况及地表监测结果进行调整与控制。

(2)推进速度控制 图2-1-1 盾构掘进控制程序图 土压力设定 土压力控制 掘进速度控制 监视

为保持土仓压力的稳定,掘进速度必须与螺旋输送机的转速相符合,同时必须兼顾注浆,确保浆液能均匀填实管片与地层的空隙,根据施工的实际情况确定并调整掘进速度控制推进油缸的推力。 (3)出碴量的控制 每环掘进出碴量根据试掘进段取得的参数进行控制。出碴量控制可通过推进速度与螺旋输送机转速来实现。 (1)姿态监控系统 盾构姿态监控通过SLS-T自动导向系统和人工测量复核进行盾构姿态监测。随着盾构推进导向系统后视基准点需要前移,必须通过人工测量来进行精确定位。为保证推进方向的准确可靠,拟每30~50m进行一次人工测量,以校核自动导向系统的测量数据并复核盾构机的位置、姿态,确保盾构掘进方向的正确。 (2)调整与控制 盾构共16组推进油缸,分五区,每区油缸可独立控制推进油压。盾构姿态调整与控制便可通过分区调整推进油缸压力事项盾构掘进方向调整与控制。 (3)纠偏措施 1)滚动纠偏 刀盘切削土体的扭矩主要是由盾构壳体与洞壁之间形成的摩擦力矩来平衡,当摩擦力矩无法平衡刀盘切削土体产生的扭矩时将引起盾构本体的滚动。盾构滚动偏差可通过转换刀盘旋转方向来实现。 2)竖直方向纠偏 控制盾构机方向的主要因素是千斤顶的单侧推力,它与盾构机姿态变化量间的关系非常离散,需要靠人的经验来掌握。当盾构机出现下俯时,可加大下侧千斤顶的推力,当盾构机出现上仰时,可加大上侧千斤顶的推力来进行纠偏。同时还必须考虑到刀盘前面地质因素的影响综合来调节,从而到达一个比较理想的控制效果。 3)水平方向纠偏

盾构隧道管片材料检验方案

盾构隧道管片材料检验 盾构隧道管片中涉及的主要材料有水泥、集料、水、混凝土外加剂、掺合料、钢筋、钢纤维和混凝土等,为时时掌控管片质量,必须对其材料实施严格控制,因此在制作管片前,对这些材料应进行检验。遵循现行标准,制定的具体检验方法如下所列: 1 水泥 水泥宜采用强度等级不低于42.5的硅酸盐水泥、普通硅酸盐水泥,其检测参数、取样方法、检测频率和检测方法应符合表1的规定。 表1 水泥的检测参数、检测频率、取样方法和检测方法 2 钢筋 钢筋直径大于10mm时宜采用热轧螺纹钢筋,直径小于或等于10mm时宜采用低碳钢热轧圆盘条。其检测参数、取样方法、检测频率和检测方法应分别符合表2、表3的规定。当发现钢筋脆断、焊接性能不良或力学性能显著不正常等现象时,应对该批钢筋进行化学成分检验或其他专项检验。 表2 热轧螺纹钢筋的检测参数、检测频率、取样方法和检测方法

表3 低碳钢热轧圆盘条的检测参数、检测频率、取样方法和检测方法 钢筋焊接前须消除焊接部位的铁锈、水锈和油污等,钢筋端部的扭曲处应矫直或切除,施焊后焊缝表面应平整,不得有烧伤、裂纹等缺陷。钢筋焊接接头的检测参数、取样方法、检测频率和检测方法应符合表4的规定。 表4 钢筋焊接接头的检测参数、检测频率、取样方法和检测方法

3 集料 细集料宜采用中砂,细度模数为2.3~3.0,含泥量不应大于2%,砂的检测参数、取样方法、检测频率和检测方法应符合表5的规定。 表5 砂的检测参数、检测频率、取样方法和检测方法 粗集料宜采用碎石或卵石,其最大粒径不宜大于30mm且不应大于钢筋骨架最小净间距的3/4,针片状含量不应大于15%,含泥量不应大于1%。石的检测参数、取样方法、检测频率和检测方法应符合表6的规定。 表6 石的检测参数、检测频率、取样方法和检测方法

盾构隧道管片排版总结

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径 5500mm,厚度350mm,宽度1200mm。在盾构施.匸开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点一简化施工控制,减少管片选型工作量;缺点一需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △二D (m+n) B/nR

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 木次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R二300m计算,楔形量△二37. 2mm,楔形角o 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K 块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m (南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: B 二L/R二② △总二(R+D/2 ) B- (R-D/2 ) 3 =3720mm ③ 由△总计算出需用楔形环数量: nl二△总/A=100 ④ 标准环数量为: n2= (L-nl*B) /B二125 ⑤ 标准环和楔形环的比值为: u=n2: nl=5:4 ⑥ 即在R二450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加lo 3)管片实际拼装位置排版

盾构管片选型设计

智慧城站~神舟路站区间管片选型设计 1、管片选型的原则 1.1 管片选型适合隧道设计线路; 1.2 管片选型适应盾构机的姿态; 2、遵从隧道设计线路 2.1 管片技术参数 2.2 管片布置方式 本区间设计部署三种圆曲线,平面半径分别为R=600米、R=615米、R=800米、R=1000米;竖曲线形式为R=5000米、R=10000米。依照曲线的圆心角与弯环偏角关系,各种施工段的的布置方式管片为: (1)直线段:8+1模式 由于没有设计平、纵曲线,故仅考虑盾构机在掘进过程中,出现蛇行纠偏所表示的工况。即8个标准环加1个右(左)弯环配置。因为纠偏环多在缓和曲线到曲线之间,到曲线前就需提前安装纠偏环进行调整,以减少进曲线发生纠偏过急现象。 (2)R=600m段:1+1模式 在600m半径的圆曲线上,每隔3.80m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (3)R=615m段:1+1模式 在615m半径的圆曲线上,每隔3.89m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (4)R=800m段:2+1模式 在800m半径的圆曲线上,每隔5.06m要用一环转弯环,标准环与转弯环的拼装关系为2环标准环+1环转弯环。 (5)R=100m段:4+1模式 在1000m半径的圆曲线上,每隔6.33m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+1环转弯环。

(6)R=5000m竖曲线段:20+1模式 在5000m半径竖曲线上,每隔31.65m要用一环转弯环,标准环与转弯环的拼装关系为20环标准环+1环转弯环。 (7)R=10000m竖曲线段:41+1模式 在10000m半径竖曲线上,每隔63.31m要用一环转弯环,标准环与转弯环的拼装关系为41环标准环+1环转弯环。

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ①

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。

混凝土管片质量控制

0前言 随着城市的现代化、地下轨道交通的高速发展,盾构法因其先进的施工工艺、较高的施工效率和安全环保性,日益成为我国地下工程和隧道施工的主要方法。 管片作为盾构隧道最主要和最关键的结构构件,其性能的优劣对工程质量和隧道服役寿命具有决定性的影响。然而,目前国内外缺乏成熟的管片设计和生产规范与标准,管片寿命存在不确定性,特别是我国在管片的研究上与国外有着很大的差距,国内现有的管片材料、生产工艺、设备生产的管片耐久性差,难以满足高抗渗、长寿命要求。 1管片概述 管片又称盾构隧道的一次衬砌,有钢筋混凝土管片(RC管片)、复合管片和铸铁管片(DC管片)。常用的钢筋混凝土管片有箱型和平板型二种;钢筋混凝土管片采用工厂化流水作业生产,主要分为钢筋笼加工和管片成品的生产以及相关的试验组成。 管片属技术含量高,工艺和品质要求都特别高的钢筋混凝土构件,被称为混凝土预制构件中的“工艺品”,其强度、抗渗性、几何尺寸、表观质量等方面的要求都非常严格。 2管片质量控制 生产管片采用的混凝土强度要求高、抗渗性能、耐久性要求严格,其设计、生产与其它普通混凝土预制构件有很大差异,对材料和成型方法敏感性大。本文就以管片生产的原材料选择为基础,从管片的生产工艺过程详细探讨管片质量控制,以指导管片生产,控制管片质量。 2.1原材料的选择 普通的钢筋混凝土管片主要原材料为: 水泥、集料、掺合料、外加剂、水和钢筋。 2.1.1水泥

根据ASTM C917规定,为符合Blaine标准性能上的差异,对水泥各组分含量规定: C,A≤4%,烧失量≤ 0.5%,硫含量≤ 0.2%,细度为375cm2/g左右。 在满足强度要求的前提下,限制水泥用量;使用的水泥首选硅酸盐水泥,用量一般控制在360~450kg/m3;碱含量< 0.6%。 2.1.2集料 高强混凝土要求集料具有良好的物理和力学性能。随着混凝土强度的提高,集料强度要相应的提高,颗粒形状也应尽可能接近球形或者立方体,并兼顾耐久性。 (1)细集料: 一般使用表面光圆、质地坚硬、洁净的中粗砂;通过300¨m和150斗m筛的数量为ASTM级配限制的下限;细度模数为 2.6~ 2.8;粉细物质含量≤3%,氯离子含量≤O.02%,可溶性硫酸盐按重量计≤0.5%。 (2)粗集料: 粗集料一般应选择连续级配5-25mm的碎石,且应无杂物、干净,粉细物质含量不大于2%,压碎性指标≤30%,氯离子含量≤ 0.03%,可溶性硫酸盐按重量计≤O.4%。 2,

混凝土管片施工技术

混凝土管片施工技术 一、工艺流程见图 二、操作要点 1、浇注混凝土前的准备工作: ①清洗模具:组模前要对钢模进行彻底清洗,混凝土残渣必须全部铲除,内表 面使用胶片配合清理,并用高压水冲洗干净。 ②喷涂脱模油:使用雾状喷雾器喷涂,然后抹布均匀抹,使模具内表面均布薄 层脱模油,如出现脱模油流淌,用棉纱清理干净。 ③组模:模具的质量,特别是尺寸精度,对生产出合格的管片,拼装成尺寸准 确的衬砌环是极其重要的,因此要严格控制组模质量。 ④模具检查:模具组装完毕后,由专职质检员用内径千分尺在模具指定位置进

行宽度检测,模具的内弧面应平整无翘曲。 ⑤钢筋进场应检查规格、牌号、质保书,并按进场批号取样进行重量偏差及力 学性能试验,符合要求,方可使用。 ⑥钢筋笼骨架入模:钢筋笼在靠模上制作完毕,用龙门吊配合专用吊具按各种 规格将钢筋笼放入模具内,钢筋笼型号与模具型号要匹配,保护垫块位置准确。 2、混凝土浇注 ①混凝土配合比必须进行试配,并进行试验以获取正确的养护时间和抗压强度。 并符合如下要求:混凝土立方体强度及抗渗试验;检验混凝土配合比能否满足抗渗和设计强度的要求;管片吊装孔抗拔试验,检验吊装孔最大抗拔能力以确保管片安装时的安全。 ②混凝土浇注前的准备工作完成后开始混凝土浇注,用龙门吊将装满坍落度70 ±10mm、强度C50、抗渗S10的防水混凝土的混凝土斗吊至模具上方,然后先模具两端后中间进行放料。 ③开动模具上的附着式风动振动器振捣,振动时间长短的判别是观察混凝土与 侧板接触处,如不再有喷射状气、水泡并能均匀起伏为适当时间,一般控制在4~6分钟,不得超过8分钟,振捣采用混凝土分批放料,从而实现分层振捣。 ④为减少管片成型后的气泡、水眼,待风动式振动器振捣完以后,加以振动棒 振捣密实,振捣时不准碰撞钢模和预埋件,做到先中间,后两边,每个振动点振动时间控制在10~20秒内,振动完成后缓慢拔出振动棒。 全部振捣成型后,视气温及混凝土凝结情况,大约10分钟后拆除压板,进行光面。光面分粗、中、细三个工序,粗光面:使用铝合金压尺,刮平去掉多余混凝土,并进行粗磨。中光面:待混凝土收水后用灰匙进行光面,使管片平整、光滑。精光面:使用长匙精工抹平,力求表面光亮无灰匙印,管片外弧面平整度的误差差值不大于±5mm。 3、养护 蒸汽养护:混凝土振动成型并光面2小时后,混凝土表面用手压有轻微的压痕时,在管片外弧面上盖上湿润的养护布,将用于蒸汽的帆布套在模具上,下

隧道管片

论文THESIS 142 2018.20 本文结合生产现场对钢模宽度的精度检测要求,提出了一种基于数字化的钢模合模宽度检测方法和装置。 管片制造流程 超深埋调蓄隧道管片初步设计的管片外径为11300mm,内径为10000mm,环宽为1500mm,管片厚度650mm。每环衬砌环由8块管片组成(如图1所示),其中1块封顶块(F)、2块邻接块(L1、L2)、5块标准块(B1、B2、B3、B4、B5)。为超深埋调蓄隧道管片的制造钢模,钢模主要由两块侧模、两块端模和底座等部件组成。侧模与底座、端模与底座直接都有铰链相连接,通过铰链可以将侧模、端模开启或合上(如图2所示)。浇筑前先在钢模中安装好钢筋骨架(如图3所示),再将搅拌好的混凝土浇筑至钢模中,振动成型。成型后还需进行光面、养护、休整,检验等步骤。 钢筋骨架的钢模 根据《GB50446盾构法隧道施工与验收规范》对钢筋混凝土管片模具的精度要求,在钢模宽度上,允许误差为±0.4mm。出于成本、精度等多方面考虑,工程应用的管片钢模一般需生产1000环管片,反复的开合模、振捣等操作,以及国内一般采用蒸养工艺来加快钢模周转速度,造成十分恶劣的使用环境。 国内外钢模测量技术现状:管片质量通常通过精确 隧道管片钢模宽度的数字化检测方法 文/上海城投水务工程项目管理有限公司?季军 上海隧道工程有限公司构件分公司?万洋 测量钢模尺寸来保证。长期以来,国内外学者对于钢模尺寸精度测量进行了大量研究工作,按测量方法分,主要分为传统机械测量方法与现代光学电子技术测量方法两类。 传统机械测量方法 目前在生产现场,一般使用超大量程的内径千分尺来测量钢模的合模宽度是否超差,为减少测量误差,卡尺的测量臂不能太长,限制了测量范围在1000mm 以下。经查表可得,内径千分尺的测量极限误差在2.1-4.7×10-4数量级。传统的机械测量方法中,大量程内径千分尺体积巨大,测量时需要耗费很大的人力物力,同时因为较高的精度要求,生产加工困难,造成成本偏高、易损耗、且损耗不易修复。 现代光学电子技术测量方法 除去传统的机械测量方法,当前国内外常见的对于大型构件的测量采用的是利用多类型仪器如三坐标测量机、激光跟踪仪、电子经纬仪等获得三维坐标数据,再经过计算机处理,获得其构件相应的测量值。 三坐标测量机是目前通用的快速精密测量工件几何尺寸,形状和位置的设备。但是其受到量程和直线型导轨运动的限制,并不适合管片生产流水线车间。 激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量。但是其对测量环境要求极高,受大气温度、压力、湿度及气流流动的影响很大, 隧道管片生产流水线车间环境很难达到其工作要求。 经纬仪测量系统是以高精度的电子经纬仪作为角度 (a) (b) 图1? 隧道管片及拼装示意 图2?钢模外形示意 图3?安装钢筋骨架的钢模 责任编辑/齐彬彬 美术编辑/王德本

盾构隧道设计基本概念

盾构隧道设计基本概念 1盾构管片的几何设计 1.1隧道线形的选择—平纵断面的拟合 隧道的中线是由直线及曲线组成。设计常常采用楔形衬砌环(见图1-1),来实现盾构隧道在曲线上偏转及纠偏,楔形衬砌环最大宽度与最小宽度之差称为楔形量。一般来说,楔形量的确定具有经验性,应考虑管片种类、环宽、直径、曲线半径、曲线区间楔形管片环使用比例、管片制作的方便性、盾尾操作空隙因素综合确定;管片楔形量还必须为施工留出适当的余裕。如下图所示,阴影部分是管片的平面投影图,圆弧是隧道设计中心线,圆弧中心点O1是隧道的转弯半径所在的中心点,O2是理论上能拼出的最小转弯半径时的圆心,则O2P<O1P。 a)普通环b)单侧楔形环c)两侧楔形环 图1-1 楔形衬砌环(β-楔形角、△-楔形量) 图1-2 楔形量与转弯半径示意图 日本曾统计管片外径与楔形量的相关关系,如下图所示。

图1-3 楔形量的施工统计 《盾构工程用标准管片(1990年)》规定管片环外径与楔形量的关系如表1-1所示。 表1-1 楔形量与管片环外径的关系 目前,多采用楔形衬砌环与直线衬砌环的组合、左右楔形衬砌环以及通用型管片。 1.1.1标准环+楔形环 管片拼装时,根据隧道线路的不同,直线段采用标准环管片,曲线段采用楔形管片(左转弯环、右转弯环)用于隧道的转弯和纠偏。楔形环的楔形角由标准管片的宽度、外径和施工曲线的半径而定。采用这类管片时,至少需三种管片模具,即标准环管模、左转弯环管模和右转弯环管模。 a)直线段b)曲线段 图1-4 标准环+楔形环拟合线路 通常,以短折线拟合曲线,在设计时常以2标准环+1楔形环来拟合;不得以(极端困难)时,以1标准环+1楔形环来拟合。

盾构管片拼装方案

目录 1 管片拼装目的 (1) 2 作业程序 (1) ⑴管片拼装流程图 (1) ⑵管片安装的准备工作 (1) ⑶管片拼装 (2) 3 人员安排 (2) 4 主要设备及工具 (3) 5 质量安全保证 (3)

管片拼装方案 1 管片拼装目的 通过管片安装,保证管片拼装质量,形成隧道永久衬砌。 2 作业程序 ⑴管片拼装流程图 图1 管片拼装流程图 ⑵管片安装的准备工作 ①严格检查进场管片,不合格管片一律清退。 ②吊运管片注意对管片、止水条和缓冲垫的保护。 ③准备好管片螺栓,然后装上螺栓止水橡胶圈,备好紧螺栓工具。 ④清理管片安装区的积水、淤泥,保证管片安装区的清洁。

⑤盾构机司机根据盾尾间隙、千斤顶行程、VMT自动导向系统计算出的封顶块位置以及隧道走向,综合确定封顶块位置,然后通知地面工程师。 ⑥地面工程师根据盾构机司机提供的下一环封顶块位置安排工人把管片按拼装顺序吊至管片车上。 ⑦安排三辆管片车运输一环管片,每一辆管片车堆放两块管片,把最先安装的管片放在最上面,其余类推,封顶块放在第三辆管片车上的最上面。 ⑧管片运输车开到1#~2#台车的位置处。 ⑨利用管片吊车将管片吊至管片输送器中间(把管片旋转90o)。 ⑩管片随管片输送器一起向前移动进入一个循环状态(一个循环包括:吊起、前移、下降、后退),按以上步骤将管片(根据安装步骤)准确地放置在管片安装位置。 ⑶管片拼装 ①隧道衬砌由六块预制钢筋混凝土管片拼装而成,其中分一块封顶块,二块邻接块及三块标准块。小封顶块拼装方便,施工时可先搭接2/3环宽径向上推,再进行纵向插入方法拼装。环与环错缝拼装。 ②根据管片安装顺序,将须安装管片位置所对应的千斤顶缩回到适当位置,空出管片拼装位置。 ③用管片安装遥控器操作,管片安装头须与管片吊装孔调整到相对位置(通过调整安装头上的六个自由度),然后吊起管片。 ④将管片旋转至最终的准确位置上。 ⑤穿上螺栓,拧紧螺栓(纵向与环向螺栓)。 ⑥将该管片位置的千斤顶伸长,顶住管片。 ⑦在做上述工作的同时,管片输送器继续按拼装顺序输送管片至安装位置。 ⑧余下管片重复上述操作步骤。 3 人员安排 一条隧道分白班和夜班两班组。 白班的人员安排: 盾构机司机:1人; 值班工程师:1人; 拼装手:1人;

盾构标准化施工(新修改)

第二章盾构法隧道施工 一、盾构始发作业 1、端头井地层加固 ⑴加固范围:纵向加固长度为6m,横向加固宽度为隧道轮廓外3m,加固深度为隧道轮廓外3m; ⑵加固方案:洞口采用两排Ф800@1200 C15素混凝土桩,排距700mm,交错布置,桩长为地面至基坑底以下4.5m;其余段落从地面采用袖阀管注浆加固地层,注浆导管采用Ф48×5mm间距1mx1m梅花形布置的塑料袖阀管,注浆参数应符合设计要求。 ⑶加固后土体应有良好的均匀性和自立性,其28d无侧限抗压强度应达到0.8~1.0MPa。 袖阀管注浆加固

2、 始发托架、反力架及导轨安装及加固 始发托架、反力架、导轨需定位准确、安装牢固。盾构始发前,必须对始发架两侧与车站预埋件及反力架进行连接固定,为避免盾构机出洞可能出现“叩头”的现象,始发架的安装高程可根据端头地质情况进行适当抬高10~20mm 。始发架要具有足够的刚度和强度,始发架上安装的导轨必须顺直。 始发托架加固 反力架加固 始发托架的放置 小导轨的设置

3、洞门密封装置安装 洞门密封装置由一道洞门橡胶帘布、两道圆环板和72块翻板组成,始发阶段凸缘应朝始发方向。 4、盾构机下井、组装、调试 盾构机下井施工顺序为:电瓶车下井→台车下井→盾构机吊装下井(盾构中体→盾构前体→刀盘→盾尾)→盾构机组装调试。盾构机吊装作业前必须经由专业吊装作业人员对配重、钢丝绳、吊钩等各部位进行仔细检查确认,合格后方可进行吊装作业。 前盾下井盾尾下井 翻板安装帘布橡胶板安装

盾尾密封油脂涂刷 5、盾尾密封涂油脂作业 油脂充填分层进行,由下到上逐块填充。 冷却塔的安装 中盾吊装下井 盾构后配套 盾体组装

相关主题
文本预览
相关文档 最新文档