当前位置:文档之家› ch1_4-1函数的连续性

ch1_4-1函数的连续性

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

第一章函数、极限、连续

第一章 函数 极限 连续 1.1 数列极限的求法 一 基本概念 数列极限、数列收敛、数列发散 1. 数列极限:lim n n x a →∞ = 描述语言:当n 充分大时,数列一般项n x 无限趋于(无限接近,充分接近)某个确定的常数a ,则称a 就是数列{}n x 的极限. “N ε-”语言:0ε?>,N ?,当n N >时,有n x a ε-<. 二 基本结论 1. 收敛数列性质:唯一性;有界性;保号性;子序列的收敛性. 2. 单调有界原理:单调有界数列必有极限;或叙述为:单调增加有上界必有极限,单调减少有下界必有极限. 3. 夹逼法则:若n n n y x z ≤≤,n N >,且lim lim n n n n y z a →∞ →∞ ==,则lim n n x a →∞ =. 4. 数列极限运算法则:设lim n n x A →∞ =,lim n n y B →∞ =,那么 (1)lim()n n n x y A B →∞ ±=±; (2)lim n n n x y AB →∞ ?=; (3)lim (0)n n n x A B y B →∞ =≠. (4)lim() n y B n n x A →∞ = 5. 两个重要极限:10 lim(1)e x x x →+=;0sin lim 1x x x →=. 这两个极限公式可以推广为:当0x x →时,()0f x →,则 1() lim(1()) e f x x x f x →+=;0sin () lim 1() x x f x f x →=. 三 基本方法 数列极限的未定式(不确定型)有八种形式: 00;∞∞ ;0?∞;∞±∞;1∞;0 ∞;00;无限个无穷小的和.

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

函数极限与连续知识梳理

知识梳理? ? ? ? 函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难 一、函数极限的概念

1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

(完整版)函数极限与连续习题含答案

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限 (2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续 (3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续 (4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。 其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、4 2、若a x f x x =→)(lim 0 ,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0 C 、)(x f 在0x x =处可以无意义 D 、x 可以只从一侧无限趋近于0x 3、下列命题错误的是( D ) A 、函数在点0x 处连续的充要条件是在点0x 左、右连续 B 、函数)(x f 在点0x 处连续,则)lim ()(lim 0 0x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00 x f x f x x =→ 4、已知x x f 1)(=,则x x f x x f x ?-?+→?)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B ) A 、1lim 0=→x x x B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→x b ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和 7、已知,2)3(,2)3(-='=f f 则3 )(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在 8、=--→33lim a x a x a x ( D )

函数的极限及函数的连续性典型例题

函数的极限及函数的连续 性典型例题 Last revision on 21 December 2020

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ②要掌握常见的几种函数式变形求极限。 ③函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。 ④计算函数极限的方法,若在x=x0处连续,则。 ⑤若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。 二、典型例题 例1.求下列极限 ①② ③④ 解析:①。 ②。 ③。 ④。例2.已知,求m,n。 解:由可知x2+mx+2含有x+2这个因式, ∴ x=-2是方程x2+mx+2=0的根, ∴ m=3代入求得n=-1。

例3.讨论函数的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的, 又, ∴,∴ f(x)在x=1处连续。 由, 从而f(x)在点x=-1处不连续。 ∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。 例4.已知函数, (a,b为常数)。 试讨论a,b为何值时,f(x)在x=0处连续。 解析:∵且, ∴,∴ a=1, b=0。 例5.求下列函数极限 ①② 解析:①。②。

例6.设,问常数k为何值时,有存在 解析:∵,。 要使存在,只需, ∴ 2k=1,故时,存在。 例7.求函数在x=-1处左右极限,并说明在x=-1处是否有极限 解析:由,,∵,∴ f(x)在x=-1处极限不存在。 三、训练题: 1.已知,则 2.的值是_______。 3. 已知,则=______。 4.已知,2a+b=0,求a与b的值。 5.已知,求a的值。 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0

第一章函数、极限与连续习题

第一章 函数、极限与连续 一、 选择题 1、 )(x f 与)(x g 不表示同一函数的是( ) A x x f =)(与0,00 ,{)(=≠=x x x x g B x x f =)(与2)(x x g = C x x x f -+=11)(与22 )1(1)(x x x g --= D x x f arcsin )(=与x x g arccos 2)(-= π 2、 函数51arcsin )(-=x x f 的定义域是( ) A []6,4- B []5,5- C []1,1- D []∞+,0 3、下列函数中,奇函数是( ) A x x y cos += B 2x x e e y -+= C x x y cos = D )1ln(2x x y += 4、 下列极限存在的有( ) A 10lim x x e → B 01lim 21 x x →- C 01lim sin x x → D 2(1)lim x x x x →∞+ 5、若232lim 43 x x x k x →-+=-,则k =( ) A 3 B -3 C 1 D -1 6、函数()y f x =在点a 处连续是()f x 在a 点有极限的( ) A 必要条件 B 充分条件 C 必要充分条件 D 无关条件

7、 ()x f x x =在0x →时的极限是( ) A 1 B -1 C 0 D 不存在 8、极限=∞→x x x sin lim ( ) A.1 B.∞ C.不存在 D.0 9、=+∞→x x e 1lim ( ) A.∞+ B. 不存在 C.0 D.1 10、1sin y x =( ) A 当0x →时为无穷小量 B 当0x →时为无穷大量 C 在区间()01内为无界变量 D 在区间()01内为有界变量 11、 若lim ()x f x →∞ 存在,lim ()x g x →∞不存在,则以下正确的是( ) A lim(()())x f x g x →∞+与lim ()()x f x g x →∞ 都存在; B lim(()())x f x g x →∞+与lim ()()x f x g x →∞ 都不存在; C lim(()())x f x g x →∞+必不存在,lim ()()x f x g x →∞可能存在; D lim ()()x f x g x →∞ 必不存在,lim(()())x f x g x →∞+可能存在; 12、 若0 lim () 1 x x f x →=,则( ) A 0() 1 f x = B 0 () 1 f x > C 0() 1 f x < D 0()f x 可能不存在 13、当0x →时,下面四个无穷小量中,( )是比其他三个更高阶的量。 A 2x B 1cos x -1 D 2 (1)x x e - 14、设x cos 1-=α,22x =β,则当0→x ,则( )

函数极限与连续知识梳理

函数极限与连续知识梳理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

知识梳理 知识梳理 第一节:函数 第二节:函数极限与连续 第三节:数列极限 2.1 函数极限内容网络图 内容提要与释疑解难 2.2内容提要与释疑解难 一、函数极限的概念 1.。

2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数,当时,都有。此时也可用或表示右极限。因此可写成 。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。 读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。

二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如果既不是无穷小也不是无穷大,我们称为等价量。 例如,则。 注:A不能为零,若A=0,不可能和0等价。 无穷小量的性质: 1.若均为无穷小量,则 (i) 其中均为常数。 (ii)。 2.若时是有界量,,则。 无穷大量的性质: 1.有限个无穷大量之积仍是无穷大量。 2.有界量与无穷大量之和仍是无穷大量。 无穷小量与无穷大量之间的关系: 若; 若。

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与 ()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点.

函数极限与连续

第三节函数极限与连续 一、函数极限内容网络图 二、内容与要求 1. 理解函数极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 2. 掌握函数极限的性质及四则运算法则

3. 掌握函数极限存在的夹逼准则,并会利用它求极限,掌握利用两个重要极限求极限的方法. 4. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 5. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 6. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 重点函数极限的性质及四则运算法则、初等函数的连续性、闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理) 难点函数极限的概念、函数极限的性质、无穷大的概念,掌握无穷小的比较方法、用等价无穷小求极限. 三、概念、定理的理解与典型错误分析 1.函数极限的概念 定义1.10 。 定义1.11 把1中“”换成“”。 定义1.12 把1中“”换成“”。 定理1.4 且 定义1.13 设在的某空心邻域内有定义,若存在一个常数A, ,都有。 定义1.14 设在的某左半邻域内有定义,若存在一个常数A,时,都有。

此时也可用记号或表示左极限值A,因此可写成 定义1.15设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理 1.5 且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 定义1.16时,都有。此时称时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 定义1.17 。当时,都有。 读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 定义1.18 。称当是无穷小量。这里的可以是常数,也可以 是。 定理1.6 。 其中。 定义1.19 若时,都有,称时是有界量。

(完整版)函数、极限与连续习题及答案

第一章 函数、极限与连续 (A) 1.区间[)+∞,a 表示不等式( ) A .+∞<

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

第一章函数、极限与连续习题答案.doc

第一章 函数、极限与连续 1 . 若」 t =t 3 1,贝 U 「t 3 1 =( D ) A. t 3 1 B. t 6 2 C. t 9 2 D. t 9 3t 6 3t 3 2 2. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C ) 1 5 C. -1,1 D. -1,1 3 , 2 3 3. 下列函数 f x 与 g x 相等的是 (A ) — 2 A. f x = x 2 , g x - x 4 B . fx=x , gx= x C. f X gx 「X 1 x -1 4. 下列函数中为奇函数的是 ( A ) 2 x x 八 sin x f - c 2 — 2 2 ? A. y 2 B . y - xe x C sin x D . y = x cosx xsin x x 2 5 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )

A. 0,2 B. 0,3 C. 0,21 D. 0,31 6 . 函数y =10x4 -2 的反函数是(D ) x C . A . y =ig B .log x 2 x—2 a X X 是有理数 7.设函数 %是无理数°

A . 当 Xr J 时, f x 是无穷大 B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小 8 . 设 f x 在R上有定义 , f x 在点X。连续的( A . 充分条件 C.必要条件 x2 a, cos x, 函数 f x 在点X。左、右极限都存在且相等是函数 B. 充分且必要条件 D. 非充分也非必要条件 x—1在 R 上连续,则 a 的值为(D) x::: 1 C. -1 D.-2 10.若函数 f x 在某点X。极限存在,则(C ) f x 在X o的函数值必存在且等于极限值 B. f x 在X o函数值必存在,但不一定等于极限值 C. f X 在X o的函数值可以不存在 D. 如果f X o存在的话 , 11 . 数列0,3 ,2,4,是 (B ) A.以0为极限 B.以1为极限 C . 以口为极限 D . 不存在在极限 n 1 12 . lim xsin

函数的连续性及极限的

第四节函数的连续性及极限的应用 1?函数在一点连续的定义:如果函数f(x)在点x=X o 处有定义,lim f(x) X X o 存在,且X ini f(x)=f(x o ),那么函数f(x)在点x=x o 处连续. 2.?函数f(x)在点x=x o 处连续必须满足下面三个条件. (1) 函数f(x)在点x=x o 处有定义; (2) lin x f(x)存在; X x o (3) lim f(x)=f(x o ),即函数f(x)在点x o 处的极限值等于这一点的函 x x o 数值. 如果上述三个条件中有一个条件不满足, 就说函数f(x)在点x o 处 不连续?那根据这三个条件,我们就可以给出函数在一点连续的定义. 3函数连续性的运算: ① 若 f(x) , g(x)都在点 X o 处连续,则 f(x) 士 g(x) , f(x) ?g(x), 丄凶9(x)半0)也在点x o 处连续。 g(x) ② 若u(x)都在点X o 处连续,且f(u)在u o =u(x o )处连续,则复合函数 f[u(x)]在点X o 处连续。 4?函数f(x)在(a , b)内连续的定义: 如果函数f(x)在某一开区间(a , b)内每一点处连续,就说函数f(x) 在开区间(a , b)内连续,或f(x)是开区间(a , b)内的连续函数. f(x)在开区间(a , b)内的每一点以及在a 、b 两点都连续,现在函 数f(x)的定义域是]a , b ],若在a 点连续,则f(x)在a 点的极限存在 并且等

于f(a),即在a点的左、右极限都存在,且都等于f(a), f(x) 在(a, b)内的每一点处连续,在a点处右极限存在等于f(a),在b点处左极限存在等于f(b). 5?函数f(x)在[a, b]上连续的定义: 如果f(x)在开区间(a, b)内连续,在左端点x=a处有lim f(x)=f(a), x a 在右端点x=b处有|im f(x)=f(b),就说函数f(x)在闭区间]a, b]上连 x b 续,或f(x)是闭区间]a, b]上的连续函数. 6. 最大值最小值定理 如果f(x)是闭区间[a, b]上的连续函数,那么f(x)在闭区间[a, b]上有最大值和最小值? 7. 特别注意:函数f(x)在x=x°处连续与函数f(x)在x=x°处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、问题讨论 ?点击双基 1. _________________________________________________ f (x)在x=x o处连续是f (x)在x=X o处有定义的____________________ 条件. A. 充分不必要 B.必要不充分 C.充要 D.既不充分又

相关主题
文本预览
相关文档 最新文档